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Abstract

We introduce the notion of quasi-full rooted trees. We provide a poset matrix based
approach for the recognition of quasi-full rooted trees. We obtain an exact enumeration
of the unlabeled quasi-full ¢-ary rooted trees with n elements (nodes), where 2 < ¢ < n.
Here, we give the enumeration of the unlabeled quasi-full rooted trees according to the
arity and the number of elements of the trees. This method induces a polynomial-time
algorithm that determines the values of the parameters involved in the enumeration
formula. We also computationally implement the enumeration algorithm and include
the number of n-element unlabeled quasi-full t-ary rooted trees for all 2 <t < n < 31.

1 Introduction

We introduce a new class of rooted trees, which we call the quasi-full rooted trees. A rooted
tree with arity ¢ is called quasi-full if the root of every subtree with r elements (nodes or
vertices) has exactly min(r — 1,¢) children. The class of quasi-full rooted trees contains the
class of full rooted trees as a subclass. Similar to full rooted trees, there are balanced quasi-
full rooted trees. We call these quasi-complete. There are also quasi-full rooted trees with all
of their leaves at the same level, which we call quasi-perfect. Rooted trees, as a special type
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of graph (more specifically, Hasse diagrams of posets), have significant importance. Various
combinatorial properties of these mathematical structures have shown their relevance in
structural analysis, enabling the understanding of patterns, relationships, and connectivity
in many scenarios, ranging from gene models in molecular biology to data mining in computer
science. Therefore, numerous authors have focused on the recognition and enumeration of
several types of rooted trees and forests; see [1, 4, 5, 6, 7, 17, 20]. Also, there are a number of
integer sequences in the On-Line Encyclopedia of Integer Sequences (OEIS) [19] that provide
some existing results on the exact enumerations of several types of labeled and unlabeled
rooted trees. These include full rooted trees (A319541), balanced rooted trees (A306201,
A320160, A320270), complete rooted trees (A287211), and rooted trees with all leaves at the
same level (A238372, A048816). For the enumerations of labeled and unlabeled rooted trees
in general, see also the sequences A000169, A000081, and A299038 in the OEIS [19].

Interestingly, a rooted tree (as a Hasse diagram of a poset) can be generated from a single
element (the singleton poset) by taking the direct sum (disjoint sum or parallel composition)
and ordinal sum (linear sum or series composition) only. Therefore, the aforementioned
classes of rooted trees can be considered as nice subclasses of the frequently studied decom-
posable posets, more specifically, connected series-parallel posets; see [8]. Analogously, a
rooted forest (a collection of rooted trees) can be considered as the direct sum of two or
more rooted trees or seeds. Then, similar to series-parallel posets, an arbitrary rooted tree
can be constructed by taking the ordinal sum of a single element (which becomes the root of
the tree) and a rooted forest. Thus, for every 2 <t < n, an n-element quasi-full ¢t-ary rooted
tree can be constructed by taking the ordinal sum of a single node (a seed) and an (n — 1)-
element quasi-full rooted forest consisting of exactly ¢ trees (quasi-full t-ary rooted trees) or
seeds. This construction of rooted trees suggests a matrix recognition and, consequently, an
exact enumeration of the unlabeled quasi-full rooted trees.

In this paper, we first give a matrix recognition of quasi-full rooted trees using the
poset matrix, an incidence matrix used to represent posets. The notions of many incidence
matrices were frequently introduced and applied to certain computational aspects of the con-
cerned mathematical structures; see [2, 12, 18]. Particularly, matrix-based approaches for
recognizing some mathematical objects are preferable because they induce a more efficient
computational implementation of the methods. Mohammad and Talukder [8] coined the
term poset matriz. Recently, the poset matrix has gained much attention in the recognition
and classification of various classes of posets and graphs; see [2, 9, 11, 12, 16]. Secondly, we
give an exact enumeration of the unlabeled quasi-full rooted trees that depends mainly on the
nonisomorphic direct sum criterion of poset matrices obtained by Mohammad et al. [13, 14].
We find that the number of n-element unlabeled quasi-full t-ary rooted trees increases ex-
ponentially as the values of n and ¢ increase. We give an algorithm to determine the values
of some parameters involved in the enumeration formula. We prove that the enumeration
algorithm runs in polynomial time with complexity O(n?). Also, we computationally imple-
ment the enumeration algorithm and obtain the numerical result for the number of unlabeled
quasi-full rooted trees according to their arity and the number of elements. These data yield
a new integer sequence A352460 contributed to the OEIS [19].
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In Section 2, we introduce the quasi-full rooted trees and quasi-full rooted forests as posets
with constructive examples. In Section 3, we give the matrix recognitions of the quasi-full
rooted trees and quasi-full rooted forests by using the poset matrix. In Section 4, we obtain
an exact enumeration of the unlabeled quasi-full ¢t-ary rooted trees with n elements, where
2 <t < n. In Section 5, we give the enumeration algorithm and prove its time complexity.
Moreover, in Section 6, we include the data (Table 3 and Table 4) regarding the number of
n-element unlabeled quasi-full t-ary rooted trees for all 2 <t <n < 31.

2 Quasi-full rooted trees and forests as posets

A poset (partially ordered set) is a structure A = (A, <) consisting of the nonempty set
A with the order relation < on A, that is, the relation < is reflexive, antisymmetric, and
transitive on A. Note that the results in this article are applicable to finite posets only. We
use the notation 1 for the singleton poset, C,>; for the n-element chain poset, I,,>; for the
n-element antichain poset, and B,,>1,>1 for the complete bipartite poset with m minimal
elements and n maximal elements. We write A = B if A and B are order isomorphic.
In particular, we have C; = I} = 1 and B;; = C,. We also use the notation A + B
and A @ B to denote, respectively, the direct sum and ordinal sum of the posets A and
B. Here, the posets A and B are called the direct terms of A + B and the ordinal terms
of A® B. For every m > 1 and n > 1, we have B,,,, = 1, ®I,. Here, I, and I,, are
the ordinal terms of the poset B,,,. Also, for every n > 2, we have I, £ 1 4+1+---+1

n terms
and C, £1@1®---® 1. A poset having two or more direct terms is called disconnected;

n terms
otherwise, it is called connected. A poset is called series-parallel if it can be generated from

the singleton poset by taking the direct sum and ordinal sum only. For further details on
posets, we refer readers to the classical book by Davey and Priestley [3].

