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Abstract

We prove several conjectures from the On-Line Encyclopedia of Integer Sequences,
concerned with constrained lattice point enumeration, pattern-avoiding words, rounding-
related formulas, and greedily defined sequences. Our methods are mostly elementary
and include generating functions, recurrence analysis, and symbolic combinatorics.

1 Introduction

The On-Line Encyclopedia of Integer Sequences (OEIS) [7] is an indispensable tool for math-
ematicians and computer scientists. It catalogs over 385,000 sequences, many of which are
accompanied by conjectural closed-form formulas, recurrence relations, generating functions,
or asymptotic estimates. For example, Stephan [8] listed 100 such conjectures. These con-
jectures provide fertile ground for mathematical exploration, and their resolution can yield
elegant combinatorial or analytic insights.

In this work, we prove several conjectures from the OEIS, covering a diverse range of
topics and techniques. Specifically, we address problems from the following areas:

1. Lattice point enumeration. We compute the generating function corresponding to a
certain constrained lattice points enumeration problem and extract exact formulas (cf.

A371835).

2. Pattern-avoiding words. We compute the generating functions corresponding to the
enumeration of words over finite alphabets that avoid the patterns z,z + 1,z and
z,2z,2+ 1 (cf. A005251 and A206790).
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3. Restricted repeating letters. We compute the generating function corresponding to
the enumeration of words over finite alphabets with a certain restriction regarding
repeating letters (cf. A269467).

4. Rounding-related identities. We verify conjectured closed-form formulas for integer
sequences involving central binomial coefficients and sums of cube roots (cf. A112884

and A136269).

5. Median absolute deviation. We determine the asymptotic behavior of the median
absolute deviation of a certain set, confirming the conjecture in A345318.

6. Greedily defined sequences. Not directly addressing a conjecture, we prove that A128135
is a greedily defined sequence. We also propose our own conjecture related to the Fi-
bonacci numbers (cf. A248982).

Let us introduce some notation: The set of natural numbers {1,2,...} is denoted by N.
For any real number z, the floor of x, denoted by |z, is the greatest integer less than or
equal to x.

2 Lattice point enumeration

Let £ and n be two nonnegative integers and let m € N. We let a' k denote the number

of integer points (z1,...,2,,), such that maxj<;<m, |z;| < k and > " |2;| < n. Sequence
A371835 is concerned with the array ( 5133@) n30 -
0<k<n

We let b( denote the number of integer pomts (xl, ooy T ), such that max <<, |2;] < k

and > ", |x1| = n For fixed k and m, we let B ( ) denote the generating function for

the numbers b . In the following theorem we calculate B )( ). We then use this result to

resolve and extend a conjecture stated in A371835, regarding a closed-form formula for a( )

Theorem 1. We have N
m 2x(1 —
B (z) = (1+%> . (1)

Proof. Clearly, b ",i is also the number of compositions of n into m parts such that the
absolute value of each part is < k. We use the symbolic method (e.g., [2, 1.3]). To this end,
let Z), = {0,+1,£2,..., £k} and let the size of an element in Z; be its absolute value. Then
the corresponding generating function, for one part, is given by

_1+22 T et}

1—=x

Consequently, the generating function for m parts is given by (Ix(x))™ and the assertion
follows. O
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Corollary 2. We have
(3)

=
4n3 + 6n% + 8n + 3, if 0 <n <k
1 ] 12k3 — 36Kk3n + 36kn? — 8n3 + 6n% + 6k + 2n + 3, if k <n <2k;
3 —84k3 + 108k>n — 36kn? + 4n3 — 72k% + 72nk — 12n? — 6k + 8n + 3, if 2k < n < 3k;
24k3 4 36k% + 18k + 3, otherwise.

Proof. For fixed k and m, we let A,(Cm) () denote the generating function for the numbers
af:?. Clearly, A" (z) = BI™()/(1 — z). Thus

A(3)< ) —8$3k+3 + 12x2k+3 + 12$2k+2 _ 6xk+3 _ 12[L‘k+2 _ 6xk+1 + 173 + 31,2 +3r+1

) = .

