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Abstract

Catalan first observed that the numbers S(m,n), now called the super Catalan
numbers, are integers, but there is still no known combinatorial interpretation for them
in general. Interpretations have been given for the case m = 2 and for S(m,m + s)
for 0 ≤ s ≤ 4. In this paper, we define the super FiboCatalan numbers S(m,n)F
and the generalized FiboCatalan numbers. In addition, we give Lucas analogues for
both of these numbers and use a result of Sagan and Tirrell to prove that the Lucas
analogues are polynomials with non-negative integer coefficients. This proves that the
super FiboCatalan numbers and the generalized FiboCatalan numbers are integers.

1 Introduction

The well-known Fibonacci sequence is defined recursively by Fn = Fn−1 + Fn−2 with initial
conditions F0 = 0 and F1 = 1. The nth Fibonacci number, Fn, counts the number of tilings
of a strip of length n− 1 with squares of length 1 and dominoes of length 2.

A second famous sequence, the Catalan sequence, is defined recursively by Cn = C0Cn−1+
C1Cn−2 + · · · + Cn−2C1 + Cn−1C0 with initial conditions C0 = 1 and C1 = 1. The Catalan
numbers also have an explicit formula given by

Cn =
1

n+ 1

(

2n

n

)

.
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Since the Catalan numbers,
(2n)!

n!(n+ 1)!
,

are integers, one might wonder if the numbers

(2n)!

n!(n+ 2)!

are integers. Interestingly, these numbers are not necessarily integers, but the numbers given
by

6
(2n)!

n!(n+ 2)!

do form an integer sequence. These numbers are called super ballot numbers and the sequence
appears in Sloane’s On-Line Encyclopedia of Integer Sequences (OEIS) [17] A007054. In
1992, Gessel [10] showed that, in fact, the generalized Catalan numbers,

Jr
(2n)!

n!(n+ r + 1)!
,

are integers when Jr is chosen to be (2r + 1)!/r!. In 2005, Gessel and Xin [11] gave a
combinatorial interpretation of these numbers for r = 1 and proved

6
(2n)!

n!(n+ 2)!
= 4Cn − Cn+1.

Catalan [7] observed as far back as 1874 that the numbers

S(m,n) =
(2m)!(2n)!

m!n!(m+ n)!

are integers, but there is no known combinatorial interpretation for them in general. Ges-
sel [10] called these numbers the super Catalan numbers since S(1, n)/2 gives the Catalan

number Cn. Note that S(2, n)/2 = 6 (2n)!
n!(n+2)!

. Allen and Gheorghiciuc [3] have given a com-

binatorial interpretation for S(m,n) in the case m = 2 and Gheorghiciuc and Orelowitz [12]
have given a combinatorial interpretation for T (m,n) = 1

2
S(m,n) for m = 3 and m = 4.

Chen and Wang [8] have given an interpretation for S(m,m+ s) for 0 ≤ s ≤ 4.

1.1 FiboCatalan numbers

The fibonomial coefficients, an analogue of the binomial coefficients, are defined as

(

n

k

)

F

=
Fn!

Fk!Fn−k!
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where Fn! = FnFn−1 · · ·F2F1.
In 2008, Benjamin and Plott [4] gave a combinatorial proof that the fibonomial coefficients

are integers using a notion of staggered tilings. In 2010, Sagan and Savage [15] gave a
combinatorial interpretation of the coefficients in terms of tilings associated with paths in
a k x (n − k) rectangle. The triangle of fibonomial coefficients appears in the OEIS [17]
A010048.

First given by Lou Shapiro, the FiboCatalan number Cn,F is defined as

Cn,F =
1

Fn+1

(

2n

n

)

F

.

Shapiro posed the question about whether these numbers are integers and, if so, whether
there is a combinatorial interpretation for them. The numbers are known to be integers,
since

Cn,F =

(

2n− 1

n− 2

)

F

+

(

2n− 1

n− 1

)

F

.