A rooted tree is an acyclic graph with a fixed element (node or vertex) called the root
of the tree. The immediate successors of an element in a rooted tree are called children of
that element. An element except the root in a tree having no children is called a leaf, and
an element having at least one child is called an internal element. In a rooted tree, the root
is supposed to be at level 0, and the children of an internal element go to the immediate
upper level. By a subtree of a rooted tree, we mean either the whole tree itself or a tree
consisting of a child (which becomes the root of the subtree) and all of its successors of an
internal element of the tree. A tree with a single element, the singleton poset 1, is called
the nullary tree or seed. We can consider the tree 1 (the singleton poset) just as a seed.
A rooted tree is said to have arity t, where t > 1, if every internal element of the tree has
at most t children. A t-ary rooted tree is called full if every internal element has exactly ¢
children. A full rooted tree having all its leaves at the same level is called perfect. A t-ary
rooted tree is called balanced if all its leaves are at the highest two levels. A t-ary balanced
rooted tree is called complete if every internal element has exactly ¢ children. Thus, every



perfect rooted tree is complete, and every complete rooted tree is full. Note that there are
full rooted trees that are not balanced, and there are balanced rooted trees that are not full.
Note also that if a rooted tree is not balanced, then it is neither perfect nor even complete.
In the following, we define and explain the term quasi-full rooted tree.

Definition 1. A t-ary rooted tree is called quasi-full if the root of every subtree with r
elements has exactly min(r — 1,¢) children.

For example, the rooted trees Cy, B1o = 1@ 1, 16 (14 Cy), Bjs = 1613, and
1@ (Cy + Cy), as shown in Figure 1 by their Hasse diagrams, are all quasi-full rooted trees.
Let 7., where n > 1 and ¢t > 1, be the collections of quasi-full t-ary rooted trees with n
elements. In particular, we have the following.

LTy ="The = = {1}, Top = Top = -+ = {C.}, Ts1 = {Cs}, Ti1 = {C,},
751 = {Cs}, and so on.

2. Tsizo ={1@ 1} ={Bis}, Tai>3 = {1 @ I3} = {B13}, and so on.

Also, we have Tyo = {1® (1 4+ Cs)}, T52 = {1® (C2+Cs), 1@ (1 +Byo)}, and T53 =
{1® (I, + Cy)}. In general, we have Tp—1;>1 = {1}, Th=2s>1 = {Ca}, Toz14=1 = {Cy},
Tozouon-1 ={1@ 1,1} = {By 1}, and Tpsamn—2 = {1 (I,_3 + C)}.

AR

C, 1 + CQ C2 + CQ
Figure 1: Some quasi-full rooted trees (Hasse diagrams of posets) up to 5 elements.

We see that every proper subtree of an n-element quasi-full t-ary rooted tree is also a
quasi-full rooted tree with maximum n — ¢t elements. We also see that a quasi-full rooted
tree has the intention of fulfilling its arity in an internal element before it produces a new
child in a leaf of that element. This structure of quasi-full rooted trees shows that every full
rooted tree is quasi-full. On the other hand, we see that the binary rooted trees 1& (1 + Cs)
and 1@ (Cy + Cy), as given in Figure 1, are quasi-full but not full trees. Therefore, the class
of full rooted trees is contained in the class of quasi-full rooted trees properly. Also, we see
that the balanced rooted tree 1 & (1 + Cs) is not complete. Since 1 & (1 + Cy) is quasi-full,
we call it quasi-complete. Similarly, we see that the quasi-full rooted tree 1 @ (Cs + C,) has
all its leaves at the same level. Since 1 & (Cy + Cs) is not full, it is not perfect, and we call
it quasi-perfect. Moreover, similar to full rooted trees, there are quasi-full rooted trees that



are not balanced, and there are balanced rooted trees that are not quasi-full. However, all
the quasi-full rooted trees up to 5 elements are balanced.

Note that the root of a tree (see Figure 1) is put at the bottom of the tree, and the
children and leaves of the tree are drawn above the root in the upward direction. In general,
we assume that in an internal element of a rooted tree, a subtree with a greater number of
elements is positioned to the right (equivalently, left) of a subtree with a lesser number of
elements. Also, throughout this paper, we consider only unlabeled rooted trees.

A forest is a collection of two or more trees or seeds. A rooted forest consists of two
or more rooted trees or seeds. The number of elements of a forest equals the sum of the
number of elements of the trees and the number of seeds in the forest. We now define the
term quasi-full rooted forest.

Definition 2. A rooted forest consisting of exactly ¢ quasi-full ¢-ary rooted trees or seeds is
called a quasi-full t-ary rooted forest.

Let F,:, where 1 <t < n, be the collections of quasi-full t-ary rooted forests with n
elements. In particular, we have the following.

1. fl,l = {Cl}, -F2,1 = {CQ}, ./—'.371 = {03}, and so on. Thus fnZl,tzl = {Cn}
2. fg,g = {IQ}, f3’3 = {Ig}, f474 = {14}, and SO On. ThU.S ]:nzl,t:n = {In}
3. .F372 = {Il + 02}7 .F473 = {12 + 02}7 and SO On. ThUS fn23,t:n—1 = {In_g + CQ}

4. Fio={Co+ Cy, 1+ By}, F52={Ca+ B2}, and F553 = {1+ Cy + Cy, I + B2}

Throughout the rest of the paper, by the term quasi-full tree (analogously, quasi-full
forest), we will mean a t-ary quasi-full rooted tree (quasi-full rooted forest) with n elements.