' (1—a)

Extracting coefficients, which is routine (e.g., [11, (2.5.7) on p. 53]), proves the stated for-
mulas. .

3 Pattern-avoiding words

3.1 Words avoiding the patterns z,z+ 1,z and 2,2,z + 1

The systematic study of words avoiding specific patterns was initiated by Guibas and Odlyzko
[3]. Although the two cases considered here fall within the scope of their general results, we
present direct and self-contained arguments. Let k£ > 2 be an integer. We let [k] denote the
set {1,2,...,k}. For a nonnegative integer n, a word over k of length n is an element of [k]™.
A word wy - - - w, € [k]™ is said to avoid the pattern z,z+ 1,z ifno 1 <i <n—2and z € [k]
exist such that w; = w; 1o = 2z and w;; = 2+ 1. Avoidance of the other pattern z, z, 2 4+ 1 is
defined similarly. We refer to a word avoiding the pattern in question as legal. The first part
of the following theorem corresponds to A005251 by taking & = 2, to A098182 by taking
k = 3 (giving the sequence a combinatorial interpretation), and to A206790 by taking k = 4
(proving the conjectures stated therein). The second part corresponds to A000071 by taking
k =2, to A206727 by taking k = 3 (proving the conjectures stated therein), and to A206570
by taking k = 4 (proving the conjectures stated therein).

Theorem 3.

(a) Let fr(n) denote the number of words over k of length n that avoid the pattern z, z+1, z.
Then, for n > 3, the numbers fr(n) satisfy the recursion

fr(n) =kfi(n —1) — frln —2) + fr(n — 3),
with initial values fi(0) =1, fu(1) = k, and fi(2) = k*. In particular, the correspond-
ing generating function is given by
1+ 22
1 —kr+a?2—a2%

3
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(b) Let fr(n) denote the number of words over k of length n that avoid the pattern z, z, z+1.

Then, for n > 2k — 1, the numbers fr(n) satisfy the recursion

k

frln) =Y (=1)(k = i) fu(n — 20 = 1).

=0

—_

Furthermore, the corresponding generating function is given by

1
1— Ef;ol(_l)i(k _ Z-)wm'ﬂ'

Proof.

(a)

3.2

We derive the recurrence for fi(n) as follows: To construct a legal word of length n,
consider all legal words of length n — 1 and append one of the k letters. This gives
k fr(n—1) possibilities. However, some of these extensions may introduce the forbidden
pattern at the end of the word. Such a pattern is created only when we append z+1, 2
to a legal word of length n — 2 ending with z. Thus, we must subtract fx(n — 2) to
remove these cases. This subtraction, however, erroneously includes cases where z = k
(since k + 1 is not in the alphabet and hence the pattern k,k + 1,k cannot occur).
Thus, we must add back the number of legal words of length n — 2 ending with k.
These are precisely the words obtained by appending the letter k to a legal word of
length n — 3. This gives the term fi(n — 3).

We derive the recurrence for fi(n) using inclusion-exclusion as follows: To construct a
legal word of length n, consider all legal words of length n — 1 and append one of the
k letters. This gives kfr(n — 1) possibilities. This extension however may introduce
words having z, z, 2z + 1 at the end. Such words arise from legal words of length n — 3
by appending z, z, z + 1 for some z < k — 1. Hence, we subtract (k— 1) fx(n —3). Now
we need to add back words that end with 2,2z, 2 + 1,2+ 1,2 + 2 for some z < k — 2,
since they have an earlier occurrence of the pattern. Thus we add (k — 2) fx(n — 5).
Now we need to subtract words that end with z,z, 2+ 1,24+ 1,2+ 2,2+ 2,z + 3 for
some z < k — 3 for the same reason. Thus, we subtract (k — 3) fx(n — 7). Proceeding
in this manner, the recursion follows.

