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We use the automatic theorem prover Walnut to resolve various open problems
from the OEIS (On-Line Encyclopedia of Integer Sequences) and beyond. Specifically,
we clarify the structure of sequence A260311, which concerns runs of sums of upper
Wythoff numbers. We extend a result of Hajdu, Tijdeman, and Varga on polynomials
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1 Introduction

In the fall of 2024 two of us (Bosma and Fokkink) taught a course on automatic sequences
in the Dutch national mathematics master’s programs, based on Shallit’s monograph [14].
The aim of the course was to allow students to solve as many problems as possible from
the On-Line Encyclopedia of Integer Sequences (OEIS) using the automatic theorem prover
Walnut [10]. This paper contains our results. It consists of four distinct sections: an analysis
of sums of upper Wythoff numbers, an investigation of polynomials with rational roots,
and two separate studies on specific sumfree sequences. All these studies are carried out
with Walnut.

Walnut is a free software package, which can verify first-order logic statements on sets
or sequences of natural numbers involving addition but not multiplication. Statements can
be expressed in various numeration systems, such as binary, decimal, or the more exotic
Zeckendorf numeration system, in which numbers are represented by sums of Fibonacci
numbers. It can be downloaded from https://cs.uwaterloo.ca/ shallit/walnut.html.

The syntax of Walnut is highly transparent and can be easily understood by anyone
familiar with first-order logic. To illustrate this, here is an example. The Fibonacci word
F = abaababaabaab--- is the infinite symbolic sequence generated by the substitutions
a — ab and b — a. A well-known property of F is that each prefix of length F,, — 2 is a
palindrome [4]|, where F,, is the n-th Fibonacci number. This prefix runs up to the index
F, — 3 if we start the count at zero. In first-order logic, the palindromic property can be
expressed as

VE,>3Vj < F,—3: F[j|=F[F,—-3—j].

The Fibonacci numbers 0,1,1,2... are denoted Fy, I, Fy, F3,.... In particular, Fj is the
first Fibonacci number such that F;, > 3. A Walnut verification of the palindromic property
is

eval prefixtest "?msd_fib Af Aj ($isfib(f)&f>=3&j<=£f-3) => F[j]=F[f-3-j]":

Walnut evaluates the hyphenated statement, which is named prefixtest. The command
7?msd_fib says that the statement should be evaluated in the Zeckendorf system. The
acronym msd stands for most significant digit first. Capital A represents V, and similarly,
E represents 4. The command $isfib(f) checks whether f is a Fibonacci number. The
Fibonacci word F is implemented in Walnut as F. The command should now be clear. It is
evaluated as TRUE.

2 Gaps between unsums of upper Wythoff numbers

The upper Wythoff numbers are the indices for the letter b in the word F, if we start the
count at one instead of zero. The first few upper Wythoff numbers are

2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, ... .


https://cs.uwaterloo.ca/~shallit/walnut.html

Figure 1: An automaton that accepts sequence A260317 in Zeckendorf numeration. Accept-
ing states are marked by double circles. For instance, 101 which represents 4 in Zeckendorf
numeration is accepted, and 1010, which represents 7, is rejected.

Kawsumarng, Khemaratchatakumthorn, Noppakaew, and Pongsriiam [8| studied, among
other things, the set U 4 U of sums of upper Wythoff numbers, consisting of sums u + v with
u,v € U. Shallit [15] derived their results using Walnut. A subsequent study [12] extended
the work to sums of Beatty sequences.

Let U & U be the set of sums u + v such that u # v. Sequence A260317 in the OEIS is
the complement of U @& U. We say that the numbers in A260317 are unsums. For instance,
4 =2+ 2 is an unsum even though it is the sum of two upper Wythoff numbers, since these
numbers are not distinct. The first few unsums are

1, 2, 3, 4, 5, 6, 8 10, 11, 13, 14, 16, 19, ... .