3 Recognitions of the quasi-full trees and forests

Throughout this paper, we use the notation M,, ,, for an m-by-n matrix and M,, for a square
matrix of order n. In particular, we use the notation I,,, O,,, and Z,, respectively, for the n-th
order identity matrix, the matrix with all entries 1s, and the matrix with all entries 0s. We
also use the notation C), for the matrix [¢;;], 1 <,j < n, defined as ¢;; = 1 for all i < j and
¢;; = 0 otherwise. Note that here Iy = C; = 1. An upper triangular (0, 1)-matrix M, = [a;],
1 <4,5 < n, with entries 1s in the main diagonal is called a poset matriz if and only if M,
is transitive, that is, a;; = 1 and a;; = 1 imply a;; = 1 for all 1 < 4,7,k < n. For example,
for every n > 1, the matrices I,, and (), are all poset matrices, because these are upper
triangular and clearly transitive. Also, the following matrices Bz and BY are nontrivial poset
matrices. For further details on the poset matrix and interpretations of several operations
with poset matrices, see the results obtained by Mohammad et al. [8, 9, 11, 12].

1
0 Bi=|1
1 1

O = O
_ o O



Let M, = [a;], 1 < i,j < n, be a poset matrix. We associate a poset A = (A, <)
with the matrix M, where the underlying set A = {z1, zo, ..., z,} and z; corresponds
to the i-th row (or column) of M, by defining the order relation < on A such that for all
1 <14,5 <n, we have z; < z; if and only if a;; = 1. Then we say that the poset matrix M,
represents the poset A and vice versa. Clearly, for every n > 1, the poset matrices I,, and C,
represent the posets I,, and C,, respectively. Also, the poset matrices Bs and B%, as given
above, represent the complete bipartite posets B; 5 (as shown in Figure 1) and By; (dual
of By ), respectively. Let M, be a poset matrix. For some 1 < 7,5 < n, the interchange
of the i-th and j-th rows along with the interchange of the i-th and j-th columns in M, is
called (i,j)-relabeling of M,. For example, a relabeling of the poset matrix B is shown in
the following.

0 1,3)-relabeli 1 1
0 (1,3)-relabeling 0 1
1 001

1 0
BL=1 1 1| =57
1

O = O

Mohammad and Talukder [8] gave the interpretations of relabeling in a poset matrix.
They showed that every matrix obtained by a relabeling of a poset matrix is a poset matrix,
and it represents the same poset up to isomorphism. They also showed that every poset
matrix can be relabeled to an upper (equivalently, lower) triangular matrix with 1s in the
main diagonal by a finite number of relabelings. Any two poset matrices M,, and M are
called relabeling equivalent, or briefly equivalent, if the matrix M/ can be obtained by some
relabeling of the matrix M,, and vice versa. We write M,, ~ M) if M,, and M, are relabeling
equivalent. Also, by a collection of equivalent (analogously, nonequivalent) poset matrices,
we mean that the matrices are pairwise equivalent (nonequivalent). Obviously, if M, ~
M/ (analogously, M, = M!), then the posets represented by M, and M are isomorphic
(nonisomorphic). Note that throughout this paper, by a poset matrix we mean a poset
matrix in upper triangular form.

Let M,, and N,, be any poset matrices. We write M,, & N,, and M,, B N,,, respectively,
for the direct sum and ordinal sum of the matrices M,, and N,,. Note here that the matrices
M, and N,, are called the direct terms of M,, ® N,, and the ordinal terms of M,, B N,,.
Mohammad and Talukder [8] defined the block of Os property and the block of 1s property
in a poset matrix. A poset matrix M,, = [a;;], 1 <i,j < n, satisfies the block of Os property
(analogously, block of 1s property) of length r, where 1 < r < n, if and only if a;; = 0
(analogously, a;; = 1) for all 1 < i <7 and r+1 < j < n. For example, for every n > 2,
the poset matrix I, satisfies the block of Os property of lengths 1, 2, ..., n — 1, and the
poset matrix C, satisfies the block of 1s property of lengths 1, 2, ..., n — 1. Also, the
following poset matrix By satisfies the block of 1s property of length 1, and the poset matrix
F satisfies the block of Os property of length 2.

1111 1 10 0
0100 0100
B4_0010 F4_0011
000 1 000 1



Note that for any relabeling, a poset matrix M, can satisfy one of the two mentioned
properties at a time, but not both properties together. In the case of the poset matrices By
and F}; given above, we have By = 1HI3 and Fy = Co®C,. Also, wehave I, =1®1®--- @1

n terms

and C,, = 1H1H.---H1 Mohammad and Talukder [8] obtained the following results

n terms

regarding the direct sum and ordinal sum of poset matrices.

Theorem 3. /8] Forn > 2, a poset matrixz M, satisfies the block of Os property (analogously,

block of 1s property) of lengths ny, na, ..., ny if and only if M,, = My, &M, n, B -BM,, ..
(analogously, M,, = M,, B M,, ., B ---8 M,_, ) for some poset matrices M,,, M, n,,
o, My

Theorem 4. [8] For n > 2, let M, represent the poset P; for every 1 < i < r. Then the
matrix My, & M,, & --- & M, (analogously, M,, B M,,B---HB M,, ) is a poset matriz and
it represents the poset Py + Py + --- + P,. (analogously, P ®P; @ --- ®P,.).

We observe that the poset matrix By (as given above) that satisfies the block of 1s prop-
erty of length 1 represents the connected poset B; 3, and the poset matrix Fj that satisfies
the block of Os property of length 2 represents the disconnected poset Cs + Cy. Mohammad
et al. [14] established the above observations in general and obtained the following results
regarding the matrix recognitions of the connected posets and disconnected posets.

Theorem 5. [1/] Let M represent the poset P 22 1. Then P is connected (analogously,
disconnected) if M can be relabeled in such a form that it satisfies the block of 1s property
(analogously, block of Os property).

In general, the converse of the result obtained for connected posets in Theorem 5 is not
true, because every nontrivial prime poset (particularly, the 4-element N-shaped or zigzag
poset) is connected, where the poset matrix that represents a prime poset does not satisfy the
block of 1s property for any labeling. However, the following result (Theorem 6) regarding
the recognition of quasi-full rooted trees shows that the converse of the result obtained in
Theorem 5 holds in the case of quasi-full rooted trees. We observe that the following matrix
By satisfies the block of 1s property of length 1; and the successive nonunit ordinal term
satisfies the block of Os property of lengths 1,2, where all the successive direct terms equal
1. We see that the poset matrix B, represents the quasi-full rooted tree B; 3 (see Figure 1).
On the other hand, we observe that the following matrix Fj satisfies the block of Os property
of length 2; and both the successive direct terms satisfy the block of 1s property of length 1,
where all the successive ordinal terms equal 1. We see that the poset matrix F} represents
the quasi-full rooted forest Cy + Cs.