]

Restricted repeating letters

In the following theorem we resolve some of the conjectures stated in A269467. The sequence
is concerned with the number of legal words over k of length n, denoted by fi.(n), where legal
here means that no repeating letter is equal to the previous repeating letter (in particular, it

is not allowed to have three consecutive equal letters). More precisely, a word wy - - - w,, € [k]

n

4
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is legal if for every 1 <i < j <n—1 and s € [k], such that w; = w41 = w; = wj41 = s,
there exist ¢ < m < j and t € [k] such that ¢t # s and w,, = w41 = t. For example, the
word 11233 is legal while the words 111233 and 11211 are not.

Theorem 4. Let Fi(x) denote the generating function for the sequence (fr.(n))n>1. Then

(k—2)2® +2(k —2)2* + (k — 3)z — 1
Fy(a) = — 2.3 2 : (2)
2(k —1)223 + (k — 1) (k — 422+ (3 —2k)z + 1
Proof. Let 0 < uw < kand 1 <wv < k. We let fi,,(n) denote the number of legal words
over k of length n whose last letter is v and whose last repeating letter is u. Notice that
u = 0 encodes legal words having no repeating letters at all and therefore Zﬁzl froo(n) =

k(k—1)""1. For n > 3 we have
Foan(n) = {Zlgtgk,t;ﬁv Srup(n ) + Zogtgk,t;év Srtu(n ), ifv=u

Z1§t§k,t7ﬁu frui(n —1), if v # u.
Then
kE k
ZZ kuv
2 B
Z Z fkutn_1+z Z fktvn_l
u=0 v=1 1<t<k,t#v v=1 0<t<k,t#v
ko k k k
=3 D D frann=1) = frun(n - ) +> (Z Frtw(n=1) = fruo(n — 1))
v=1 u=0 t=1 v=1 t=0
k
=kfi(n=1) = frop(n —1). (3)
v=1
Now

v=1 v=1 t=1 t=0
k k
=2fi(n—2) =) froe(n—2) =2 fruu(n —2)
t=1 v=1
k
=2fi(n—2) = k(k = 1) =2 " fr,.(n—2). (4)
v=1

Iterating (4) until we reach Zle frwo(2), which is equal to k, and substituting the result
into (3), we obtain the equation

w

n—

fon) =kfiln =)+ ((=2)'filn — 1 —4) + (=2)" 'k(k — 1)" ") — (=2)" k.

i=1



Multiplying both sides of the equation by ™ and summing over n > 4, we may (eventually)
solve for Fi(z) and obtain (2). O

Corollary 5. The denominator of Fy(x) confirms the conjectured recurrences stated in
A269467.

4 Rounding-related identities

4.1 The number of bits required to represent (22:)

The statement of the following theorem was conjectured in A112884.
Theorem 6. Let n € N. The number of binary bits required to represent (2371) is 2" —|n/2].

Proof. The number of binary bits required to represent a nonnegative integer m is |log, m |+
1. Now the number (272:1) is actually a central binomial coefficient, for which many bounds
exist. We use the following elementary bound stated in [9, (21)]:

4m _ <2m) _ 4m cN
S — m )
v4m m 3m+1

Plugging m = 2" and applying the logarithm, we then have
n 1 2n n 1 1 n
2 ————-x<1 <2"——+ - —-log,3~ 2" — - —0.292
2 2= %% (2n—1) 7 To g 2 ’

from which the assertion immediately follows. O]

4.2 The floor of the sum of the first 10" cube roots

The statement of the following theorem was conjectured in A136269.
Theorem 7. Let n € N be divisible by 3. Then

14n/3
{Z\/J ik O S 45.10M 1.

Proof. For every m € N and any real r > 1, we have by [6],

l 147 1 1

where 0 < ¢,,(r) < % Taking r = 3 and m = 10™ — 1, we obtain
3.1003 1078 1 'SR, 3.10m/3 10/
— — < ;< — . 5
4 2 2= 221: \/; - 4 2 ( )
Adding v/10™ to (5) proves the assertion. O
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5 Median absolute deviation

Sequence A345318 is concerned with a statistical measure of spread, called the median
absolute deviation (e.g., [4, p. 291]), of the set {2k* : k = 1,...,n}. Notice that the
purpose of the factor 2 in 2k? is merely to ensure that the resulting sequence is an integer
sequence. We omit this factor in our analysis.

