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Abstract

The question of which triangular numbers have a decimal representation containing

a single repeated digit seemed to be settled since at least the 1970s: Ballew and Weger

provided a complete list and a proof that those are the only numbers of that kind. This

assertion is referenced by other authors in the field. However, their proof is flawed. We

present a new and elementary proof of the statement, which corrects the error.

1 Introduction

The study of triangular numbers—integers of the form k(k+1)
2

—is a long-standing and well-
researched area within the field of number theory. For example, Gauß proved in his Dis-

quisitiones Arithmeticae [4] that every positive integer can be expressed as the sum of three
triangular numbers.
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A question that arises is that of the decimal representation of triangular numbers. In
particular, which triangular numbers can be expressed using a single digit? That is to say,
are there triangular numbers of the form d · 10i−1

9
with some digit d ∈ {1, . . . , 9} and positive

integer i? One instance of this question being posed is Problem 15648 in the Educational

Times [2], which was proposed by Youngman and subsequently answered by Escott in the
same journal. However, Escott only demonstrated the non-existence of triangular numbers
with repeated digits exceeding 666, comprising a maximum of 30 digits, do not exist.

Subsequently, Ballew and Weger [1] presented an erroneous proof for the following theo-
rem.

Theorem 1. The only triangular numbers whose decimal representations consist of a single

repeated digit are 1, 3, 6, 55, 66, and 666.

In a recent contribution, Kafle, Luca, and Togbé [5] generalized the problem to include
repeating blocks with two digits: the only triangular numbers whose decimal representation
can be written using only one block of two digits are 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 5050,
and 5151. However, for the original problem, they just cite the work of Ballew and Weger.

Recently, on the internet platform MathOverflow [6], a discussion regarding this topic was
held. In this discussion, the error in Ballew and Weger’s proof of Theorem 1 was identified,
and a proof using the methods of elliptic curves was presented. In this paper, we provide an
elementary proof of Theorem 1 using only Pell equations.

1.1 Outline

In accordance with the methodology proposed by Escott, Ballew, and Weger, we initially
reformulate the problem. Subsequently, we provide a concise account of the erroneous as-
sertion present within the proof of Ballew and Weger. In Section 3, a proof is provided for
each remaining digit, demonstrating that there are no further triangular numbers consisting
of a single repeated digit.

2 Reduction and reformulation of the problem

For every positive integer k let Tk denote the k’th triangular number. In accordance with
Escott’s approach and the valid part of Ballew’s and Weger’s paper, we arrive at the following
conclusion: if the decimal expression of Tk consists solely of the single repeated digit d, we
have

Tk =
k(k + 1)

2
= d · 10

i − 1

9
, i ≥ 1, d ∈ {1, . . . , 9}

⇐⇒

(2k + 1)2 = 4k2 + 4k + 1 = 8d · 10
i − 1

9
+ 1.
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A solution (k, d, i) in positive integers for the original problem exists, if and only if the

quantity D := 1 + 8d · 10i−1
9

is a perfect square.
From the previous line, we see thatD satisfies the congruenceD ≡ 1+8d (mod 10). Thus,

immediately, we can rule out d ∈ {2, 4, 7, 9}, because in those cases D would be congruent 7
or 3 modulo 10, which are not quadratic residues. Therefore, the value of d must be 1, 3, 5, 6,
or 8. Now we look at these cases one by one:

d = 1: If i = 1, it follows that D = 8 · 10i−1
9

+1 = 9 = 32, which yields T1 = 1, and for i > 1,
we have D = 88 · · · 89.

d = 3: If i = 1, then D = 24 · 10i−1
9

+ 1 = 25 = 52, which yields T2 = 3. Otherwise, we have
D = 26 · · · 65.

d = 5: If i = 1, we have D = 40 · 10i−1
9

+ 1 = 41. For i = 2, we get D = 441 = 212, which
yields T10 = 55, and for i > 2, it follows that D = 44 · · · 41.

d = 6: If i = 1, 2, or 3, then D = 48· 10i−1
9

+1 = 49 = 72, D = 529 = 232, or D = 5329 = 732,
which yields T3 = 6, T11 = 66, and T36 = 666. If i > 3, we have D = 53 · · · 329.

d = 8: If i = 1 or 2, then D = 64 · 10i−1
9

+ 1 = 65 or D = 705. Otherwise, D = 71 · · · 105.

Since · · · 05 and · · · 65 cannot be the last two digits of a square number, we can exclude
d = 8 and d = 3, except for T2.

2.1 The false statement

Ballew and Weger incorrectly asserted that there is no integer z whose square ends in
· · · 88889. This assertion is, however, erroneous. For example, 80729172 = · · · 88888889.
In fact, since z2 ≡ · · · 88889 ≡ 1 + 8 · 10k+1

−1
10−1

≡ 1 − 1
9
(mod 10k) is equivalent to 9z2 − 1 ≡

(3z − 1)(3z + 1) ≡ 0 (mod 10k), there are solutions for every k; for example, z = · · · 3333.
Consequently, there are square numbers whose last digits are · · · 8889 with an arbitrary
number of 8’s.