In 2020, Bennett, Carrillo, Machacek and Sagan [6] gave a combinatorial interpretation of
the Lucas Catalan numbers which can be specialized to the FiboCatalan numbers. The
FiboCatalan numbers appear in the OEIS [17] A003150.

In this paper, we define the super FiboCatalan numbers

S(m,n)F =
F2m!F2n!

Fm!Fn!Fm+n!

and the generalized FiboCatalan numbers as

Jr,F
F2n!

Fn!Fn+r+1!

where Jr,F = F2r+1!/Fr!. Note the following relationship between super FiboCatalan numbers
and the generalized FiboCatalan numbers:

Jm−1,F
F2n!

Fn!Fn+m!
=

F2m−1!F2n!

Fm−1!Fn!Fn+m!
=

Fm

F2m

S(n,m)F .

1.2 Lucas analogues

The Lucas polynomials {n} are defined in variables s and t as {0} = 0, {1} = 1 and for
n ≥ 2 we have {n} = s{n−1}+ t{n−2}. If s and t are set to be integers, then the sequence
of numbers given by {n} is called a Lucas sequence. When s = t = 1, the resulting sequence
is the Fibonacci sequence. The lucanomials, an analogue of the binomial coefficients, are
then defined as

{

n

k

}

=
{n}!

{k}!{n− k}!
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where {n}! = {n}{n − 1} · · · {2}{1}. The literature refers to these analogues as both lu-
canomials and Lucasnomials. We use the term lucanomial in this paper to remain consistent
with the author’s previously published work. When s = t = 1,

{

n

k

}

gives the fibonomial
coefficients

(

n

k

)

F
.

In 2020, Sagan and Tirrell [16] gave a new method of proving that lucanomials are
polynomials with non-negative integer coefficients by defining a sequence of polynomials,
Pn(s, t), called Lucas atoms, such that

{n} =
∏

d|n

Pd(s, t).

Sagan and Tirrell [16, Thm. 1.1] then prove the following:

Theorem 1. Suppose f(s, t) =
∏

i{ni} and g(s, t) =
∏

j{kj} for certain ni, kj ∈ N, and

write their atomic decompositions as

f(s, t) =
∏

d≥2

Pd(s, t)
ad and g(s, t) =

∏

d≥2

Pd(s, t)
bd

for certain powers ad, bd ∈ N. Then f(s, t)/g(s, t) is a polynomial if and only if ad ≥ bd for

all d ≥ 2. Furthermore, in this case f(s, t)/g(s, t) has nonnegative integer coefficients.

Lucas atoms are irreducible polynomials and have been further studied by Alecci, Miska,
Murru, and Romeo [1].

The Lucas analogue of the Catalan numbers is given by

C{n} =
1

{n+ 1}

{

2n

n

}

.

More generally, given two positive integers a and b with gcd(a, b) = 1, the rational Catalan
number is defined as

Cat(a, b) =
1

a+ b

(

a+ b

a

)

.

In this expression, one can set a = n and b = n+1 to obtain the usual Catalan numbers.
The Lucas analogue of the rational Catalan numbers is then defined by

Cat{a, b} =
1

{a+ b}

{

a+ b

a

}

.

The Algebraic Combinatorics Seminar at the Fields Institute [2] proved that the q-
Fibonacci analogue of Cat(a, b) is a polynomial in q (a method which also works for the
Lucas analogue) and in 2020, Sagan and Tirrell [16] proved that the Lucas analogue of the
rational Catalan numbers is a polynomial with non-negative integer coefficients.
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We can now define the Lucas analogue of the super FiboCatalan numbers as

S{m,n} =
{2m}!{2n}!

{m}!{n}!{m+ n}!

and the Lucas analogue of the generalized FiboCatalan numbers as

J{r}
{2n}!

{n}!{n+ r + 1}!

where J{r} =
{2r+1}!
{r}!