Theorem 8. Let n € N and set A, = {k* : k=1,2,...,n}. Let a, denote the median
absolute deviation of A, i.e.,

a, = median({|z — median(A4,)| : = € A4,}).
Then lim,, o a,/n* = \/3/8.

Proof. Let m,, = median(A,). Then m, = n*/4 + O(n). Let § € (0,1/4) and let N(n,d)
denote the number of values of & such that |k* —m,| < dn?. Then

N(n,d6) = /my, + on? —/m, —on?+ O(1).

Thus,
N<n,a>_¢1+5+0(1>_w_éw(;)w(;) H¢1+5_¢1_5,
n 4 n 4 n n /) n—oo \ 4 4

The equation
1 1 1
—+0—/-—0==
\/4 * \/4 2

has a unique solution in (0,1/4), namely, v/3/8, and the assertion follows. ]

6 Greedily defined sequences

In the following theorem we show how sequence A128135 emerges as a subsequence of a
sequence defined by a greedy integer recurrence. Such greedily defined integer sequences
have been studied by Venkatachala [10], Avdispahi¢ and Zejnulahi [1], and Shallit [5]. While
the result we obtain does not directly settle a conjecture from the OEIS, we observed it
while working on a conjecture stated in A248982. We shall elaborate on it at the end of this
section.

Theorem 9. Let a; = 1 and, for n > 2, let a, be the least positive integer such that the
average of ay,...,a,_1 is a power of 2. Then

{(n +1)2571 if n is even;
an - n—1

272, otherwise.
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Proof. Set s, =Y, a;. We claim that s,, = n2l3) (this sequence is A132344). To see that,
we proceed by induction on n. The base case, namely n = 1, obviously holds. Now assume
that the assertion holds for every 1 < i <n—1, where n > 2. Let ¢ be a nonnegative integer
such that s, = n2‘. We have

Un = Sy — 8y =12 — (n — 1)2“77%. (6)

Clearly, if £ > |(n — 1)/2], then a, > 0. We claim that the converse also holds. Indeed,
suppose that a,, > 0 but ¢ < [(n —1)/2]. Then

n—1

nol*z )1 (n— 1)2L%J >0 <—

n
> 2.
n—1
But since n > 2, we have n/(n — 1) < 2.

Now assume that n is even. If £ = [(n—1)/2], then, by (6) and the induction hypothesis,
a, = olzt) — 9" = a,_1, in violation of the distinctness condition. Trying the next best
candidate ¢ = |(n — 1)/2] + 1, we have, by (6),

an = n2l 7 1 = — 12l = (- 1)2l7 ),

which is obviously adequate. Thus, s, = nQL%J

Now consider a,; and let £ be a nonnegative integer such that s,; = (n + 1)2° We
have

n
2

Upg1 = Sny1 — Sp = (n 4+ 1)2° _nolsl

Here, ¢ = |n/2] is possible, leading to a,1 = 2l%] and Sp1 = (n+ 1)2L%J, concluding the
proof of the induction step. O

As mentioned earlier, we observed the statement of the previous theorem while working
on a conjecture stated in A248982, which is defined to be the sequence of distinct least
positive numbers such that the average of the first n terms is a Fibonacci number. Let
(@n)n>1 be this sequence. Refining the conjecture stated in A248982 regarding a closed-form
formula for (a,),>1, it seems that, for n > 10, we have

. nF(2+43)—(n—1)F(%+2), ifniseven;
" F ("TH + 2) , otherwise.

A proof of this likely proceeds along similar lines as the previous theorem. Nevertheless, we
were not able to show that the two sets

{nF<g+3)—(n—1)F<g+2> ; nZliseven},

{F<n;1+2) : nZlisodd},

are disjoint, or, equivalently, that for every n € N, the number F(n+ 2)+ 2nF(n+ 1) is not
a Fibonacci number. We conjecture that this is so. Notice that a similar sequence is the Les
Marvin sequence A007502(n) = F(n) 4+ (n — 1)F(n —1).

8
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