By =

o O O =
O O ==
o.—.H
-Ee-
e
I
o O O =



We now establish the above observations in general. We give the matrix recognition of the
quasi-full rooted trees T € 7,,>3:>2 and the matrix recognition of the quasi-full rooted forest
F € F,>2:>9, respectively. Recall that T,>121 = Fos121 = {Cn} and Th051 = {Ca}.
Note that none of the poset matrices C,,, n > 1, satisfy the block of Os property.

Theorem 6. Forn > 3 and t > 2, let M,, represent the poset T. Then T is a quasi-full
t-ary rooted tree if and only if M, can be relabeled in such a form that it satisfies the block
of 1s property of length 1; and every successive nonunit ordinal term M, satisfies the block
of 0s property of lengths Iy, ls, ..., ln_1 for some ly <ly < --- < l_1, where h = min(r, 1),
and every successive nonunit direct term satisfies the block of 1s property of length 1.

Proof. Let T be a quasi-full t-ary rooted tree with n elements, where 2 < ¢t < n, and M,
represent T. Then T can be considered as a connected series-parallel poset with a single
minimal element known as the root of the tree T. Then by Theorem 5, there exists a poset
P such that T = 1 & P. Then P is a quasi-full ¢t-ary rooted forest consisting of h — 1
subtrees of T, where h = min(n — 1,¢). Thus there exist the quasi-full ¢-ary rooted trees
(possibly, seeds) Ty, Ty, ..., Tp_1 such that P = Ty + Ty + --- + Tj_;. Let the poset
matrices M,,, M,,, ..., M,, , represent the trees Ty, T, ..., T)_1, respectively. Then by
Theorem 3 and Theorem 4, the poset matrix M,, ® M,, ®---@® M,, , represents the forest P
=T +Ty+---+Ty_y. This implies that 1B (M,, & M,, ®--- & M,,_,) represents the tree
16 (T1+Te+---+Ty1) =16P = T. This shows that M,, ~ 18B(M,, &M,,&---&M,, ).
For every 1 <i < h — 1, if |T;| = 1, that is, T; = 1, then we have M,, = 1; or if |T;| = 2,
then by definition, we have T; = C,, and then M,, = Cy. Otherwise, for |T;| > 3, we
must have T;, and Mrij, 1<j<h;—1,suchthat T, 21® (T;;, +Ti, +--- + T,-hi_l) and
M, ~ 18 (M, &M, &---& M, ). Since every subtree of a quasi-full rooted tree is
quasi-full, continuing the above proce;s, we show that every successive nonunit ordinal term
M, satisfies the block of Os property of lengths Iy, l5, ..., [,—1 for some [} <y < -+ <[4,
where h = min(r;,t), and every successive nonunit direct term satisfies the block of 1s
property of length 1. Thus, the matrix M, can be relabeled in such a form that it follows
the conditions in the hypothesis.

Conversely, suppose we can relabel M, in such a form that it satisfies the conditions in
the hypothesis. Then M, satisfies the block of 1s property of length 1. Thus there exists
a poset matrix ¢),,_1 such that M, = 18 @Q,_;. Since the ordinal term (,,_; is nonunit, it
must satisfy the block of Os property of lengths 1, lo, ..., l[x_1 for some l; < ly < -+ < [}_1.
Assign r; = I; — -1, 1 < i < k, where we assume [ = 0 and I = n — 1. Then by
Theorem 3, there exist @),,, 1 < i <k, such that Q,-1 = Q,, @ Qr, - @ Q,,. This gives
M,=18(Q,®Q,® - ®Q,). If r; <2forevery 1 <i <k, then by Theorem 4,
Q., ~ C,, implies that M,, represents the poset 1 & (C,, + C,, +--- 4+ C,, ) that is a quasi-
full rooted tree. If r; > 3 for some 1 < i < k, then there exist Qn-]» 1 < j < k;, such that
Qr, = 18(Qy, ®Qr,, - '@Qriki ). Continuing the above process, we can show that r;; < 2 for

every 1 <i < k; at some step i such that (), represents the poset 1&(C,, +C,, +-- ""Crki)-
Therefore, M,, = 1B (Q,, ® Qr, ® - -+ ® @,,) represents a quasi-full rooted tree. ]



Theorem 7. Forn > 2 and t > 2, let M, represent the poset F. Then F is a quasi-
full t-ary rooted forest if and only if M, can be relabeled in such a form that it satisfies
the block of Os property of lengths 1y, lo, ..., li_1 for some l; < lg < -+ < l;_1; and
every successive nonunit direct term satisfies the block of 1s property of length 1, and every
successive nonunit ordinal term M, satisfies the block of Os property of lengths ly, lo, ...,
lh_1 for somely <ly < -+ < lp_1, where h = min(r,t).

Proof. Let F be a quasi-full t-ary rooted tree with n elements, where 2 < ¢t < n, and M,
represent F. Then there exist the quasi-full t-ary rooted trees (possibly, seeds) T4, Ts, ...,
T, such that F = T, +Ty+ .-+ T,. Let the poset matrices M, , M,,, ..., M,, represent the
trees Ty, To, ..., T4, respectively. Then by Theorem 3 and Theorem 4, M,, ®M,, S --HM,,
represents the forest F = Ty + Ty + - - -+ T;. This shows that M,, ~ M, & M,, ®---& M,.,.
For every 1 <4 <'t, since M,, represents the quasi-full rooted tree T;, by Theorem 6, M,,
satisfies the conditions for successive nonunit direct terms and ordinal terms given in the
hypothesis. This shows that M,, follows the conditions in the hypothesis.