.
In Section 2 of this paper, we prove that the Lucas analogues of the super FiboCatalan

numbers and the generalized FiboCatalan numbers are polynomials with non-negative integer
coefficients. In addition, this proves that the super FiboCatalan numbers and the generalized
FiboCatalan numbers are positive integers. In Section 3, we give a new identity involving
both Fibonacci and FiboCatalan numbers and use it to provide an alternate proof that the
generalized FiboCatalan numbers for r = 1 are always positive integers.

2 Results for the Lucas analogues

Following the Sagan and Tirrell [16] exposition, given a product f(s, t) of Lucas polynomials,
let

logd f(s, t) = the power of Pd(s, t) in its Lucas factorization.

Then Sagan and Tirrell [16, Lemma 3.1] prove the following:

Lemma 2. For d ≥ 2 we have

logd{n}! = ⌊n/d⌋.

Furthermore, for integers m, n, d

⌊m/d⌋+ ⌊n/d⌋ ≤ ⌊(m+ n)/d⌋.

Applying this Lemma to the Lucas analogues of the super FiboCatalan numbers, we have
the following theorems:

Theorem 3. The Lucas analogues of the super FiboCatalan numbers,

S{m,n} =
{2m}!{2n}!

{m}!{n}!{m+ n}!
,

are polynomials with non-negative integer coefficients.
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Proof. Applying the previous lemma gives, for d ≥ 2,

logd({m}!{n}!{m+ n}!) = ⌊m/d⌋+ ⌊n/d⌋+ ⌊(m+ n)/d⌋

and
logd({2m}!{2n}!) = ⌊2m/d⌋+ ⌊2n/d⌋.

By the Division Algorithm, let m = kd + r for 0 ≤ r < d and n = ld + s for 0 ≤ s < d.
Then we can proceed by cases.

Case 1: Let r < d/2 and s < d/2. Then ⌊m/d⌋ = k, ⌊n/d⌋ = l and ⌊(m+ n)/d⌋ = k + l.
In this case, ⌊2m/d⌋ = 2k and ⌊2n/d⌋ = 2l; thus

logd({m}!{n}!{m+ n}!) = ⌊m/d⌋+ ⌊n/d⌋+ ⌊(m+ n)/d⌋

= k + l + (k + l) = 2k + 2l

= ⌊2m/d⌋+ ⌊2n/d⌋

= logd({2m}!{2n}!).

Case 2: Without loss of generality, let d/2 ≤ r < d and s < d/2. Then ⌊m/d⌋ = k,
⌊n/d⌋ = l and ⌊(m+n)/d⌋ ≤ k+ l+1. In this case, ⌊2m/d⌋ = 2k+1 and ⌊2n/d⌋ = 2l; thus

logd({m}!{n}!{m+ n}!) = ⌊m/d⌋+ ⌊n/d⌋+ ⌊(m+ n)/d⌋

≤ k + l + (k + l + 1)

= 2k + 1 + 2l

= ⌊2m/d⌋+ ⌊2n/d⌋

= logd({2m}!{2n}!).

Case 3: Let d/2 ≤ r < d and d/2 ≤ s < d. Then ⌊m/d⌋ = k, ⌊n/d⌋ = l and ⌊(m+n)/d⌋ =
k + l + 1. In this case, ⌊2m/d⌋ = 2k + 1 and ⌊2n/d⌋ = 2l + 1; thus

logd({m}!{n}!{m+ n}!) = ⌊m/d⌋+ ⌊n/d⌋+ ⌊(m+ n)/d⌋

= k + l + (k + l + 1)

= 2k + 2l + 1 ≤ (2k + 1) + (2l + 1)

= ⌊2m/d⌋+ ⌊2n/d⌋

= logd({2m}!{2n}!).

Theorem 4. The Lucas analogues of the generalized FiboCatalan numbers,

J{r}
{2n}!

{n}!{n+ r + 1}!

where J{r} =
{2r+1}!
{r}!

, are polynomials with non-negative integer coefficients.
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Proof. Applying the previous lemma gives, for d ≥ 2,

logd({r}!{n}!{n+ r + 1}!) = ⌊r/d⌋+ ⌊n/d⌋+ ⌊(n+ r + 1)/d⌋

and
logd({(2r + 1)}!{2n}!) = ⌊(2r + 1)/d⌋+ ⌊2n/d⌋.

