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Abstract

We introduce the notion of quasi-full rooted trees. We provide a poset matrix based
approach for the recognition of quasi-full rooted trees. We obtain an exact enumeration
of the unlabeled quasi-full t-ary rooted trees with n elements (nodes), where 2 ≤ t < n.
Here, we give the enumeration of the unlabeled quasi-full rooted trees according to the
arity and the number of elements of the trees. This method induces a polynomial-time
algorithm that determines the values of the parameters involved in the enumeration
formula. We also computationally implement the enumeration algorithm and include
the number of n-element unlabeled quasi-full t-ary rooted trees for all 2 ≤ t < n ≤ 31.

1 Introduction

We introduce a new class of rooted trees, which we call the quasi-full rooted trees. A rooted
tree with arity t is called quasi-full if the root of every subtree with r elements (nodes or
vertices) has exactly min(r − 1, t) children. The class of quasi-full rooted trees contains the
class of full rooted trees as a subclass. Similar to full rooted trees, there are balanced quasi-
full rooted trees. We call these quasi-complete. There are also quasi-full rooted trees with all
of their leaves at the same level, which we call quasi-perfect. Rooted trees, as a special type
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of graph (more specifically, Hasse diagrams of posets), have significant importance. Various
combinatorial properties of these mathematical structures have shown their relevance in
structural analysis, enabling the understanding of patterns, relationships, and connectivity
in many scenarios, ranging from gene models in molecular biology to data mining in computer
science. Therefore, numerous authors have focused on the recognition and enumeration of
several types of rooted trees and forests; see [1, 4, 5, 6, 7, 17, 20]. Also, there are a number of
integer sequences in the On-Line Encyclopedia of Integer Sequences (OEIS) [19] that provide
some existing results on the exact enumerations of several types of labeled and unlabeled
rooted trees. These include full rooted trees (A319541), balanced rooted trees (A306201,
A320160, A320270), complete rooted trees (A287211), and rooted trees with all leaves at the
same level (A238372, A048816). For the enumerations of labeled and unlabeled rooted trees
in general, see also the sequences A000169, A000081, and A299038 in the OEIS [19].

Interestingly, a rooted tree (as a Hasse diagram of a poset) can be generated from a single
element (the singleton poset) by taking the direct sum (disjoint sum or parallel composition)
and ordinal sum (linear sum or series composition) only. Therefore, the aforementioned
classes of rooted trees can be considered as nice subclasses of the frequently studied decom-
posable posets, more specifically, connected series-parallel posets; see [8]. Analogously, a
rooted forest (a collection of rooted trees) can be considered as the direct sum of two or
more rooted trees or seeds. Then, similar to series-parallel posets, an arbitrary rooted tree
can be constructed by taking the ordinal sum of a single element (which becomes the root of
the tree) and a rooted forest. Thus, for every 2 ≤ t < n, an n-element quasi-full t-ary rooted
tree can be constructed by taking the ordinal sum of a single node (a seed) and an (n− 1)-
element quasi-full rooted forest consisting of exactly t trees (quasi-full t-ary rooted trees) or
seeds. This construction of rooted trees suggests a matrix recognition and, consequently, an
exact enumeration of the unlabeled quasi-full rooted trees.

In this paper, we first give a matrix recognition of quasi-full rooted trees using the
poset matrix, an incidence matrix used to represent posets. The notions of many incidence
matrices were frequently introduced and applied to certain computational aspects of the con-
cerned mathematical structures; see [2, 12, 18]. Particularly, matrix-based approaches for
recognizing some mathematical objects are preferable because they induce a more efficient
computational implementation of the methods. Mohammad and Talukder [8] coined the
term poset matrix. Recently, the poset matrix has gained much attention in the recognition
and classification of various classes of posets and graphs; see [2, 9, 11, 12, 16]. Secondly, we
give an exact enumeration of the unlabeled quasi-full rooted trees that depends mainly on the
nonisomorphic direct sum criterion of poset matrices obtained by Mohammad et al. [13, 14].
We find that the number of n-element unlabeled quasi-full t-ary rooted trees increases ex-
ponentially as the values of n and t increase. We give an algorithm to determine the values
of some parameters involved in the enumeration formula. We prove that the enumeration
algorithm runs in polynomial time with complexity O(n4). Also, we computationally imple-
ment the enumeration algorithm and obtain the numerical result for the number of unlabeled
quasi-full rooted trees according to their arity and the number of elements. These data yield
a new integer sequence A352460 contributed to the OEIS [19].
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In Section 2, we introduce the quasi-full rooted trees and quasi-full rooted forests as posets
with constructive examples. In Section 3, we give the matrix recognitions of the quasi-full
rooted trees and quasi-full rooted forests by using the poset matrix. In Section 4, we obtain
an exact enumeration of the unlabeled quasi-full t-ary rooted trees with n elements, where
2 ≤ t < n. In Section 5, we give the enumeration algorithm and prove its time complexity.
Moreover, in Section 6, we include the data (Table 3 and Table 4) regarding the number of
n-element unlabeled quasi-full t-ary rooted trees for all 2 ≤ t < n ≤ 31.

2 Quasi-full rooted trees and forests as posets

A poset (partially ordered set) is a structure A = 〈A,6〉 consisting of the nonempty set
A with the order relation 6 on A, that is, the relation 6 is reflexive, antisymmetric, and
transitive on A. Note that the results in this article are applicable to finite posets only. We
use the notation 1 for the singleton poset, Cn≥1 for the n-element chain poset, In≥1 for the
n-element antichain poset, and Bm≥1,n≥1 for the complete bipartite poset with m minimal
elements and n maximal elements. We write A ∼= B if A and B are order isomorphic.
In particular, we have C1

∼= I1 ∼= 1 and B1,1
∼= C2. We also use the notation A + B

and A ⊕ B to denote, respectively, the direct sum and ordinal sum of the posets A and
B. Here, the posets A and B are called the direct terms of A + B and the ordinal terms
of A ⊕ B. For every m ≥ 1 and n ≥ 1, we have Bm,n

∼= Im ⊕ In. Here, Im and In are
the ordinal terms of the poset Bm,n. Also, for every n ≥ 2, we have In ∼= 1+ 1+ · · ·+ 1

︸ ︷︷ ︸

n terms

and Cn
∼= 1⊕ 1⊕ · · · ⊕ 1

︸ ︷︷ ︸

n terms

. A poset having two or more direct terms is called disconnected ;

otherwise, it is called connected. A poset is called series-parallel if it can be generated from
the singleton poset by taking the direct sum and ordinal sum only. For further details on
posets, we refer readers to the classical book by Davey and Priestley [3].