Conversely, suppose we can relabel M,, in such a form that it satisfies the conditions in
the hypothesis. Then M,, satisfies the block of Os property of lengths [y, l5, ..., [;_1 for some
Lh<ly<---<li_q. Assignr; =1; —l;_1, 1 <i <t, where we assume [p =0 and [, =n — 1.
Then by Theorem 3, there exist @,,, 1 < i < ¢, such that M,, = Q,, ® Q, D --- ® Q.
For every 1 <7 < ¢, since (),, satisfies the conditions for successive nonunit direct terms
and ordinal terms given in the hypothesis, by Theorem 6, matrix (),, represents a quasi-full
rooted tree, say T;. Then by Theorem 4, matrix M,, = Q,, & @, & --- & Q,, represents the
forest T1 + Ty + --- + T;. Since M,, represents F, we have F =2 T + Ty + --- 4+ T, and
hence F is a quasi-full rooted forest. n

4 Exact enumeration of the quasi-full trees

The enumeration method for the unlabeled quasi-full rooted trees obtained in this section
is based mainly on the results (Theorem 6 and Theorem 7) obtained in Section 3. Let
M+, where n > 1 and t > 1, be the collections of pairwise nonequivalent (relabeling) poset
matrices that represent a quasi-full t-ary rooted tree with n elements. Trivially, we have
M1 = {1}, Mas1 = {Cy}, and M,,>31 = {C,}. In general, for the enumeration of the
n-element unlabeled quasi-full t-ary rooted trees, here we find a formula that gives an exact
enumeration of the matrices contained in the collection M,, ; for every 2 <t < n.

Let M € M,,; for some n > 3 and ¢t > 2. By Theorem 6, matrix M satisfies the block
of 1s property of length 1; and every successive ordinal term of order r, where 1 < r < n,
satisfies the block of Os property of lengths l1, lo, ..., Iy for some l; < ly < --- < l,_1, where
h = min(r,t), and every successive nonunit direct term satisfies the block of 1s property of
length 1. In particular, we have M,,; as follows:

1. Let M € M3,. Then M satisfies the block of 1s property of length 1, and the nonunit
ordinal term (a matrix of order 3—1 = 2) can satisfy the block of Os property of length

9



1 only. Thus, both the direct terms are 1. Then M = 1H (1 1) = 181, = B (as
given in Section 3), and hence M3o = {Bs}. In general, since h = min(3 — 1,¢) = 2,
we have By € M3, for every ¢t > 2. Therefore, M3 ;>0 = {B3}.

2. Let M € My,. Then M satisfies the block of 1s property of length 1; and the nonunit
ordinal term can satisfy the block of Os property of length 1 (in this case, the direct
terms are 1 and C3) and length 2 (in this case, the direct terms are Cy and 1). Since
1®Cy~Cy® 1, we have M = 1H (1@ Cy), and hence My, = {1H (1@ Cy)}.

3. Let M € M,3. Then M satisfies the block of 1s property of length 1; and the nonunit
ordinal term (a matrix of order 4 —1 = 3) can satisfy the block of Os property of lengths
1,2. Thus, all the direct terms are 1. Then M = 1H(1® 16 1) = 1BI3; = B, (as given
in Section 3) and hence My 3 = {By4}. In general, if ¢ > 3, then h = min(4 — 1,¢) = 3
implies that B, € Mg, for every ¢t > 3. Therefore, My ;>3 = {B4}.

We now have the following remarks.

Remark 8. We have My, = {1}, My, = {Cs}, and M,,>3; = {C,,} in general. Also, for
every t > 1, we have 1 € M, and Cy € My,;. On the other hand, for ¢ > 2, we see that
C, ¢ M, for any n > 3. These happen because in each of these cases, the nonunit ordinal
term C,,_; does not satisfy the block of Os property for any length. But by Theorem 6, since
h = min(n — 1,¢) > 2, the nonunit ordinal term C,,_; must satisfy the block of Os property
of lengths ly,ls,...,l,_1 for some l; < ly < -+ < lj_.

Remark 9. We have M3y = {Bs}, My, = {18 (1& Cy)}, and My3 = {B,}. Also, for
every t > 2, we have By € M3, and By € My,;. On the other hand, for every ¢t > 3, we see
that 18 (1@ Cy) ¢ My, . These happen because in each of these cases, the nonunit ordinal
term 1 & Cy can satisfy the block of Os property of length 1 only. But by Theorem 6, since
h = min(3,t) = 3, the ordinal term 1 & Cy must satisfy the block of Os property of lengths
l1, 1l for some [; < [s.

In the following, we generalize the facts observed in Remark 8 and Remark 9.
Theorem 10. Let M be a poset matrix and n > 3 be given. Then
(i) M € M,, .1 implies M € M,, 1>, and
(it) M € M, for somet <n —2 implies M ¢ M,, ;>
Proof.

(i) Let M € M,,,—1. Since M satisfies the block of 1s property of length 1, the nonunit
ordinal term of M, say P, is a matrix of order n — 1. Then P must satisfy the block
of Os property of lengths 1,2,...,n — 2. Since min(n — 1,¢) — 1 =n — 2 for all ¢t > n,
by Theorem 6, we have M € M, ;>p,.
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(ii)) Let M € M, for some t < n — 2. Then, since M satisfies the block of 1s property
of length 1, the nonunit ordinal term of M, say @), is a matrix of order n — 1. Since
min(n — 1,¢) = ¢, the matrix @ satisfies the block of 0s property of lengths iy, 1o, ..., I
for some I; < ly < --+ < I, where k =t —1 < n — 3. But, for all ¢ > n, we have
k =min(n—1,t) —1 =n—2 > n—3. Therefore, by Theorem 6, we have M ¢ M,, ;>,.

]

As an illustration of the result obtained in Theorem 10, we present the poset matrices
MeM,;foralll <n <6and 1<t <5in Table 1.

iNnftf2[3] 4 | 5 | 6 |
1 03 04 05 C(6
1H (1 Bs), LH (C, @ Bs),
2 TEI9O) | 1 mc,e0,) | 18161816 C0)
1 Cg 183([2@33)7
3 B3 B IEE(]Q@CQ) 153(1@02@02)
4 4 B LH ([0 Cy)
5 4 1H I

Table 1: Poset matrices in M,,; for all 1 <n <6 and 1 <¢ <5.