By the Division Algorithm, let r = kd + t for 0 ≤ t < d and n = ld + s for 0 ≤ s < d.
Then we can again proceed by cases.

Case 1: Let t < d/2 and s < d/2. Then ⌊r/d⌋ = k, ⌊n/d⌋ = l and ⌊(n+r+1)/d⌋ = k+l+1.
In this case, ⌊(2r + 1)/d⌋ = 2k + 1 and ⌊2n/d⌋ = 2l; thus

logd({r}!{n}!{n+ r + 1}!) = ⌊r/d⌋+ ⌊n/d⌋+ ⌊(n+ r + 1)/d⌋

= k + l + (k + l + 1) = 2k + 2l + 1

= ⌊(2r + 1)/d⌋+ ⌊2n/d⌋

= logd({(2r + 1)}!{2n}!).

Case 2: Without loss of generality, let d/2 ≤ t < d and s < d/2. Then ⌊r/d⌋ = k,
⌊n/d⌋ = l and ⌊(n + r + 1)/d⌋ ≤ k + l + 2. In this case, ⌊(2r + 1)/d⌋ = 2k + 2 and
⌊2n/d⌋ = 2l; thus

logd({r}!{n}!{(2r + 1)}!) = ⌊r/d⌋+ ⌊n/d⌋+ ⌊(n+ r + 1)/d⌋

≤ k + l + (k + l + 2)

= 2k + 2l + 2

= ⌊(2r + 1)/d⌋+ ⌊2n/d⌋

= logd({(2r + 1)}!{2n}!).

Case 3: Let d/2 ≤ t < d and d/2 ≤ s < d. Then ⌊r/d⌋ = k, ⌊n/d⌋ = l and ⌊(n + r +
1)/d⌋ = k + l + 2. In this case, ⌊(2r + 1)/d⌋ = 2k + 2 and ⌊2n/d⌋ = 2l + 1; thus

logd({r}!{n}!{(2r + 1)}!) = ⌊r/d⌋+ ⌊n/d⌋+ ⌊(n+ r + 1)/d⌋

= k + l + (k + l + 2)

= 2k + 2l + 2 < (2k + 2) + (2l + 1)

= ⌊(2r + 1)/d⌋+ ⌊2n/d⌋

= logd({(2r + 1)}!{2n}!).

Since we can recover the super FiboCatalan numbers and the generalized FiboCatalan
numbers by setting s = t = 1 in the Lucas analogues for these numbers, we have the following
results:
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Corollary 5. The super FiboCatalan numbers

S(m,n)F =
F2m!F2n!

Fm!Fn!Fm+n!

and the generalized FiboCatalan numbers

Jr,F
F2n!

Fn!Fn+r+1!

where Jr,F = F2r+1!/Fr! are positive integers.

3 An identity and an alternate proof

Some of the special cases of the super FiboCatalan numbers and the generalized FiboCatalan
numbers reveal interesting relationships. For example, when m = 1, the super FiboCatalan
numbers reduce to the FiboCatalan numbers.

S(1, n)F =
F2!F(2n)!

F1!Fn!F(n+1)!
=

1

Fn+1

F2n!

Fn!Fn!
= Cn,F

When m = 2, we have

S(2, n)F =
F4!F2n!

F2!Fn!F(n+2)!
=

6F2n!

Fn!F(n+2)!
.

When n = m, we have

S(m,m)F =
F2m!F2m!

Fm!Fm!F2m!
=

(

2m

m

)

F

and when n = m+ 1, we have

S(m,m+ 1)F =
F2m!F2m+2!

Fm!Fm+1!F2m+1!
=

F2m+2F2m!

Fm+1!Fm!
= F2m+2Cm,F .

The generalized FiboCatalan number for r = 0 is equal to S(1, n)F , which is equal to
Cn,F :

J0,F
F2n!