A rooted tree is an acyclic graph with a fixed element (node or vertex) called the root
of the tree. The immediate successors of an element in a rooted tree are called children of
that element. An element except the root in a tree having no children is called a leaf, and
an element having at least one child is called an internal element. In a rooted tree, the root
is supposed to be at level 0, and the children of an internal element go to the immediate
upper level. By a subtree of a rooted tree, we mean either the whole tree itself or a tree
consisting of a child (which becomes the root of the subtree) and all of its successors of an
internal element of the tree. A tree with a single element, the singleton poset 1, is called
the nullary tree or seed. We can consider the tree 1 (the singleton poset) just as a seed.
A rooted tree is said to have arity t, where t ≥ 1, if every internal element of the tree has
at most t children. A t-ary rooted tree is called full if every internal element has exactly t
children. A full rooted tree having all its leaves at the same level is called perfect. A t-ary
rooted tree is called balanced if all its leaves are at the highest two levels. A t-ary balanced
rooted tree is called complete if every internal element has exactly t children. Thus, every
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perfect rooted tree is complete, and every complete rooted tree is full. Note that there are
full rooted trees that are not balanced, and there are balanced rooted trees that are not full.
Note also that if a rooted tree is not balanced, then it is neither perfect nor even complete.
In the following, we define and explain the term quasi-full rooted tree.

Definition 1. A t-ary rooted tree is called quasi-full if the root of every subtree with r
elements has exactly min(r − 1, t) children.

For example, the rooted trees C2, B1,2
∼= 1 ⊕ I2, 1 ⊕ (1 + C2), B1,3

∼= 1 ⊕ I3, and
1⊕ (C2 +C2), as shown in Figure 1 by their Hasse diagrams, are all quasi-full rooted trees.
Let Tn,t, where n ≥ 1 and t ≥ 1, be the collections of quasi-full t-ary rooted trees with n
elements. In particular, we have the following.

1. T1,1 = T1,2 = · · · = {1}, T2,1 = T2,2 = · · · = {C2}, T3,1 = {C3}, T4,1 = {C4},
T5,1 = {C5}, and so on.

2. T3,t≥2 = {1⊕ I2} = {B1,2}, T4,t≥3 = {1⊕ I3} = {B1,3}, and so on.

Also, we have T4,2 = {1 ⊕ (1 + C2)}, T5,2 = {1 ⊕ (C2 + C2),1 ⊕ (1 + B1,2)}, and T5,3 =
{1 ⊕ (I2 + C2)}. In general, we have Tn=1,t≥1 = {1}, Tn=2,t≥1 = {C2}, Tn≥1,t=1 = {Cn},
Tn≥2,t≥n−1 = {1⊕ In−1} = {B1,n−1}, and Tn≥4,t=n−2 = {1⊕ (In−3 +C2)}.

C2 B1,2 1⊕ (1+C2) B1,3 1⊕ (C2 +C2)

Figure 1: Some quasi-full rooted trees (Hasse diagrams of posets) up to 5 elements.

We see that every proper subtree of an n-element quasi-full t-ary rooted tree is also a
quasi-full rooted tree with maximum n − t elements. We also see that a quasi-full rooted
tree has the intention of fulfilling its arity in an internal element before it produces a new
child in a leaf of that element. This structure of quasi-full rooted trees shows that every full
rooted tree is quasi-full. On the other hand, we see that the binary rooted trees 1⊕ (1+C2)
and 1⊕ (C2+C2), as given in Figure 1, are quasi-full but not full trees. Therefore, the class
of full rooted trees is contained in the class of quasi-full rooted trees properly. Also, we see
that the balanced rooted tree 1⊕ (1+C2) is not complete. Since 1⊕ (1+C2) is quasi-full,
we call it quasi-complete. Similarly, we see that the quasi-full rooted tree 1⊕ (C2 +C2) has
all its leaves at the same level. Since 1⊕ (C2 +C2) is not full, it is not perfect, and we call
it quasi-perfect. Moreover, similar to full rooted trees, there are quasi-full rooted trees that
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are not balanced, and there are balanced rooted trees that are not quasi-full. However, all
the quasi-full rooted trees up to 5 elements are balanced.

Note that the root of a tree (see Figure 1) is put at the bottom of the tree, and the
children and leaves of the tree are drawn above the root in the upward direction. In general,
we assume that in an internal element of a rooted tree, a subtree with a greater number of
elements is positioned to the right (equivalently, left) of a subtree with a lesser number of
elements. Also, throughout this paper, we consider only unlabeled rooted trees.

A forest is a collection of two or more trees or seeds. A rooted forest consists of two
or more rooted trees or seeds. The number of elements of a forest equals the sum of the
number of elements of the trees and the number of seeds in the forest. We now define the
term quasi-full rooted forest.

Definition 2. A rooted forest consisting of exactly t quasi-full t-ary rooted trees or seeds is
called a quasi-full t-ary rooted forest.

Let Fn,t, where 1 ≤ t ≤ n, be the collections of quasi-full t-ary rooted forests with n
elements. In particular, we have the following.

1. F1,1 = {C1}, F2,1 = {C2}, F3,1 = {C3}, and so on. Thus Fn≥1,t=1 = {Cn}.

2. F2,2 = {I2}, F3,3 = {I3}, F4,4 = {I4}, and so on. Thus Fn≥1,t=n = {In}.

3. F3,2 = {I1 +C2}, F4,3 = {I2 +C2}, and so on. Thus Fn≥3,t=n−1 = {In−2 +C2}.

4. F4,2 = {C2 +C2,1+B1,2}, F5,2 = {C2 +B1,2}, and F5,3 = {1+C2 +C2, I2 +B1,2}.

Throughout the rest of the paper, by the term quasi-full tree (analogously, quasi-full
forest), we will mean a t-ary quasi-full rooted tree (quasi-full rooted forest) with n elements.

3 Recognitions of the quasi-full trees and forests

Throughout this paper, we use the notation Mm,n for an m-by-n matrix and Mn for a square
matrix of order n. In particular, we use the notation In, On, and Zn, respectively, for the n-th
order identity matrix, the matrix with all entries 1s, and the matrix with all entries 0s. We
also use the notation Cn for the matrix [cij], 1 ≤ i, j ≤ n, defined as cij = 1 for all i ≤ j and
cij = 0 otherwise. Note that here I1 = C1 = 1. An upper triangular (0, 1)-matrix Mn = [aij],
1 ≤ i, j ≤ n, with entries 1s in the main diagonal is called a poset matrix if and only if Mn

is transitive, that is, aij = 1 and ajk = 1 imply aik = 1 for all 1 ≤ i, j, k ≤ n. For example,
for every n ≥ 1, the matrices In and Cn are all poset matrices, because these are upper
triangular and clearly transitive. Also, the following matrices B3 and Bt

3 are nontrivial poset
matrices. For further details on the poset matrix and interpretations of several operations
with poset matrices, see the results obtained by Mohammad et al. [8, 9, 11, 12].