Let Not, 2 < ¢t < n, be the collections of pairwise nonequivalent (relabeling) poset
matrices that represent a quasi-full t-ary rooted forest with n elements. For n > 2, the result
obtained in Theorem 7 implies that every matrix M, € N, satisfies the block of Os property

of lengths Iy, ls, ..., l;_1 for some [} < Iy < --- < [;_1; and every successive direct term until
1 satisfies the block of 1s property of length 1, and every successive ordinal term M, # 1
satisfies the block of Os property of lengths l1, l5, ..., l;,_1 for some l; < ly < --- < l,_1, where

h = min(r — 1,¢). We apply this characterization of rooted forests to construct the matrices
in M1, for every 2 < t < n, using the matrices in N, ;. For example, let M € Ny,.
Here, M satisfies the block of Os property of length 1 only, so both direct terms are 1. Thus,
M =1®1= I, and hence N5 = {I5}. Again, take M € N33. In this case, M satisfies the
block of Os property for lengths 1, 2, so all direct terms are 1. Therefore, M =1®1d1 = I3,
and hence N33 = {I3}. In general, we have N,>2,-, = {I,}. For some 2 < ¢t < n, we
observe the contents of N, ; as follows:

1. Let M € N35. Then M can satisfy the block of Os property of length 1 and length 2.
In both cases, the direct terms are 1 and Cs. Since 1 ® Cy ~ C5 @ 1, in this case, we
have M = 1@ Cy. Thus, N3o = {1 ® Cy}. Again, let M € Ny3. Then M can satisfy
the block of Os property of lengths 1,2, lengths 1,3, and lengths 2,3. In all of these
cases, the direct terms are 1, 1, and Cs. Since Co @11~ 1 Co Pl ~1H 16y
= I, ® Cy, in this case, we have M = I, & Cy. Thus, Ny3 = {I, ® Cb}.

11



2. Let M € Nys. Then M can satisfy the block of Os property of length 1 (here, the
direct terms are 1 and Bs), length 2 (here, both the direct terms are Cs), and length 3
(here, the direct terms are Bz and 1). Since 1@ B3 ~ B3 @ 1, in this case, M = 1@ By
or M = Cy @ Cy. Thus, Nyg = {1® Bs,Cy @ Ca}.

We now generalize the above observations. We recall the nonisomorphic direct sum
criterion for poset matrices obtained by Mohammad et al. [14]. Here, we justify when a
pair of poset matrices, each of which satisfies the block of 0Os property of some lengths, are
nonequivalent. Let M, M’ € N, ;, where 2 < t < n, such that both M and M’ satisfy the
block of Os property. The poset matrix M satisfies the block of Os property of lengths [;, I,
..., ly_y for some [y < ly < --- < l;_1, and matrix M’ satisfies the block of Os property of
lengths 17, 15, ..., l;_, for some I} < I, <--- <[;_;. Since the direct sum of poset matrices
is commutative, it is possible that M ~ M’ (relabeling equivalent) even if [, # [} for all
1 <k <t—1. Recall that if M ~ M’, then the forests represented by the matrices M and M’
are isomorphic. In the following, a revision of the result obtained by Mohammad et al. [14]
regarding the nonisomorphic direct sum of the poset matrices representing disconnected
series-parallel posets gives the condition for the lengths Iy, Iy, ..., [,y and I}, l5, ..., ;_; of
the block of Os property satisfied by the matrices M and M’ so that the matrices M and M’
represent nonisomorphic forests.

Theorem 11. [14] Let M, M’ € Ny, n > 2, such that both M and M’ satisfy the block
of Os property of the nondecreasing inter-distant lengths ly, la, ..., l;_1 and lengths 1}, 1},
.oy Uiy, respectively, where I, # 1), for some 1 < k <t —1; and every direct term of M
and M’ satisfies the block of 1s property for some lengths. Then M and M’ are relabeling
inequivalent, that is, M ~ M'.

Proof. Let I: 1y, ly, ..., Ly and I": I}, 15, ..., I, ;. Forall0 <i <t—1,say r, =l —
and rj = l;,; —I;, where we assign lp = [, = 0 and I, = [; = n. Since both M and M’ satisfy
the block of 0s property of the lengths I and I, respectively, by Theorem 3, there exist M,,,
M, 1 < i <t such that M = My, & My, & --- & M,, and M" = M}, & M}, & --- & M.
Suppose that there exists 1 < kg <t —1 such that Iy, # [}, . This implies 73, # 7}, and hence
M, #M, ! = Since the lengths [ and I’ are nondecreasing inter-distant, both the sequences
0
ri, 7, 1 < i < t, are nondecreasing. This implies either M, # M/, for all ky < i <t or
M;;C # M,, for all ky < i <t. Since for all 1 <14 < ¢, the direct terms M,, and M/, satisfy
0 1
the block of 1s property for some lengths, we have M,, &---&M,, = M;k O D M;g- This
0

implies My, & My, @ -+ @& My, o« M, & M}, ®--- & My, that is, M < M’. O

As an illustration of the result obtained in Theorem 11, the poset matrices M € N,
for all 2 <t < n <5 are presented in Table 2. The following observations show that every
M € N, can be constructed uniquely by taking the direct sum of ¢ matrices taken from the
collections M, ;, 1 <7 <mn —t+1, given in Table 1.
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[iNn[ 2 [ 3 | 4 | 5 |

2 L [ 16C, | Co0Cy, 16B; | Co0Bs, 1o (1B (16 ()
3 I3 I, ® Cy 18 Cy & Cy, I P Bs

4 I I & C,

5 I;

Table 2: Poset matrices in AV,,; for all 2 <t <n <5.

1. To construct the matrices in Moo = {lb = 1@ 1}, Nss ={l =111}, Ny4 =
{IL=1®1® 11}, and so on; we need only the unit matrix in M ;59 = {1}.

2. To construct the matrices in N3 = {1® C}, Ny3 = {lo ® Co}, N5 4 = {I3D Cy}, and
so on; we need only the matrices in the collections My ;59 = {1} and My>0 = {Ca}.