3 A proof using Pell’s equations

This section introduces a new line of reasoning, which rules out the remaining cases, namely
those with d ∈ {1, 5, 6}.

3.1 The case d = 1

In this case, we have to find all positive integers p, i with

p2 = 88 · · · 89 = 8 · 10
i − 1

9
+ 1 ⇐⇒ (3p)2 − (8 · 10i) = 1.
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Assuming there is a solution for i ≥ 2 (the case i = 1 leads to T1). Then we can make a case
distinction by using the parity of i.

Case A: i is even, i.e., i = 2r, r ∈ N. Subsequently, we have

(3p)2 − 2 · (2 · 10r)2 = 1,

and we can seek solutions to the Pell equation

x2 − 2y2 = 1 (1)

with the requirements x = 3p, y = 2·10r, and r ≥ 1. Thus, y must satisfy y ≡ 0 (mod 5)
and y 6≡ 0 (mod 7).

However, the solutions to (1) are given by (x0, y0) = (3, 2), xn+1 = 3xn + 4yn, and
yn+1 = 2xn + 3yn. A calculation modulo 5 and modulo 7 as in Table 1 yields y ≡
0 (mod 5) ⇐⇒ y ≡ 0 (mod 7); hence, y 6= 2 · 10r.

n xn mod 5 yn mod 5 xn mod 7 yn mod 7
0 3 2 3 2
1 2 2 3 5
2 4 0 1 0
3 2 3 3 2
4 3 3 3 5
5 1 0 1 0
6 3 2 3 2
7 . . .

Table 1: Solutions of equation (1) for d = 1, Case A, mod 5 and mod 7.

Case B: i is odd, i.e., i = 2r+1, r ∈ N. Then we have (3p)2 − 20 · (2 · 10r)2 = 1, and we can
seek solutions to

x2 − 20y2 = 1 (2)

with x = 3p, y = 2 ·10r, and r ≥ 1. Hence, we have y ≡ 0 (mod 5) and y 6≡ 0 (mod 11).

But the solutions to (2) are (x0, y0) = (9, 2), xn+1 = 9xn+40yn, and yn+1 = 2xn+9yn.
A calculation modulo 5 and 11 similar to the one in Case A yields y ≡ 0 (mod 5) ⇐⇒
y ≡ 0 (mod 11), so y 6= 2 · 10r with r ≥ 1.
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3.2 The case d = 5

Here we have to find all solutions (p, i) in positive integers with i > 2 for the diophantine
equation

p2 = 44 · · · 41 = 40 · 10
i − 1

9
+ 1.

Assume there is a solution (p, i).

Case A: i is even, i.e., i = 2r, r ∈ N, r ≥ 2. Then we have (3p)2 − 10 · (2 · 10r)2 = −31, and
we can seek solutions to the equation

x2 − 10y2 = −31 (3)

with x = 3p, y = 2 · 10r, r ≥ 2. Hence, y has to satisfy the congruences y ≡ 0 (mod 8)
and y 6≡ 0 (mod 7).

To solve equation (3), we observe the identity 1 = 192−10·62 = (19+6
√
10)·(19−6

√
10).

Thus, if (xn, yn) is a solution of equation (3), we have

−31 = x2
n
− 10y2

n

= (xn + yn
√
10) · (xn − yn

√
10)

= (xn + yn
√
10) · (19 + 6

√
10) · (xn − yn

√
10) · (19− 6

√
10)

= (19xn + 60yn + (6xn + 19yn)
√
10) · (19xn + 60yn − (6xn + 19yn)

√
10)

= (19xn + 60yn)
2 − 10(6xn + 19yn)

2

= x2
n+1 − 10y2

n+1

with xn+1 := 19xn + 60yn, and yn+1 := 6xn + 19yn.

By recursion, we can generate entire sequences of solutions starting from an initial
solution. But considering this recursion as a linear equation system with xn and yn as
unknowns, we can go backwards, too: if (xn+1, yn+1) is a solution of equation (3), then
(xn, yn) with xn = 19xn+1 − 60yn+1 and yn = 19yn+1 − 6xn+1 is also a solution.

As long as 60yn+1 < 19xn+1, and 6xn+1 < 19yn+1, both xn and yn are positive. The
second inequality follows for all positive solutions of equation (3) via

x2
n+1 − 10y2

n+1 = −31 < 0

⇒ 36x2
n+1 < 360y2

n+1 < 361y2
n+1

⇒ 6xn+1 < 19yn+1.

Provided that yn+1 ≥ 34, the first inequality is also true. If it was not, we would have
361xn+1 ≤ 3600yn+1, and thus x2

n+1 ≤
(

10− 10
361

)

y2
n+1 and

−31 = x2
n+1 − 10y2

n+1 ≤ − 10

361
· y2

n+1 ≤ − 10

361
· 342 = −11560

361
< −11191

361
= −31.
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Hence, every solution (xn+1, yn+1) of equation (3) in positive integers with yn+1 ≥ 34
leads to another such solution (xn, yn). And with yn+1 ≥ 34. we have xn+1 > 3yn+1,
since otherwise we would get the contradiction −31 = x2

n+1 − 10y2
n+1 ≤ −y2

n+1 ≤
−342 < −31. Thus, yn = 19yn+1 − 6xn+1 < 19yn+1 − 18yn+1 = yn+1.