B3 =





1 1 1
0 1 0
0 0 1



 Bt
3 =





1 0 0
1 1 0
1 0 1




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Let Mn = [aij], 1 ≤ i, j ≤ n, be a poset matrix. We associate a poset A = 〈A,6〉
with the matrix Mn, where the underlying set A = {x1, x2, . . . , xn} and xi corresponds
to the i-th row (or column) of Mn, by defining the order relation 6 on A such that for all
1 ≤ i, j ≤ n, we have xi 6 xj if and only if aij = 1. Then we say that the poset matrix Mn

represents the poset A and vice versa. Clearly, for every n ≥ 1, the poset matrices In and Cn

represent the posets In and Cn, respectively. Also, the poset matrices B3 and Bt
3, as given

above, represent the complete bipartite posets B1,2 (as shown in Figure 1) and B2,1 (dual
of B1,2), respectively. Let Mn be a poset matrix. For some 1 ≤ i, j ≤ n, the interchange
of the i-th and j-th rows along with the interchange of the i-th and j-th columns in Mn is
called (i,j)-relabeling of Mn. For example, a relabeling of the poset matrix Bt

3 is shown in
the following.

Bt
3 =





1 0 0
1 1 0
1 0 1




(1,3)-relabeling
−−−−−−−−−→





1 0 1
0 1 1
0 0 1



 = B∂
3

Mohammad and Talukder [8] gave the interpretations of relabeling in a poset matrix.
They showed that every matrix obtained by a relabeling of a poset matrix is a poset matrix,
and it represents the same poset up to isomorphism. They also showed that every poset
matrix can be relabeled to an upper (equivalently, lower) triangular matrix with 1s in the
main diagonal by a finite number of relabelings. Any two poset matrices Mn and M ′

n are
called relabeling equivalent, or briefly equivalent, if the matrix M ′

n can be obtained by some
relabeling of the matrix Mn and vice versa. We write Mn ∼ M ′

n if Mn and M ′
n are relabeling

equivalent. Also, by a collection of equivalent (analogously, nonequivalent) poset matrices,
we mean that the matrices are pairwise equivalent (nonequivalent). Obviously, if Mn ∼
M ′

n (analogously, Mn ≁ M ′
n), then the posets represented by Mn and M ′

n are isomorphic
(nonisomorphic). Note that throughout this paper, by a poset matrix we mean a poset
matrix in upper triangular form.

Let Mm and Nn be any poset matrices. We write Mm ⊕Nn and Mm ⊞Nn, respectively,
for the direct sum and ordinal sum of the matrices Mm and Nn. Note here that the matrices
Mm and Nn are called the direct terms of Mm ⊕ Nn and the ordinal terms of Mm ⊞ Nn.
Mohammad and Talukder [8] defined the block of 0s property and the block of 1s property
in a poset matrix. A poset matrix Mn = [aij], 1 ≤ i, j ≤ n, satisfies the block of 0s property
(analogously, block of 1s property) of length r, where 1 ≤ r < n, if and only if aij = 0
(analogously, aij = 1) for all 1 ≤ i ≤ r and r + 1 ≤ j ≤ n. For example, for every n ≥ 2,
the poset matrix In satisfies the block of 0s property of lengths 1, 2, . . . , n − 1, and the
poset matrix Cn satisfies the block of 1s property of lengths 1, 2, . . . , n − 1. Also, the
following poset matrix B4 satisfies the block of 1s property of length 1, and the poset matrix
F4 satisfies the block of 0s property of length 2.

B4 =







1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1







F4 =







1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1






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Note that for any relabeling, a poset matrix Mn can satisfy one of the two mentioned
properties at a time, but not both properties together. In the case of the poset matrices B4

and F4 given above, we have B4 = 1⊞I3 and F4 = C2⊕C2. Also, we have In = 1⊕ 1⊕ · · · ⊕ 1
︸ ︷︷ ︸

n terms

and Cn = 1⊞ 1⊞ · · ·⊞ 1
︸ ︷︷ ︸

n terms

. Mohammad and Talukder [8] obtained the following results

regarding the direct sum and ordinal sum of poset matrices.

Theorem 3. [8] For n ≥ 2, a poset matrix Mn satisfies the block of 0s property (analogously,
block of 1s property) of lengths n1, n2, . . . , nm if and only if Mn = Mn1

⊕Mn2−n1
⊕· · ·⊕Mn−nm

(analogously, Mn = Mn1
⊞ Mn2−n1

⊞ · · · ⊞ Mn−nm
) for some poset matrices Mn1

, Mn2−n1
,

. . . , Mn−nm
.

Theorem 4. [8] For n ≥ 2, let Mni
represent the poset Pi for every 1 ≤ i ≤ r. Then the

matrix Mn1
⊕Mn2

⊕ · · · ⊕Mnr
(analogously, Mn1

⊞Mn2
⊞ · · ·⊞Mnr

) is a poset matrix and
it represents the poset P1 +P1 + · · ·+Pr (analogously, P1 ⊕P1 ⊕ · · · ⊕Pr).

We observe that the poset matrix B4 (as given above) that satisfies the block of 1s prop-
erty of length 1 represents the connected poset B1,3, and the poset matrix F4 that satisfies
the block of 0s property of length 2 represents the disconnected poset C2 +C2. Mohammad
et al. [14] established the above observations in general and obtained the following results
regarding the matrix recognitions of the connected posets and disconnected posets.

Theorem 5. [14] Let M represent the poset P ≇ 1. Then P is connected (analogously,
disconnected) if M can be relabeled in such a form that it satisfies the block of 1s property
(analogously, block of 0s property).

In general, the converse of the result obtained for connected posets in Theorem 5 is not
true, because every nontrivial prime poset (particularly, the 4-element N -shaped or zigzag
poset) is connected, where the poset matrix that represents a prime poset does not satisfy the
block of 1s property for any labeling. However, the following result (Theorem 6) regarding
the recognition of quasi-full rooted trees shows that the converse of the result obtained in
Theorem 5 holds in the case of quasi-full rooted trees. We observe that the following matrix
B4 satisfies the block of 1s property of length 1; and the successive nonunit ordinal term
satisfies the block of 0s property of lengths 1, 2, where all the successive direct terms equal
1. We see that the poset matrix B4 represents the quasi-full rooted tree B1,3 (see Figure 1).
On the other hand, we observe that the following matrix F4 satisfies the block of 0s property
of length 2; and both the successive direct terms satisfy the block of 1s property of length 1,
where all the successive ordinal terms equal 1. We see that the poset matrix F4 represents
the quasi-full rooted forest C2 +C2.

B4 =







1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1







F4 =







1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1






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We now establish the above observations in general. We give the matrix recognition of the
quasi-full rooted trees T ∈ Tn≥3,t≥2 and the matrix recognition of the quasi-full rooted forest
F ∈ Fn≥2,t≥2, respectively. Recall that Tn≥1,t=1 = Fn≥1,t=1 = {Cn} and Tn=2,t≥1 = {C2}.
Note that none of the poset matrices Cn, n ≥ 1, satisfy the block of 0s property.

Theorem 6. For n ≥ 3 and t ≥ 2, let Mn represent the poset T. Then T is a quasi-full
t-ary rooted tree if and only if Mn can be relabeled in such a form that it satisfies the block
of 1s property of length 1; and every successive nonunit ordinal term Mr satisfies the block
of 0s property of lengths l1, l2, . . . , lh−1 for some l1 < l2 < · · · < lh−1, where h = min(r, t),
and every successive nonunit direct term satisfies the block of 1s property of length 1.