Fn!Fn+0+1!
=

F1!

F0!

F2n!

Fn!Fn+1!
= Cn,F = S(1, n)F .

The generalized FiboCatalan number for r = 1 is given by

J1,F
F2n!

Fn!Fn+1+1!
=

F3!

F1!

F2n!

Fn!Fn+2!
= 2

F2n!

Fn!Fn+2!
=

1

3
S(2, n)F .

In this section, we prove a new identity involving Fibonacci and FiboCatalan numbers
and use it to provide an alternate proof that the generalized FiboCatalan numbers for r = 1
are positive integers.
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Lemma 6.
F2nFn+2 − F2n+2Fn = (−1)nFn.

Proof. This is a fairly well-known result for the Fibonacci numbers and the proof is a straight-
forward tail-swapping argument similar to those found in Benjamin and Quinn [5, p. 8]. For
a more algebraic argument, see a result of Garrett [9, Thm. 1.2].

Theorem 7.

F2n+1F2nCn,F − Fn+1FnCn+1,F = (−1)nFnF2n+1
F2n!

Fn+2!Fn!
. (1)

Proof.

F2n+1F2nCn,F − Fn+1FnCn+1,F =
F2n+1F2nF2n!

Fn+1Fn!Fn!
−

Fn+1FnF2n+2!

Fn+2Fn+1!Fn+1!

= F2n+1F2nFn+2
F2n!

Fn+2!Fn!

− F2n+2F2n+1Fn

F2n!

Fn+2!Fn!

= F2n+1[F2nFn+2 − F2n+2Fn]
F2n!

Fn+2!Fn!

= F2n+1(−1)nFn

F2n!

Fn+2!Fn!

Corollary 8. For n ≥ 1,

F2n+1
F2n!

Fn+2!Fn!
=

1

Fn+2

(

2n+ 1

n

)

F

is an integer.

Proof. A common Fibonacci identity states F2n = FnFn+1 + FnFn−1, and thus the left side
of Equation (1) from Theorem 7 is equal to

F2n+1[FnFn+1 + FnFn−1]Cn,F − Fn+1FnCn+1,F

and is therefore divisible by Fn. Using this expression as the left side and dividing both sides
of Equation (1) by Fn gives

F2n+1Fn+1Cn,F + F2n+1Fn−1Cn,F − Fn+1Cn+1,F = (−1)nF2n+1
F2n!

Fn+2!Fn!

= (−1)n
1

Fn+2

(

2n+ 1

n

)

F

.

Since the left side of this equation is clearly an integer, we have the result.
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Note that the usual binomial expression

1

n+ 2

(

2n+ 1

n

)

is not always an integer since this number is a fraction when n = 2, for example. The
sequence of numbers given by

1

Fn+1

(

2n− 1

n− 1

)

F

appears in the OEIS [17] A277202 as the ratio of the FiboCatalan numbers and the Lucas
numbers.

We can also rewrite the expression on the right side of Equation (1) as follows:

(−1)nF2n+1
F2n!

Fn+2!Fn!
= (−1)nF2n+1

1

Fn+2

Cn,F .

It is well known that gcd(Fn, Fm) = Fgcd(m,n). Thus gcd(F2n+1, Fn+2) = Fgcd(2n+1,n+2).
We know gcd(2n+1, n+2) = 1 or 3. If gcd(2n+1, n+2) = 1, then gcd(F2n+1, Fn+2) = F1 = 1
and so Fn+2 divides Cn,F . If gcd(2n+ 1, n+ 2) = 3, then gcd(F2n+1, Fn+2) = F3 = 2 and so
Fn+2 divides 2Cn,F .

Corollary 9. For n ≥ 1, the generalized FiboCatalan numbers for r = 1,

2F2n!

Fn+2!Fn!
=

1

Fn+2

2Cn,F ,

are positive integers.

The sequence of numbers generated by (2F2n!)
(Fn+2!Fn!)

has been submitted to the OEIS [17]
A372949.