3. To construct the matrices in Nyo = {1® B3, Co®Cs}, N5 3 = {[o® B3, 10 Co® Cq} =
{1®1® B3, 1® Cy ® Cy}, and so on; we need only the matrices in the collections
Ml,t22 = {1}7 M2,t22 = {02}7 and M3,t22 = {33}-

4. To construct the matrices in V5o = {1 @ (1B (1® Cy)), Cy @ Bs}, and so on; we need
only the matrices in the collections M >9 = {1}, Maiso = {Ca}, M350 = {Bs},
M4,2 - {]_ EH (1 @ CQ)}, and M4,t23 - {1 EE 13}

Suppose, for given n and ¢, where 2 < t < n, we want to enumerate the matrices in
M 114. Also, let M, ; be given for all 1 < r < n —t+1. Fort¢ > 2, to construct the
matrices in M,,;14, we first construct the matrices in N, ; by using the matrices in M, ,,
1 <r<n-—t+1. Here, we apply the direct sum criterion for poset matrices obtained in
Theorem 11. For every M € N, by Theorem 6 and Theorem 7, the ordinal sum 1 B M
satisfies the condition for being a member of M, ;,, that is, 1EH M € M, ;,. Also, for
every P € M, 1, there exists M' € N,,; such that P = 1 B M’. Thus, there is a one-
to-one correspondence between M, 1, and N, ;, and hence |M,, 11| = |[Nu.|. Therefore,
the enumeration of M, is equivalent to the enumeration of N, ;. Suppose we want to
determine |V, ;| for some 2 <t < n. Then, by Theorem 11, it is enough to determine the
number of ways in which a poset matrix M, can satisfy the block of Os property of the
nondecreasing inter-distant lengths Iy, ls, ..., [, for some [; < ly < --- < l;_1, such that
the direct terms M;,, M;,_;,, ..., M,_;, , belong to some M,;, 1 <r <n —1t+ 1. We now
obtain this result as a special case of the result [14, Theorem 4.3].

Theorem 12. Let 2 < t < n be given, and let every M, € N, satisfy the block of Os
property of the nondecreasing inter-distant lengths lj1,ljs, ..., lju—1), 1 < 7 < p, for some
p < (Z) Also let for every 1 < j <pand 1 <k < gq;, where ¢; < t, we have ‘Mrjk,t’ and
Cjk, the number of the k-th consecutive direct terms M., of M,,, where rj;, = lijn41y — Ljn for

some 0 < h <t—1 with ljo =0 and l;; = n. Then we have |N,,;| as follows:

P 4
|Mr- ,t’+c'k
|Nn,t|=ZH< ol *), 2<t<n (1)

=1 k=1
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Proof. For every 1 < j < p, where p < (TZ), let S; be the number of different ways in which
an M, € N, can satisfy the block of 0s property of the nondecreasing inter-distant lengths
lj1, 12, ..., lj¢—1) such that the direct terms ]\/[,nj,c of M,, belong to /\/lrjk,t. Then for every
1 < j < p, there are S; pairwise nonequivalent poset matrices M, in N+ that satisfy the
J-th nondecreasing inter-distant lengths 1, o, ..., lj4—1). Then we have 7, cjr, 1 <k < g,
where ¢; < ¢, as follows:

ri1 =l — lig—y, 1 <i <t +1,
rj2 = lji — lij—1y, th +2 <1 <tjp+1,

Tjq; = lii — lj(i—1)7 ti(g—1) T 2<i< tjq; + L.

Here rj1 < rjp <--- <74, and we assume ljo = 0 and l;; = n. Then the direct terms of M,
are the matrices M, 1<i<typ+1,1< k < g;. By hypothesis, for every 1 <i <t +1
and 1 < k < g;, matrix M, , € M, , ;. Forevery 1 <j <pand1 <k < g, since M,
belong to M, , ;, by [14, Theorem 3.8], the number of distinct poset matrices M,, € Nt

that satisfy the j-th nondecreasing inter-distant lengths l;1, lj2, ..., lj¢—1) is

<|Mrjk7t| + Cjk)
1 —|— Cjk;

Since the lengths 7, 1 < k < ¢;, are all strictly increasing, by [14, Theorem 3.7], we have

S; as follows:
qj
|M7" t +C'k
S, = o TE . 2
=TI (M 2)

k=1

Since the equation (2) holds for all nondecreasing inter-distant lengths [;1, ljo, ..., Li¢—1),
1 <j <p, by Theorem 11, we have |V, | as follows:

.
N, I_is'_iﬂ Mol T 9 <<y

j=1 k=1

The following examples illustrate the result obtained in Theorem 12.

Example 13. To determine the number |Mys|, we determine the number |Ngs| by using
the numbers M, | for all 1 <r < 7.

T 1 2 3 4 5) 6 7
|MT,2| . 1

—_
—_
—_
[\
=~
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j -5 i Titye s Tig, S;
1 1 1,7 (W) =4
2 2 2,6 () =2
3 3 3,5 () =2
4 4 4,4 (1) =1

Therefore, | Mgo| = [Ns2| = 9.

Example 14. To determine the number | Mg 3|, we determine the number |Nj 3| by using
the numbers |M, 3| for all 1 <r < 7.

T 1 2 3 4 5 6 7

Mpsl: 11 1 1 1 2 3

j Lits - L Tily e Tia; Sj
1 12 11,7 (EhE) =3
2 1,3 1,2,6 OGO =2
3 L4 1,3,5 OO =1
1 15 14,4 OIGHES
5 2,4 2,2,5 ()6 =1
6 2,5 2,3,4 OO =1
7 3,6 3,3,3 (15 =1

Total: 10

Therefore, | Mg 3] = [Ny 3| = 10.

5 Enumeration algorithm

Recall that the numbers p and ¢;, 1 < j < p, in equation (1) are not specified explicitly.
For given 2 < t < n, the computation of p and ¢; depends on the constructions of the
nondecreasing inter-distant lengths l;1, 9, ..., l;¢—1) and the quantities rj;,rjo, ..., for
every 1 < j < p. We use Algorithm 15 to determine the numbers p and ¢;, 1 < 7 < p, and to
compute finally |M,,11,| = | Ny, the number of (n + 1)-element unlabeled quasi-full ¢t-ary
rooted trees for given n and ¢, where 2 <t < n.
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Algorithm 15. To compute Count = | M, 41| for given n and ¢, where 2 <t < n.
(1) Initialize Count = 0.