Proof. Let T be a quasi-full t-ary rooted tree with n elements, where 2 ≤ t < n, and Mn

represent T. Then T can be considered as a connected series-parallel poset with a single
minimal element known as the root of the tree T. Then by Theorem 5, there exists a poset
P such that T ∼= 1 ⊕ P. Then P is a quasi-full t-ary rooted forest consisting of h − 1
subtrees of T, where h = min(n − 1, t). Thus there exist the quasi-full t-ary rooted trees
(possibly, seeds) T1, T2, . . . , Th−1 such that P ∼= T1 + T2 + · · · + Th−1. Let the poset
matrices Mr1 , Mr2 , . . . , Mrh−1

represent the trees T1, T2, . . . , Th−1, respectively. Then by
Theorem 3 and Theorem 4, the poset matrix Mr1 ⊕Mr2 ⊕· · ·⊕Mrh−1

represents the forest P
∼= T1+T2+ · · ·+Th−1. This implies that 1⊞ (Mr1 ⊕Mr2 ⊕ · · ·⊕Mrh−1

) represents the tree
1⊕(T1+T2+ · · ·+Th−1) ∼= 1⊕P ∼= T. This shows that Mn ∼ 1⊞(Mr1⊕Mr2⊕· · ·⊕Mrh−1

).
For every 1 ≤ i ≤ h − 1, if |Ti| = 1, that is, Ti

∼= 1, then we have Mri = 1; or if |Ti| = 2,
then by definition, we have Ti

∼= C2, and then Mri = C2. Otherwise, for |Ti| ≥ 3, we
must have Tij and Mrij

, 1 ≤ j ≤ hi − 1, such that Ti
∼= 1⊕ (Ti1 +Ti2 + · · ·+Tihi−1

) and

Mri ∼ 1 ⊞ (Mri1
⊕ Mri2

⊕ · · · ⊕ Mrihi−1
). Since every subtree of a quasi-full rooted tree is

quasi-full, continuing the above process, we show that every successive nonunit ordinal term
Mri satisfies the block of 0s property of lengths l1, l2, . . . , lh−1 for some l1 < l2 < · · · < lh−1,
where h = min(ri, t), and every successive nonunit direct term satisfies the block of 1s
property of length 1. Thus, the matrix Mn can be relabeled in such a form that it follows
the conditions in the hypothesis.

Conversely, suppose we can relabel Mn in such a form that it satisfies the conditions in
the hypothesis. Then Mn satisfies the block of 1s property of length 1. Thus there exists
a poset matrix Qn−1 such that Mn = 1 ⊞ Qn−1. Since the ordinal term Qn−1 is nonunit, it
must satisfy the block of 0s property of lengths l1, l2, . . . , lk−1 for some l1 < l2 < · · · < lk−1.
Assign ri = li − li−1, 1 ≤ i ≤ k, where we assume l0 = 0 and lk = n − 1. Then by
Theorem 3, there exist Qri , 1 ≤ i ≤ k, such that Qn−1 = Qr1 ⊕Qr2 ⊕ · · · ⊕Qrk . This gives
Mn = 1 ⊞ (Qr1 ⊕ Qr2 ⊕ · · · ⊕ Qrk). If ri ≤ 2 for every 1 ≤ i ≤ k, then by Theorem 4,
Qri ∼ Cri implies that Mn represents the poset 1⊕ (Cr1 +Cr2 + · · ·+Crk) that is a quasi-
full rooted tree. If ri ≥ 3 for some 1 ≤ i ≤ k, then there exist Qrij

, 1 ≤ j ≤ ki, such that

Qri = 1⊞(Qri1
⊕Qri2

⊕· · ·⊕Qriki
). Continuing the above process, we can show that rij ≤ 2 for

every 1 ≤ i ≤ ki at some step i such that Qri represents the poset 1⊕(Cri1
+Cri2

+· · ·+Crki
).

Therefore, Mn = 1⊞ (Qr1 ⊕Qr2 ⊕ · · · ⊕Qrk) represents a quasi-full rooted tree.
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Theorem 7. For n ≥ 2 and t ≥ 2, let Mn represent the poset F. Then F is a quasi-
full t-ary rooted forest if and only if Mn can be relabeled in such a form that it satisfies
the block of 0s property of lengths l1, l2, . . . , lt−1 for some l1 < l2 < · · · < lt−1; and
every successive nonunit direct term satisfies the block of 1s property of length 1, and every
successive nonunit ordinal term Mr satisfies the block of 0s property of lengths l1, l2, . . . ,
lh−1 for some l1 < l2 < · · · < lh−1, where h = min(r, t).

Proof. Let F be a quasi-full t-ary rooted tree with n elements, where 2 ≤ t ≤ n, and Mn

represent F. Then there exist the quasi-full t-ary rooted trees (possibly, seeds) T1, T2, . . . ,
Tt such that F ∼= T1+T2+ · · ·+Tt. Let the poset matrices Mr1 , Mr2 , . . . , Mrt represent the
trees T1, T2, . . . , Tt, respectively. Then by Theorem 3 and Theorem 4, Mr1⊕Mr2⊕· · ·⊕Mrt

represents the forest F ∼= T1 +T2 + · · ·+Tt. This shows that Mn ∼ Mr1 ⊕Mr2 ⊕ · · · ⊕Mrt .
For every 1 ≤ i ≤ t, since Mri represents the quasi-full rooted tree Ti, by Theorem 6, Mri

satisfies the conditions for successive nonunit direct terms and ordinal terms given in the
hypothesis. This shows that Mn follows the conditions in the hypothesis.

Conversely, suppose we can relabel Mn in such a form that it satisfies the conditions in
the hypothesis. Then Mn satisfies the block of 0s property of lengths l1, l2, . . . , lt−1 for some
l1 < l2 < · · · < lt−1. Assign ri = li − li−1, 1 ≤ i ≤ t, where we assume l0 = 0 and lt = n− 1.
Then by Theorem 3, there exist Qri , 1 ≤ i ≤ t, such that Mn = Qr1 ⊕ Qr2 ⊕ · · · ⊕ Qrt .
For every 1 ≤ i ≤ t, since Qri satisfies the conditions for successive nonunit direct terms
and ordinal terms given in the hypothesis, by Theorem 6, matrix Qri represents a quasi-full
rooted tree, say Ti. Then by Theorem 4, matrix Mn = Qr1 ⊕Qr2 ⊕ · · · ⊕Qrt represents the
forest T1 + T2 + · · · + Tt. Since Mn represents F, we have F ∼= T1 + T2 + · · · + Tt, and
hence F is a quasi-full rooted forest.

4 Exact enumeration of the quasi-full trees

The enumeration method for the unlabeled quasi-full rooted trees obtained in this section
is based mainly on the results (Theorem 6 and Theorem 7) obtained in Section 3. Let
Mn,t, where n ≥ 1 and t ≥ 1, be the collections of pairwise nonequivalent (relabeling) poset
matrices that represent a quasi-full t-ary rooted tree with n elements. Trivially, we have
M1,t≥1 = {1}, M2,t≥1 = {C2}, and Mn≥3,1 = {Cn}. In general, for the enumeration of the
n-element unlabeled quasi-full t-ary rooted trees, here we find a formula that gives an exact
enumeration of the matrices contained in the collection Mn,t for every 2 ≤ t < n.