Sequence A260311 in the OEIS contains the differences between consecutive unsums. We
say that they are gaps. The initial gaps are

11111221212323233233235323532353532353532353553532353553532.

Shallit [16] implemented A260317 in Walnut to prove that the gaps are limited to 1, 2,
3, and 5. This resolved a problem posed by Kimberling. The automaton that recognizes the
unsums is illustrated in Fig. 1. Building on this work, we extend the analysis of A260311
and fully clarify its structure.

The prefix 1111122121 is irregular, but after that a pattern emerges. We first describe
what we see and then we check that with Walnut. The words between the gaps 2 are
palindromes of increasing lengths:

2W2W2Wo2Wo2Ws2Ws2 - - - .

The gaps 2 are markers around the palindromes. Each palindrome W; occurs twice and has
Fibonacci length |W;| = F;,1. The sequence of palindromes Wy, Wy, Wi, ... is

3, 33, 353, 35353, 35355353, 3535535355353, 353553535535535355353, ...
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Each W; is of the form 3V;3 for ¢« > 1 and 3V} is a prefix of W;,;. For odd 7 we even find
that W; is a prefix of W;,;. The sum of the digits of the palindromes is equal to

3, 6, 11, 19, 32, 53, 87, ....

If we add 2 to these sums, which is the value of the markers, then we get the Fibonacci
numbers Fx, Fg, Fr, Fg.... The limit of the sequence of palindromes is the infinite word

3535535355355353553535535535355355 - - - .

If we code the Fibonacci word F by a — 5 and b — 3, then this limit is 3F. We are going
to check all these observed properties with Walnut.

Lemma 1. The tenth gap is the last gap that is equal to 1.

Proof. We need to check that the final occurrence of 1 is at the end of the prefix 1111122121.
The digit sum of this prefix is 13 and the first entry of A260311 is 1. That is why the final
entry 1 in our prefix is the gap between the unsums 13 and 14. We verify that this is indeed
the final occurrence of that gap:

eval test "?msd_fib An ($a260317(n) & $a260317(n+1)) => n<i14":
Walnut returns TRUE. O

The digits 2 are markers and we single them out. Since the final gap 1 occurs at 13, all
gaps are > 2 for n > 13:

def marker2 "7msd_fib $a260317(n) & $a260317(n+2) & n>13":
The command marker?2 accepts unsums > 13 that have a gap of size 2.

Lemma 2. Let W be a word in between two consecutive markers 2. The sum of the digits
of W plus two is a Fibonacci number.

Proof. Since the digits in W are gaps, their sum plus two is a difference between consecutive
markers. We collect the differences in gapmark2 and check that these are the Fibonacci
numbers that are greater than 4.

def gapmark2 "?msd_fib En (t>0) & $marker2(n) & $marker2(n+t) &
(As (s<t & s>0) => "$marker2(n+s))":
eval test "7?msd_fib An $gapmark2(n) <=> (n>4 & $isfib(n))":

Walnut returns TRUE. ]

F5 is the first Fibonacci number that is greater than 4. So, all digit sums plus two are
F, for n > 5. It is a bit tiresome to say digit sum plus two all the time. Therefore, we speak
of the sum of the palindrome, even though we have not verified yet that the words between
markers are indeed palindromes.
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Lemma 3. The sums of the palindromes form the sequence Fy, F5, Fg, . ... Each Fibonacci
number is repeated twice, starting from F.