(2) Repeat (a) to (d) for every nondecreasing inter-distant length (there are p such distinct
lengths; see equation (1)) as constructed in (b).

(a) Initialize S; = 1.

(b) Construct the j-th nondecreasing inter-distant lengths 11, lja, . . ., [j4—1) (there are
t — 1 integers [j; <ljp < -+ <lj4—1y) chosen from 1,2,...,n — 1.

(c) Compute the j-th quantities rj1, rjo, ..., r; by taking the differences of the consec-
utive lengths l;1, o, . .., lju—1), and repeat (i) and (ii) for every distinct collection
(there are g; collections in total; see equations (1) and (2)) of the quantities
Tjh’l“jg, e ,Tjt.

(i) Determine c¢j;, the number of repetitions of the k-th collection of the same
consecutive terms in the j-th quantities r;1,7j9, ..., 7.

(ii) Update S; with S x (‘erf::jk)-

(d) Increase Count by S;.
(3) Return Count.

Let n and t be given such that 2 < t < n. For j > 1, we see that the numbers
i1, U, ..., lj¢e—1) and 71,752, ..., 75 are all integers. Therefore, the atomic operations con-
sidered in the above computation involve arithmetic on integers with at most O(logn) bits.
For every 1 < j < p, where p > 1, the computational process allocates space for the integers
lii; 1 <1t <t—1,and 1, 1 < k < ¢, at two separate scopes. Thus, the computation uses
at most O((t — 1) +t) = O(n+n) =~ O(n) space. In the following, we determine the time
complexity of Algorithm 15.

Lemma 16. Algorithm 15 runs in time O(n*).

Proof. The constructions of the sequences [j1,lj2, . .., j—1) at step (b) have complexity equal
to (t —1)(n —1). Since t < n, we have (t —1)(n — 1) ® O((n — 1)(n — 1)) =~ O(n?). Again,
since 1 < ¢;,q; < t—1, and ¢;;, is inversely proportional to g; for every k, the computations
of ¢;i, at the step (i) have complexity equal to ¢t — 1. Then ¢ < n implies that the repetitions
at the step (c) induce an amount of complexity equal to t(t — 1) ~ O(n(n — 1)) ~ O(n?).
The sum of the complexities at the steps (b) and (c) then equals O(n?) + O(n?) =~ O(n?).
By inspection, we have p < n?. Therefore, the repetitions at step (2) increase the overall
complexity to n?(O(n?)) ~ O(n?). O
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6 Data

We computationally implemented the enumeration algorithm (Algorithm 15) and determined
the numbers |M,,;| up to certain values of n for all 2 < t < n. An implementation of
Algorithm 15 in MATLAB is available on GitHub [15]. Here, we include the numbers |M,, |
for all 2 <t < n < 31; see Table 3 for all 3 <n <20 and 2 <t < 19, and Table 4 for all
21 < n <31 and 2 <t < 30. Also, see the integer sequence A352460 contributed to the
OEIS [19].

[t\n|3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |
2 1 1 2 2 4 5 9 13 23 35 61 98 170 281 487 823 1430 2451
3 11 2 3 4 6 10 15 24 39 63 103 171 282 471 790 1329
4 1 1 2 3 5 6 10 14 23 34 55 84 136 212 343 545
5 1 1 2 3 5 7 10 14 21 31 47 71 109 167 257
6 1 1 2 3 5 7 11 14 21 29 43 61 93 135
7 1 1 2 3 5 7 11 15 21 29 41 57 82
8 1 1 2 3 5 7 11 15 22 29 41 55
9 1 1 2 3 5 7 11 15 22 30 41
10 1 1 2 3 5 7 11 15 22 30
11 1 1 2 3 5 7 11 15 22
12 1 1 2 3 5 7 11 15
13 1 1 2 3 5 7 11
14 1 1 2 3 5 7
15 1 1 2 3 5
16 1 1 2 3
17 1 1 2
18 1 1
19 1
Total: |1 2 4 6 11 16 27 41 67 102 167 260 425 678 1115 1813 3018 4992

Table 3: The number of unlabeled quasi-full ¢-ary rooted trees with n elements for all
3<n<20and 2 <¢<19.
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[ \n | 21 22 23 24 25 26 27 28 29 30 31
2 4274 7404 12964 22633 39789 69892 123342 217717 385569 683344 1214044
3 2245 3811 6480 11061 18928 32471 55830 96215 166112 287350 497911
4 886 1422 2318 3755 6144 10022 16458 26994 44483 73284 121138
5 396 613 951 1483 2316 3632 5702 8977 14152 22361 35381
6 205 305 462 690 1047 1572 2389 3614 5509 8380 12822
7 117 170 248 364 535 789 1163 1716 2533 3745 5541
8 78 106 151 211 304 432 627 901 1311 1892 2750
9 55 76 102 140 192 266 370 521 734 1042 1483
10 42 55 76 100 136 181 247 332 458 626 872
11 30 42 56 76 100 134 177 236 313 420 563
12 22 30 42 56 77 100 134 175 232 302 401
13 15 22 30 42 56 77 101 134 175 230 298
14 11 15 22 30 42 56 77 101 135 175 230
15 7 11 15 22 30 42 56 77 101 135 176
16 5 7 11 15 22 30 42 56 77 101 135
17 3 5 7 11 15 22 30 42 56 77 101
18 2 3 5 7 11 15 22 30 42 56 77
19 1 2 3 5 7 11 15 22 30 42 56
20 1 1 2 3 5 7 11 15 22 30 42
21 1 1 2 3 5 7 11 15 22 30
22 1 1 2 3 5 7 11 15 22
23 1 1 2 3 5 7 11 15
24 1 1 2 3 5 7 11
25 1 1 2 3 5 7
26 1 1 2 3 5
27 1 1 2 3
28 1 1 2
29 1 1
30 1

Total: | 8395 14101 23947 40708 69763 119763 206812 357905 622089 1083659 1894118

Table 4: The number of unlabeled quasi-full t-ary rooted trees with n elements for all

21 <n<31land 2 <t <30.
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