Let M ∈ Mn,t for some n ≥ 3 and t ≥ 2. By Theorem 6, matrix M satisfies the block
of 1s property of length 1; and every successive ordinal term of order r, where 1 < r < n,
satisfies the block of 0s property of lengths l1, l2, . . . , lh−1 for some l1 < l2 < · · · < lh−1, where
h = min(r, t), and every successive nonunit direct term satisfies the block of 1s property of
length 1. In particular, we have Mn,t as follows:

1. Let M ∈ M3,2. Then M satisfies the block of 1s property of length 1, and the nonunit
ordinal term (a matrix of order 3−1 = 2) can satisfy the block of 0s property of length
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1 only. Thus, both the direct terms are 1. Then M = 1 ⊞ (1 ⊕ 1) = 1 ⊞ I2 = B3 (as
given in Section 3), and hence M3,2 = {B3}. In general, since h = min(3 − 1, t) = 2,
we have B3 ∈ M3,t for every t ≥ 2. Therefore, M3,t≥2 = {B3}.

2. Let M ∈ M4,2. Then M satisfies the block of 1s property of length 1; and the nonunit
ordinal term can satisfy the block of 0s property of length 1 (in this case, the direct
terms are 1 and C2) and length 2 (in this case, the direct terms are C2 and 1). Since
1⊕ C2 ∼ C2 ⊕ 1, we have M = 1⊞ (1⊕ C2), and hence M4,2 = {1⊞ (1⊕ C2)}.

3. Let M ∈ M4,3. Then M satisfies the block of 1s property of length 1; and the nonunit
ordinal term (a matrix of order 4−1 = 3) can satisfy the block of 0s property of lengths
1, 2. Thus, all the direct terms are 1. Then M = 1⊞ (1⊕1⊕1) = 1⊞I3 = B4 (as given
in Section 3) and hence M4,3 = {B4}. In general, if t ≥ 3, then h = min(4− 1, t) = 3
implies that B4 ∈ M3,t for every t ≥ 3. Therefore, M4,t≥3 = {B4}.

We now have the following remarks.

Remark 8. We have M1,1 = {1}, M2,1 = {C2}, and Mn≥3,1 = {Cn} in general. Also, for
every t ≥ 1, we have 1 ∈ M1,t and C2 ∈ M2,t. On the other hand, for t ≥ 2, we see that
Cn /∈ Mn,t for any n ≥ 3. These happen because in each of these cases, the nonunit ordinal
term Cn−1 does not satisfy the block of 0s property for any length. But by Theorem 6, since
h = min(n− 1, t) ≥ 2, the nonunit ordinal term Cn−1 must satisfy the block of 0s property
of lengths l1, l2, . . . , lh−1 for some l1 < l2 < · · · < lh−1.

Remark 9. We have M3,2 = {B3}, M4,2 = {1 ⊞ (1 ⊕ C2)}, and M4,3 = {B4}. Also, for
every t ≥ 2, we have B3 ∈ M3,t and B4 ∈ M4,t. On the other hand, for every t ≥ 3, we see
that 1⊞ (1⊕C2) /∈ M4,t . These happen because in each of these cases, the nonunit ordinal
term 1⊕ C2 can satisfy the block of 0s property of length 1 only. But by Theorem 6, since
h = min(3, t) = 3, the ordinal term 1 ⊕ C2 must satisfy the block of 0s property of lengths
l1, l2 for some l1 < l2.

In the following, we generalize the facts observed in Remark 8 and Remark 9.

Theorem 10. Let M be a poset matrix and n ≥ 3 be given. Then

(i) M ∈ Mn,n−1 implies M ∈ Mn,t≥n, and

(ii) M ∈ Mn,t for some t ≤ n− 2 implies M /∈ Mn,t≥n.

Proof.

(i) Let M ∈ Mn,n−1. Since M satisfies the block of 1s property of length 1, the nonunit
ordinal term of M , say P , is a matrix of order n − 1. Then P must satisfy the block
of 0s property of lengths 1, 2, . . . , n− 2. Since min(n− 1, t)− 1 = n− 2 for all t ≥ n,
by Theorem 6, we have M ∈ Mn,t≥n.

10



(ii) Let M ∈ Mn,t for some t ≤ n − 2. Then, since M satisfies the block of 1s property
of length 1, the nonunit ordinal term of M , say Q, is a matrix of order n − 1. Since
min(n− 1, t) = t, the matrix Q satisfies the block of 0s property of lengths l1, l2, . . . , lk
for some l1 < l2 < · · · < lk, where k = t − 1 ≤ n − 3. But, for all t ≥ n, we have
k = min(n−1, t)−1 = n−2 > n−3. Therefore, by Theorem 6, we have M /∈ Mn,t≥n.

As an illustration of the result obtained in Theorem 10, we present the poset matrices
M ∈ Mn,t for all 1 ≤ n ≤ 6 and 1 ≤ t ≤ 5 in Table 1.

t � n 1 2 3 4 5 6

1

1 C2

C3 C4 C5 C6

2

B3

1⊞ (1⊕ C2)
1⊞ (1⊕ B3),
1⊞ (C2 ⊕ C2)

1⊞ (C2 ⊕B3),
1⊞ (1⊕ (1⊞ (1⊕ C2)))

3
B4

1⊞ (I2 ⊕ C2)
1⊞ (I2 ⊕B3),

1⊞ (1⊕ C2 ⊕ C2)
4

1⊞I4
1⊞ (I3 ⊕ C2)

5 1⊞ I5

Table 1: Poset matrices in Mn,t for all 1 ≤ n ≤ 6 and 1 ≤ t ≤ 5.

Let Nn,t, 2 ≤ t ≤ n, be the collections of pairwise nonequivalent (relabeling) poset
matrices that represent a quasi-full t-ary rooted forest with n elements. For n ≥ 2, the result
obtained in Theorem 7 implies that every matrix Mn ∈ Nn,t satisfies the block of 0s property
of lengths l1, l2, . . . , lt−1 for some l1 < l2 < · · · < lt−1; and every successive direct term until
1 satisfies the block of 1s property of length 1, and every successive ordinal term Mr 6= 1
satisfies the block of 0s property of lengths l1, l2, . . . , lh−1 for some l1 < l2 < · · · < lh−1, where
h = min(r− 1, t). We apply this characterization of rooted forests to construct the matrices
in Mn+1,t for every 2 ≤ t ≤ n, using the matrices in Nn,t. For example, let M ∈ N2,2.
Here, M satisfies the block of 0s property of length 1 only, so both direct terms are 1. Thus,
M = 1⊕ 1 = I2, and hence N2,2 = {I2}. Again, take M ∈ N3,3. In this case, M satisfies the
block of 0s property for lengths 1, 2, so all direct terms are 1. Therefore, M = 1⊕1⊕1 = I3,
and hence N3,3 = {I3}. In general, we have Nn≥2,t=n = {In}. For some 2 ≤ t < n, we
observe the contents of Nn,t as follows:

1. Let M ∈ N3,2. Then M can satisfy the block of 0s property of length 1 and length 2.
In both cases, the direct terms are 1 and C2. Since 1 ⊕ C2 ∼ C2 ⊕ 1, in this case, we
have M = 1 ⊕ C2. Thus, N3,2 = {1⊕ C2}. Again, let M ∈ N4,3. Then M can satisfy
the block of 0s property of lengths 1, 2, lengths 1, 3, and lengths 2, 3. In all of these
cases, the direct terms are 1, 1, and C2. Since C2 ⊕ 1⊕ 1 ∼ 1⊕ C2 ⊕ 1 ∼ 1⊕ 1⊕ C2

= I2 ⊕ C2, in this case, we have M = I2 ⊕ C2. Thus, N4,3 = {I2 ⊕ C2}.
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2. Let M ∈ N4,2. Then M can satisfy the block of 0s property of length 1 (here, the
direct terms are 1 and B3), length 2 (here, both the direct terms are C2), and length 3
(here, the direct terms are B3 and 1). Since 1⊕B3 ∼ B3 ⊕ 1, in this case, M = 1⊕B3

or M = C2 ⊕ C2. Thus, N4,2 = {1⊕B3, C2 ⊕ C2}.

We now generalize the above observations. We recall the nonisomorphic direct sum
criterion for poset matrices obtained by Mohammad et al. [14]. Here, we justify when a
pair of poset matrices, each of which satisfies the block of 0s property of some lengths, are
nonequivalent. Let M,M ′ ∈ Nn,t, where 2 ≤ t ≤ n, such that both M and M ′ satisfy the
block of 0s property. The poset matrix M satisfies the block of 0s property of lengths l1, l2,
. . . , lt−1 for some l1 < l2 < · · · < lt−1, and matrix M ′ satisfies the block of 0s property of
lengths l′1, l

′
2, . . . , l

′
t−1 for some l′1 < l′2 < · · · < l′t−1. Since the direct sum of poset matrices

is commutative, it is possible that M ∼ M ′ (relabeling equivalent) even if lk 6= l′k for all
1 ≤ k ≤ t−1. Recall that if M ∼ M ′, then the forests represented by the matrices M and M ′

are isomorphic. In the following, a revision of the result obtained by Mohammad et al. [14]
regarding the nonisomorphic direct sum of the poset matrices representing disconnected
series-parallel posets gives the condition for the lengths l1, l2, . . . , lt−1 and l′1, l

′
2, . . . , l

′
t−1 of

the block of 0s property satisfied by the matrices M and M ′ so that the matrices M and M ′

represent nonisomorphic forests.

Theorem 11. [14] Let M,M ′ ∈ Nn,t, n ≥ 2, such that both M and M ′ satisfy the block
of 0s property of the nondecreasing inter-distant lengths l1, l2, . . . , lt−1 and lengths l′1, l

′
2,

. . . , l′t−1, respectively, where lk 6= l′k for some 1 ≤ k ≤ t − 1; and every direct term of M
and M ′ satisfies the block of 1s property for some lengths. Then M and M ′ are relabeling
inequivalent, that is, M ≁ M ′.

Proof. Let l: l1, l2, . . . , lt−1 and l′: l′1, l
′
2, . . . , l

′
t−1. For all 0 ≤ i ≤ t − 1, say ri = li+1 − li

and r′i = l′i+1 − l′i, where we assign l0 = l′0 = 0 and lt = l′t = n. Since both M and M ′ satisfy
the block of 0s property of the lengths l and l′, respectively, by Theorem 3, there exist Mri ,
M ′

r′i
, 1 ≤ i ≤ t, such that M = Mr1 ⊕ Mr2 ⊕ · · · ⊕ Mrt and M ′ = M ′

r′
1

⊕ M ′
r′
2

⊕ · · · ⊕ M ′
r′t
.

Suppose that there exists 1 ≤ k0 ≤ t−1 such that lk0 6= l′k0 . This implies rk0 6= r′k0 and hence
Mrk0

6= M ′
r′
k0

. Since the lengths l and l′ are nondecreasing inter-distant, both the sequences

ri, r
′
i, 1 ≤ i ≤ t, are nondecreasing. This implies either Mrk0

6= M ′
r′i

for all k0 < i ≤ t or

M ′
r′
k0

6= Mri for all k0 < i ≤ t. Since for all 1 ≤ i ≤ t, the direct terms Mri and M ′
r′i
satisfy

the block of 1s property for some lengths, we have Mrk0
⊕· · ·⊕Mrt ≁ M ′

r′
k0

⊕· · ·⊕M ′
r′t
. This

implies Mr1 ⊕Mr2 ⊕ · · · ⊕Mrt ≁ M ′
r′
1

⊕M ′
r′
2

⊕ · · · ⊕M ′
r′t
, that is, M ≁ M ′.

As an illustration of the result obtained in Theorem 11, the poset matrices M ∈ Nn,t

for all 2 ≤ t ≤ n ≤ 5 are presented in Table 2. The following observations show that every
M ∈ Nn,t can be constructed uniquely by taking the direct sum of t matrices taken from the
collections Mr,t, 1 ≤ r ≤ n− t+ 1, given in Table 1.
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t � n 2 3 4 5

2 I2 1⊕ C2 C2 ⊕ C2, 1⊕ B3 C2 ⊕B3, 1⊕ (1⊞ (1⊕ C2))
3 I3 I2 ⊕ C2 1⊕ C2 ⊕ C2, I2 ⊕ B3

4 I4 I3 ⊕ C2

5 I5

Table 2: Poset matrices in Nn,t for all 2 ≤ t ≤ n ≤ 5.

1. To construct the matrices in N2,2 = {I2 = 1 ⊕ 1}, N3,3 = {I3 = 1 ⊕ 1 ⊕ 1}, N4,4 =
{I4 = 1⊕ 1⊕ 1⊕ 1}, and so on; we need only the unit matrix in M1,t≥2 = {1}.

2. To construct the matrices in N3,2 = {1⊕C2}, N4,3 = {I2 ⊕C2}, N5,4 = {I3 ⊕C2}, and
so on; we need only the matrices in the collections M1,t≥2 = {1} and M2,t≥2 = {C2}.

3. To construct the matrices in N4,2 = {1⊕B3, C2⊕C2}, N5,3 = {I2⊕B3, 1⊕C2⊕C2} =
{1 ⊕ 1 ⊕ B3, 1 ⊕ C2 ⊕ C2}, and so on; we need only the matrices in the collections
M1,t≥2 = {1}, M2,t≥2 = {C2}, and M3,t≥2 = {B3}.

4. To construct the matrices in N5,2 = {1⊕ (1⊞ (1⊕C2)), C2 ⊕B3}, and so on; we need
only the matrices in the collections M1,t≥2 = {1}, M2,t≥2 = {C2}, M3,t≥2 = {B3},
M4,2 = {1⊞ (1⊕ C2)}, and M4,t≥3 = {1⊞ I3}.

