Generalizing the Wythoff Array and Other Fibonacci Facts to Tribonacci Numbers
Eric Chen,
Adam Ge,
Andrew Kalashnikov,
Ella Kim,
Evin Liang,
Mira Lubashev,
Matthew Qian,
Rohith Raghavan,
Benjamin Taycher, and
Samuel Wang
PRIMES STEP
Department of Mathematics
MIT
77 Massachusetts Ave.
Cambridge, MA 02139
USA
Tanya Khovanova
Department of Mathematics
MIT
77 Massachusetts Ave.
Cambridge, MA 02139
USA
Abstract:
In this paper, we generalize many facts from a recent paper of Conway and Ryba,
where we replace the Fibonacci sequence in that paper with the Tribonacci sequence.
We study the Tribonacci array, which we also call the Trithoff array
to emphasize the connection to the Wythoff array. We also describe 13 new sequences.
Full version: pdf,
dvi,
ps,
latex
(Concerned with sequences
A000045
A000073
A000201
A000213
A001590
A001950
A003144
A003145
A003146
A003265
A003714
A003726
A003849
A020992
A060140
A100683
A104449
A136175
A214899
A269725
A269726
A300867
A305373
A351631
A351685
A351689
A352719
A352748
A353083
A353084
A353086
A353090
A353178
A353193
A354215
A356823.)
Received June 26 2024; revised versions received May 21 2025; August 9 2025.
Published in Journal of Integer Sequences,
September 18 2025.
Return to
Journal of Integer Sequences home page