4 The Lucas analogues of the generalized FiboCatalan

numbers

We have similar relationships and results for the Lucas analogues of the super FiboCatalan
numbers and the generalized FiboCatalan numbers. When m = 1, the Lucas analogues of
the super FiboCatalan numbers reduce to {2} times the Lucas analogues of the FiboCatalan
numbers.

S{1, n} =
{2}!{2n}!

{1}!{n}!{n+ 1}!
=

{2}

{n+ 1}

{2n}!

{n}!{n}!
= {2}C{n}.

When m = 2, we have

S{2, n} =
{4}!{2n}!

{2}!{n}!{n+ 2}!
= {4}{3}

{2n}!

{n}!{n+ 2}!
.

10
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The Lucas analogue of the generalized FiboCatalan number for r = 0 is equal to C{n} which
is equal to 1

{2}
S{1, n}:

J{0}
{2n}!

{n}!{n+ 0 + 1}!
=

{1}!

{0}!

{2n}!

{n}!{n+ 1}!
= C{n} =

1

{2}
S{1, n}.

When m = n, we have

S{m,m} =
{2m}!{2m}!

{m}!{m}!{2m}!
=

{

2m

m

}

and when n = m+ 1, we have

S{m,m+ 1} =
{2m}!{2m+ 2}!

{m}!{m+ 1}!{2m+ 1}!
=

{2m+ 2}{2m}!

{m+ 1}!}m}!
= {2m+ 2}C{m}.

The Lucas analogue of the generalized FiboCatalan number for r = 1 is as follows:

J{1}
{2n}!

{n}!{n+ 1 + 1}!
=

{3}!

{1}!

{2n}!

{n}!{n+ 2}!

= {3}!
{2n}!

{n}!{n+ 2}!
=

{2}

{4}
S(2, n)F .

Lemma 10.
{2n}{n+ 2} − {2n+ 2}{n} = (−1)n{2}tn{n}.

Proof. This proof follows the same tail-swapping argument as the argument for the Fibo-
Catalan case.

Theorem 11.

{2n+ 1}{2n}C{n} − {n+ 1}{n}C{n+1} (2)

= (−1)ntn{2}{n}{2n+ 1}
{2n}!

{n+ 2}!{n}!
(3)

= (−1)ntn{s}

{

2n+ 1

n+ 2

}

. (4)
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Proof.

{2n+ 1}{2n}C{n} − {n+ 1}{n}C{n+1}

=
{2n+ 1}{2n}{2n}!

{n+ 1}{n}!{n}!
−

{n+ 1}{n}{2n+ 2}!

{n+ 2}{n+ 1}!{n+ 1}!

= {2n+ 1}{2n}{n+ 2}
{2n}!

{n+ 2}!{n}!

− {2n+ 2}{2n+ 1}{n}
{2n}!

{n+ 2}!{n}!

= {2n+ 1}[{2n}{n+ 2} − {2n+ 2}{n}]
{2n}!

{n+ 2}!{n}!

= {2n+ 1}(−1)nstn{n}
{2n}!

{n+ 2}!{n}!

= (−1)ntn{2n+ 1}{2}{n}
{2n}!

{n+ 2}!{n}!

Corollary 12. For n ≥ 1,

{2n+ 1}{2}
{2n}!

{n+ 2}!{n}!
= {2}

1

{n+ 2}

{

2n+ 1

n

}

is a polynomial with non-negative integer coefficients.

Proof. It is well known that {2n} = {n}{n+ 1}+ t{n}{n− 1}, and thus Equation (2) from
Theorem 11 is equal to

{2n+ 1}[{n}{n+ 1}+ t{n}{n− 1}]C{n} − {n+ 1}{n}C{n+1}

and is therefore divisible by {n}. Dividing both Equation (2) and Equation (3) by {n} gives

{2n+ 1}{n+ 1}C{n} + t{2n+ 1}{n− 1}C{n} − {n+ 1}C{n+1}

= (−1)ntn{2n+ 1}{2}
{2n}!

{n+ 2}!{n}!