Suppose, for given n and t, where 2 ≤ t ≤ n, we want to enumerate the matrices in
Mn+1,t. Also, let Mr,t be given for all 1 ≤ r ≤ n − t + 1. For t ≥ 2, to construct the
matrices in Mn+1,t, we first construct the matrices in Nn,t by using the matrices in Mr,t,
1 ≤ r ≤ n − t + 1. Here, we apply the direct sum criterion for poset matrices obtained in
Theorem 11. For every M ∈ Nn,t, by Theorem 6 and Theorem 7, the ordinal sum 1 ⊞ M
satisfies the condition for being a member of Mn+1,t, that is, 1 ⊞ M ∈ Mn+1,t. Also, for
every P ∈ Mn+1,t, there exists M ′ ∈ Nn,t such that P = 1 ⊞ M ′. Thus, there is a one-
to-one correspondence between Mn+1,t and Nn,t, and hence |Mn+1,t| = |Nn,t|. Therefore,
the enumeration of Mn+1,t is equivalent to the enumeration of Nn,t. Suppose we want to
determine |Nn,t| for some 2 ≤ t ≤ n. Then, by Theorem 11, it is enough to determine the
number of ways in which a poset matrix Mn can satisfy the block of 0s property of the
nondecreasing inter-distant lengths l1, l2, . . . , lt−1 for some l1 < l2 < · · · < lt−1, such that
the direct terms Ml1 , Ml2−l1 , . . . , Mn−lt−1

belong to some Mr,t, 1 ≤ r ≤ n− t+ 1. We now
obtain this result as a special case of the result [14, Theorem 4.3].

Theorem 12. Let 2 ≤ t ≤ n be given, and let every Mn ∈ Nn,t satisfy the block of 0s
property of the nondecreasing inter-distant lengths lj1, lj2, . . . , lj(t−1), 1 ≤ j ≤ p, for some
p ≤

(
n

t

)
. Also let for every 1 ≤ j ≤ p and 1 ≤ k ≤ qj, where qj ≤ t, we have |Mrjk,t| and

cjk, the number of the k-th consecutive direct terms Mrjk of Mn, where rjk = lj(h+1) − ljh for
some 0 ≤ h ≤ t− 1 with lj0 = 0 and ljt = n. Then we have |Nn,t| as follows:

|Nn,t| =

p
∑

j=1

qj∏

k=1

(
|Mrjk,t|+ cjk

1 + cjk

)

, 2 ≤ t ≤ n. (1)
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Proof. For every 1 ≤ j ≤ p, where p ≤
(
n

t

)
, let Sj be the number of different ways in which

an Mn ∈ Nn,t can satisfy the block of 0s property of the nondecreasing inter-distant lengths
lj1, lj2, . . . , lj(t−1) such that the direct terms Mrjk of Mn belong to Mrjk,t. Then for every
1 ≤ j ≤ p, there are Sj pairwise nonequivalent poset matrices Mn in Nn,t that satisfy the
j-th nondecreasing inter-distant lengths lj1, lj2, . . . , lj(t−1). Then we have rjk, cjk, 1 ≤ k ≤ qj,
where qj ≤ t, as follows:

rj1 = lji − lj(i−1), 1 ≤ i ≤ tj1 + 1,

rj2 = lji − lj(i−1), tj1 + 2 ≤ i ≤ tj2 + 1,

...

rjqj = lji − lj(i−1), tj(qj−1) + 2 ≤ i ≤ tjqj + 1.

Here rj1 < rj2 < · · · < rjqj , and we assume lj0 = 0 and ljt = n. Then the direct terms of Mn

are the matrices Mrjk , 1 ≤ i ≤ tjk + 1, 1 ≤ k ≤ qj. By hypothesis, for every 1 ≤ i ≤ tjk + 1
and 1 ≤ k ≤ qj, matrix Mrjk ∈ Mrjk,t. For every 1 ≤ j ≤ p and 1 ≤ k ≤ qj, since Mrjk

belong to Mrjk,t, by [14, Theorem 3.8], the number of distinct poset matrices Mn ∈ Nn,t

that satisfy the j-th nondecreasing inter-distant lengths lj1, lj2, . . . , lj(t−1) is

(
|Mrjk,t|+ cjk

1 + cjk

)

.

Since the lengths rjk, 1 ≤ k ≤ qj, are all strictly increasing, by [14, Theorem 3.7], we have
Sj as follows:

Sj =

qj∏

k=1

(
|Mrjk,t|+ cjk

1 + cjk

)

. (2)

Since the equation (2) holds for all nondecreasing inter-distant lengths lj1, lj2, . . . , lj(t−1),
1 ≤ j ≤ p, by Theorem 11, we have |Nn,t| as follows:

|Nn,t| =

p
∑

j=1

Sj =

p
∑

j=1

qj∏

k=1

(
|Mrjk,t|+ cjk

1 + cjk

)

, 2 ≤ t ≤ n.

The following examples illustrate the result obtained in Theorem 12.

Example 13. To determine the number |M9,2|, we determine the number |N8,2| by using
the numbers |Mr,2| for all 1 ≤ r ≤ 7.

r : 1 2 3 4 5 6 7

|Mr,2| : 1 1 1 1 2 2 4
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j lj1, . . . , lj(t−1) rj1, . . . , rjqj Sj

1 1 1, 7
(
1
1

)(
4
1

)
= 4

2 2 2, 6
(
1
1

)(
2
1

)
= 2

3 3 3, 5
(
1
1

)(
2
1

)
= 2

4 4 4, 4
(
1+1
1+1

)
= 1

Total: 9

Therefore, |M9,2| = |N8,2| = 9.

Example 14. To determine the number |M10,3|, we determine the number |N9,3| by using
the numbers |Mr,3| for all 1 ≤ r ≤ 7.

r : 1 2 3 4 5 6 7

|Mr,3| : 1 1 1 1 1 2 3

j lj1, . . . , lj(t−1) rj1, . . . , rjqj Sj

1 1, 2 1, 1, 7
(
1+1
1+1

)(
3
1

)
= 3

2 1, 3 1, 2, 6
(
1
1

)(
1
1

)(
2
1

)
= 2

3 1, 4 1, 3, 5
(
1
1

)(
1
1

)(
1
1

)
= 1

4 1, 5 1, 4, 4
(
1
1

)(
1+1
1+1

)
= 1

5 2, 4 2, 2, 5
(
1+1
1+1

)(
1
1

)
= 1

6 2, 5 2, 3, 4
(
1
1

)(
1
1

)(
1
1

)
= 1

7 3, 6 3, 3, 3
(
1+2
1+2

)
= 1

Total: 10

Therefore, |M10,3| = |N9,3| = 10.