Thus, provided that (xn+1, yn+1) is a solution of equation (3) in positive integers with
yn+1 ≥ 34, we get a new solution (xn, yn) of this equation in positive integers with a
smaller second component.

This can now be considered in the other direction, again: every solution of equation (3)
in positive integers can be obtained via the recursion xn+1 := 19xn +60yn and yn+1 :=
6xn+19yn from an initial solution (xn, yn) with 0 < yn < 34. Checking all possibilities
with 0 < x and 0 < y ≤ 34 yields the two solutions (x0, y0) ∈ {(3, 2), (63, 20)}. From
there, we get all other solutions of (3) via recursion.

As in the case d = 1, a calculation modulo 8 and 7 now yields y ≡ 0 (mod 8) ⇐⇒
y ≡ 0 (mod 7), so y 6= 2 · 10r.

Case B: i is odd, i.e., the number of occurrences of the digit 4 in the decimal representation
of p2 is odd. In this case, according to a basic rule

44 · · · 41 ≡ 1− 4 + (4− 4) + · · ·+ (4− 4) ≡ −3 ≡ 8 (mod 11),

which is not a quadratic residue modulo 11.

(This is Problem 2 from the first round of the 2024 Bundeswettbewerb Mathematik
in Germany [3]. When we tried to solve the related open question for Case A, i.e.,
whether 1 and 441 are the only squares with an even number of occurrences of the
digit 4, we came across Ballew’s and Weger’s flawed proof and ended up with this
paper.)

3.3 The case d = 6

Assume there is a solution (p, i) with i ≥ 4. (The cases with i ≤ 3 yield the solutions T3,
T11, and T36.) Then we have

p2 = 53 · · · 329 = 48 · 10
i − 1

9
+ 1 ⇐⇒ 9p2 − 3 · (42 · 10i) = −39.

Case A: i is even, i.e., i = 2r with r ≥ 2. Thus, 3p2 − (4 · 10r)2 = −13 and we can seek
solutions to the Pell equation

x2 − 3y2 = 13 (4)

with the additional requirement of x = 4 · 10r, y = 3p, and r ≥ 2. Hence, it has to be
x ≡ 0 (mod 50). We can obtain all solutions of (4), starting from (x0, y0) = (4, 1) or
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(x0, y0) = (5, 2), through the recursion xn+1 = 2xn + 3yn, and yn+1 = xn + 2yn by the
same method used in the case d = 5. A calculation modulo 50 and 241 as in the case
d = 1 yields xi ≡ 0 (mod 50) ⇐⇒ xi ≡ 94 (mod 241). Thus, in every solution, we
have 94 ≡ 4 · 10r (mod 241) and, therefore, 10r ≡ 144 (mod 241). However, this is not
the case for any positive integer r.

Case B: i is odd, i.e., i = 2r + 1 with r ≥ 2. This leads to (3p)2 − 30 · (4 · 10r)2 = −39 and
therefore, the Pell equation

x2 − 30y2 = −39 (5)

with x = 3p, y = 4·10r, and r ≥ 2. All solutions of (5) can be obtained from the starting
solutions (x0, y0) = (9, 2) or (x0, y0) = (21, 4) through the recursion xn+1 = 11xn+60yn,
yn+1 = 2xn + 11yn using the same methods as above.

Now assume that there is a solution with r ≥ 4. It follows that y = 4·10r ≡ 0 (mod 64).
A calculation modulo 64 and 31, as in the case d = 1, reveals that yi ≡ 0 (mod 64)
is equivalent to yi ≡ 3 (mod 31), and, therefore, 10r ≡ 24 (mod 31), which is not the
case for any positive integer r.

In the cases with r ∈ {2, 3}, it can be verified that in both families of solutions of
(5) we have y3 > 4000. Consequently, the only remaining candidates for additional
solutions are (x1, y1) and (x2, y2) in both families. However, a brief calculation reveals
that they are not solutions to the original problem.

This demonstrates that, in each case, there are no additional solutions beyond those
initially presented in the paper, thereby establishing the proof of Theorem 1.

Remark 2. The method can be applied in the generalized version with repeated blocks of
digits as well. In consideration of blocks of length 2, as presented in [5], we have to solve the
equation

k(k + 1)

2
= c · 100

i − 1

99
, c ∈ {10, . . . , 99}

⇐⇒ (2k + 1)2 = 8c · 100
i − 1

99
+ 1

⇐⇒ (33 · (2k + 1))2 = 88c · 100i + 1089− 88c

⇐⇒ x2 − 22c · y2 = 1089− 88c, (6)

with x := 33 · (2k + 1), y := 2 · 10i in positive integers. Now we can compute the set of all
integer solutions (x, y) to the Pell equation (6) and find moduli that disprove that y can be
of the form y = 2 · 10i.
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