Proof. A sum of Fibonacci numbers is Fibonacci if and only if the numbers are consecutive:
Fp.+ F,, = F, if and only if m = k+ 1 and n = m + 1. The command triplegap accepts
t,u,v that are sums of three consecutive palindromes.

def triplegap "7msd_fib En (t>0) & (u>0) & (v>0) & $marker2(n) &
$marker2(n+t) & $marker2(n+t+u) & $marker2(n+t+u+tv) &
(Aw (w>0) & (w<t+u+v) & (w!=t&w!=t+u) => “$marker2(n+w))":

We now check that for such triples ¢, u, v the sum ¢ + v is a Fibonacci number.

eval test "7msd_fib At,u,v $triplegap(t,u,v) <=>
( $isfib(t) & $isfib(u) & $isfib(v) & $isfib(t+v) &
(t<=u) & (u<=v) & (t>4) )":

Walnut says TRUE in both cases. Each triple ¢, u,v must be of the form (F,, F,,, F,,;1) or
(Fy, Fri1, Frr1). The sequence starts out with (Fs, Fs, Fy) and continues as described. [

We proved that sums of palindromes are repeated. We still need to show that the palin-
dromes are repeated, but we already label the sequence as W, in anticipation of the fact
that they form the sequence Wi, Wy, Ws, . ... First, we prove that these words are indeed
palindromes.

Lemma 4. Each W; is a palindrome.

Proof. Suppose that W is marked, i.e., 2W2, and that the markers correspond to the unsums
m < n. Then the digits in W correspond to the gaps between the unsums m + 2 < k < n.
W is a palindrome if and only if the reversal  +— n 4+ m + 2 — z of the interval [m + 2, n|
preserves the subset of unsums.

eval test "?msd_fib Ak,m,n ( m>14 & k>m+2 & n>k )
(& $marker2(m) & $marker2(n) & (Ap((p<n) & (p>m)) => “$marker2(p))) => (
$a260317 (k) <=> $a260317 (n+m+2-k) )":

Walnut says TRUE. O
Lemma 5. Fach W; starts and ends with digit 3.

Proof. Since the word is a palindrome, we only need to prove that the initial digit is 3. In
other words, every marker is followed by gap 3. Equivalently, if n and n + 2 are unsums for
n > 14, then n + 5 is an unsum.

eval test "?msd_fib A n (n>=14 & $marker2(n)) => $a260317(n+5)":
Walnut says TRUE. O



We will now prove that each palindrome is repeated twice. We can write W = 3V3,
except for the first palindrome which is the single letter 3.

Lemma 6. Let W = 3V 3 be a palindrome. Then 3V 1is the prefiz of the next palindrome.
In particular, the next palindrome is the same if its sum 1is the same.

Proof. Let m and n be unsums for consecutive markers. We need to verify that the gaps
that follow m are equal to the gaps that follow n, up to the next marker.

eval test "7msd_fib A m,n (n>m & $marker2(m) & $marker2(n) & (Ap ((p<mn) &
(p>m)) => “$marker2(p))) => (Ak k>m+2 & k<n => ($a260317(k)<=>
$a260317(n-m+k)))":

Walnut says TRUE. The next palindrome has prefix 3V. If its sum is the same, then it must
be the same palindrome 3V'3. O

We conclude that the palindromes are repeated twice Wy, Wi, Ws, .. ..
Lemma 7. W; is a prefix of W1 if and only if i is odd.

Proof. The sum of W; is equal to Fj 4. The parity of the indices is the same. We can check
the parity of the index of a Fibonacci number with Walnut.

reg isoddfib msd_fib "0x*1(00)*0":

If we add the parity check to the Walnut code for the proof of Lemma 4, then we can extend
the prefix by one letter.

eval test "?msd_fib A m,n (n>m & $marker2(m) & $marker2(n) & $isoddfib(n-m)
& (Ap ((p<n) & (p>m)) => ~$marker2(p))) => (Ak k>m+2 & k<=n =>
(32260317 (k) <=> $a260317 (n-m+k)))":

Walnut says TRUE. This proves that W; is a prefix of W, ; if 7 is odd. Note that we just
copy-pasted the code from the proof of Lemma 6 and included one more gap by changing
k<n to k<=n. We could have also simply checked $a260317 (2*n-m).