5 Enumeration algorithm

Recall that the numbers p and qj, 1 ≤ j ≤ p, in equation (1) are not specified explicitly.
For given 2 ≤ t ≤ n, the computation of p and qj depends on the constructions of the
nondecreasing inter-distant lengths lj1, lj2, . . . , lj(t−1) and the quantities rj1, rj2, . . . , rjt for
every 1 ≤ j ≤ p. We use Algorithm 15 to determine the numbers p and qj, 1 ≤ j ≤ p, and to
compute finally |Mn+1,t| = |Nn,t|, the number of (n + 1)-element unlabeled quasi-full t-ary
rooted trees for given n and t, where 2 ≤ t ≤ n.
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Algorithm 15. To compute Count = |Mn+1,t| for given n and t, where 2 ≤ t ≤ n.

(1) Initialize Count = 0.

(2) Repeat (a) to (d) for every nondecreasing inter-distant length (there are p such distinct
lengths; see equation (1)) as constructed in (b).

(a) Initialize Sj = 1.

(b) Construct the j-th nondecreasing inter-distant lengths lj1, lj2, . . . , lj(t−1) (there are
t− 1 integers lj1 ≤ lj2 ≤ · · · ≤ lj(t−1)) chosen from 1, 2, . . . , n− 1.

(c) Compute the j-th quantities rj1, rj2, . . . , rjt by taking the differences of the consec-
utive lengths lj1, lj2, . . . , lj(t−1), and repeat (i) and (ii) for every distinct collection
(there are qj collections in total; see equations (1) and (2)) of the quantities
rj1, rj2, . . . , rjt.

(i) Determine cjk, the number of repetitions of the k-th collection of the same
consecutive terms in the j-th quantities rj1, rj2, . . . , rjt.

(ii) Update Sj with Sj ×
(|Mrjk

|+cjk

1+cjk

)
.

(d) Increase Count by Sj.

(3) Return Count.

Let n and t be given such that 2 ≤ t ≤ n. For j ≥ 1, we see that the numbers
lj1, lj2, . . . , lj(t−1) and rj1, rj2, . . . , rjt are all integers. Therefore, the atomic operations con-
sidered in the above computation involve arithmetic on integers with at most O(log n) bits.
For every 1 ≤ j ≤ p, where p ≥ 1, the computational process allocates space for the integers
lji, 1 ≤ i ≤ t − 1, and rjk, 1 ≤ k ≤ t, at two separate scopes. Thus, the computation uses
at most O((t − 1) + t) ≈ O(n + n) ≈ O(n) space. In the following, we determine the time
complexity of Algorithm 15.

Lemma 16. Algorithm 15 runs in time O(n4).

Proof. The constructions of the sequences lj1, lj2, . . . , lj(t−1) at step (b) have complexity equal
to (t− 1)(n− 1). Since t ≤ n, we have (t− 1)(n− 1) ≈ O((n− 1)(n− 1)) ≈ O(n2). Again,
since 1 ≤ cjk, qj ≤ t− 1, and cjk is inversely proportional to qj for every k, the computations
of cjk at the step (i) have complexity equal to t− 1. Then t ≤ n implies that the repetitions
at the step (c) induce an amount of complexity equal to t(t − 1) ≈ O(n(n − 1)) ≈ O(n2).
The sum of the complexities at the steps (b) and (c) then equals O(n2) + O(n2) ≈ O(n2).
By inspection, we have p ≤ n2. Therefore, the repetitions at step (2) increase the overall
complexity to n2(O(n2)) ≈ O(n4).
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6 Data

We computationally implemented the enumeration algorithm (Algorithm 15) and determined
the numbers |Mn,t| up to certain values of n for all 2 ≤ t < n. An implementation of
Algorithm 15 in MATLAB is available on GitHub [15]. Here, we include the numbers |Mn,t|
for all 2 ≤ t < n ≤ 31; see Table 3 for all 3 ≤ n ≤ 20 and 2 ≤ t ≤ 19, and Table 4 for all
21 ≤ n ≤ 31 and 2 ≤ t ≤ 30. Also, see the integer sequence A352460 contributed to the
OEIS [19].

t � n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

2 1 1 2 2 4 5 9 13 23 35 61 98 170 281 487 823 1430 2451
3 1 1 2 3 4 6 10 15 24 39 63 103 171 282 471 790 1329
4 1 1 2 3 5 6 10 14 23 34 55 84 136 212 343 545
5 1 1 2 3 5 7 10 14 21 31 47 71 109 167 257
6 1 1 2 3 5 7 11 14 21 29 43 61 93 135
7 1 1 2 3 5 7 11 15 21 29 41 57 82
8 1 1 2 3 5 7 11 15 22 29 41 55
9 1 1 2 3 5 7 11 15 22 30 41
10 1 1 2 3 5 7 11 15 22 30
11 1 1 2 3 5 7 11 15 22
12 1 1 2 3 5 7 11 15
13 1 1 2 3 5 7 11
14 1 1 2 3 5 7
15 1 1 2 3 5
16 1 1 2 3
17 1 1 2
18 1 1
19 1

Total: 1 2 4 6 11 16 27 41 67 102 167 260 425 678 1115 1813 3018 4992

Table 3: The number of unlabeled quasi-full t-ary rooted trees with n elements for all
3 ≤ n ≤ 20 and 2 ≤ t ≤ 19.
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t� n 21 22 23 24 25 26 27 28 29 30 31

2 4274 7404 12964 22633 39789 69892 123342 217717 385569 683344 1214044
3 2245 3811 6480 11061 18928 32471 55830 96215 166112 287350 497911
4 886 1422 2318 3755 6144 10022 16458 26994 44483 73284 121138
5 396 613 951 1483 2316 3632 5702 8977 14152 22361 35381
6 205 305 462 690 1047 1572 2389 3614 5509 8380 12822
7 117 170 248 364 535 789 1163 1716 2533 3745 5541
8 78 106 151 211 304 432 627 901 1311 1892 2750
9 55 76 102 140 192 266 370 521 734 1042 1483
10 42 55 76 100 136 181 247 332 458 626 872
11 30 42 56 76 100 134 177 236 313 420 563
12 22 30 42 56 77 100 134 175 232 302 401
13 15 22 30 42 56 77 101 134 175 230 298
14 11 15 22 30 42 56 77 101 135 175 230
15 7 11 15 22 30 42 56 77 101 135 176
16 5 7 11 15 22 30 42 56 77 101 135
17 3 5 7 11 15 22 30 42 56 77 101
18 2 3 5 7 11 15 22 30 42 56 77
19 1 2 3 5 7 11 15 22 30 42 56
20 1 1 2 3 5 7 11 15 22 30 42
21 1 1 2 3 5 7 11 15 22 30
22 1 1 2 3 5 7 11 15 22
23 1 1 2 3 5 7 11 15
24 1 1 2 3 5 7 11
25 1 1 2 3 5 7
26 1 1 2 3 5
27 1 1 2 3
28 1 1 2
29 1 1
30 1

Total: 8395 14101 23947 40708 69763 119763 206812 357905 622089 1083659 1894118

Table 4: The number of unlabeled quasi-full t-ary rooted trees with n elements for all
21 ≤ n ≤ 31 and 2 ≤ t ≤ 30.
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