= (−1)ntn{2}
1

{n+ 2}

{

2n+ 1

n

}

.

Since the left side of this equation is a polynomial with integer coefficients, we have that

(−1)ntn{2}
1

{n+ 2}

{

2n+ 1

n

}
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is a polynomial with integer coefficients; thus,

tn{2}
1

{n+ 2}

{

2n+ 1

n

}

is a polynomial with non-negative integer coefficients. The lucanomial
{

2n+ 1

n

}

is a polynomial with non-negative integer coefficients. Using the facts that {n + 2} can be
written as a product of irreducible Lucas atoms [16] and that tk is not a Lucas atom for any
k ≥ 1, we have that

{2}
1

{n+ 2}

{

2n+ 1

n

}

= {2n+ 1}
1

{n+ 2}
{2}C{n}

is a polynomial with non-negative integer coefficients.

Writing {2n+ 1} and {n+ 2} in terms of Lucas atoms, we have

{2n+ 1} =
∏

d|2n+1

Pd(s, t) and {n+ 2} =
∏

d|n+2

Pd(s, t).

We know gcd(2n + 1, n + 2) = 1 or 3. If gcd(2n + 1, n + 2) = 1, then {n + 2} divides
{2}C{n}. If gcd(2n+ 1, n+ 2) = 3, then {n+ 2} divides {3}{2}C{n}, thus

{3}!
{2n}!

{n+ 2}!{n}!

is a polynomial with non-negative integer coefficients (i.e., the generalized FiboCatalan num-
ber for r = 1 is a polynomial with non-negative integer coefficients).

5 k-divisible lucanomials

Given an integer k ≥ 1, let
{n : k}! = {k}{2k} · · · {nk}.

The k-divisible lucanomial is defined as
{

n : k

m : k

}

=
{n : k}!

{m : k}!{n−m : k}!
.

The natural analogues of the super Catalan numbers for the k-divisible lucanomials are then

S{m,n : k} =
{2m : k}!{2n : k}!

{m : k}!{n : k}!{n+m : k}!
.

13



Theorem 13. The k-divisible lucanomial analogues of the super Catalan numbers are poly-

nomials with non-negative integer coefficients.

Proof. To begin, we note that Pd | {lk} when d | lk. Let g = gcd(d, k). Then k = gm1 for
some positive integer m1 and d = gm2 for some positive integer m2 where gcd(m1,m2) = 1.
Then lk = lgm1 and d = gm2. Thus d | lk when gm2 | lgm1, or when m2 | lm1. Since
gcd(m1,m2) = 1, then m2 | lm1 only when m2 | l. Thus the Lucas atom Pd divides terms at
intervals of length m2 = d/ gcd(d, k) in {n : k}!. Let Md,k = d/ gcd(d, k). Then

logd{n : k}! = ⌊n/Md,k⌋.

The proof now proceeds by using the Division Algorithm and cases as in the proof of the
similar result for the lucanomials, so we omit the details here.

6 Open problems

The problem of finding a combinatorial interpretation of the super FiboCatalan numbers
remains an interesting open problem yet will likely prove challenging given that there is a
combinatorial interpretation for the super Catalan numbers in only a handful of cases.

In addition, the super Catalan numbers satisfy a number of interesting binomial identities,
such as this identity of von Szily [10, p. 11]:

S(m,n) =
∑

k∈Z

(−1)k
(

2m

m+ k

)(

2n

n+ k

)

.

Mikić [13] recently proved the following alternating convolution formula for the super Catalan
numbers:

2n
∑

k=0

(−1)k
(

2n

k

)

S(k, l)S(2n− k, l) = S(n, l)S(n+ l, n)

for all non-negative integers n and l. Mikić [14] also proved a similar identity for the Catalan
numbers:

2n
∑

k=0

(−1)k
(

2n

k

)

CkC2n−k = Cn

(

2n

n

)

.

We conjecture that many of these identities have analogues for the super FiboCatalan
numbers and are interested in exploring these analogues in further research.
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