We turn to W; for even ©. We prove that it is not a prefix of W, ; and now we need to make
sure that the next palindrome is indeed different. Therefore, we need to include the condition
that the next marker is different from 2n — m. It suffices to check “$a260317 (2*n-m).

eval test "?msd_fib A m,n (n>m & $marker2(m) & $marker2(n) &
“$marker2(2*n-m) & $isevenfib(n-m) & (Ap ((p<n) & (p>m)) => “$marker2(p)))
=> "$a260317 (2*n-m)":

Walnut says TRUE. O

Let W; = 3V;3 for i > 2 (remember W; = 3 and Wy = 33).



Lemma 8. Ifi > 2 is odd then W; 1 = W;5V,;_13 and if it is even then W;,1 = 3V;5W,;_;.
In particular, |Wiq| = Wil + [Wi_q| with |Wh| = 1 and |Wy| = 2. The lengths of the
palindromes are the Fibonacci numbers.

Proof. By Lemma 7, W;,; has prefix 3V;. It has suffix V;3 since both W;,; and V; are
palindromes. It follows that W;,; has suffix V;_;3. By computing sums of the digits, we
find that the prefix 3V; and the suffix V;_13 do not overlap. The sum of the digits of W,
is F;, 5 — 2. The sum of the digits of the prefix 3V; and the suffix V;_{3 is

Fiys =5+ Fiy3 — 5= Fi 5 — 10.

We still lack a digit 3 and a digit 5. Either W;,y = 3V;35V;_13 or W;,1 = 3V;53V;_13. In the
first case 7 is odd and in the second case 7 is even. O

Lemma 9. Let V be the image of the Fibonacci word F under the coding a — 5 and b — 3.
The limit of W; equals 3V.

Proof. We need to prove that V; converges to V. We have that

_ J Vi35V it i is odd,
e V:53V,_, if i is even.

If we put P, = V;35 if ¢ is odd and P, = V;53 if ¢ is even, then P,,; = P;P;_; starting from
P, = 53 and P; = 535. This is a well-known recursion that generates the Fibonacci word,
see [4]. The palindromes of length F; — 2 that we encountered in the introduction are the
V;. Since P; has the same limit as V;, we are done. O

This concludes our verification of the observed properties.

3 Polynomials without zero coefficients

Fine [6] proved that if all the coefficients of the polynomial (z+1)" are odd, then n = 2™ —1
for some m. We can verify that with Walnut. These coefficients are the binomials (”) for
0 < k < n. Fine’s result depends on a classical theorem of Lucas, according to which for

k
integers k, n, and prime p, the following holds:

(1) =IL (i) o

where k;,n; are the digits of the base p expansions of £k = k,.p" + --- + kip + ko and

n=mn.p" +---+n1p+ng, and we use the convention that (‘;) = 0 if a < b. In particu-

lar, (Z) is odd if and only if there does not exist an ¢ such that k; = 1 and n; = 0. In other

words, all digits (k;, n;) are in {(0,0), (0,1), (1,1)}. Translating this into Walnut syntax gives
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reg bincoef msd_2 msd_2 "([0,0]1[0,1][[1,1])*":

The binary numeration system is given by msd_2. A power of 2 in binary is a 1 followed by
a string of 0’s:

reg power2 msd_2 "Ox10x":

Fine’s theorem in first-order logic is
Vn Gmn+1=2") s (k<n = (Z) = 1 mod 2).

We can now check that with Walnut, where we write n as j to adhere to the convention that
variables are entered in alphabetical order:

eval fine "Aj $power2(j+1) <=> (Ak (k<=j => $bincoef(k,j)))":

which evaluates as TRUE.
In a recent paper Hajdu et al. [7] extended Fine’s theorem to polynomials modulo three.

Theorem 10 (Hajdu et al.). If none of the coefficients of (x — 1)¢(x + 1)¢ is divisible by 3,
then ¢ +d + 1 is of the shape 37,2 - 37,31 +37,2-3' + 37 fori > j > 0.

The question we would like to begin to address here can be formulated as follows: what
can be said about the degree deg f of polynomials f over a finite field F, of ¢ elements for
which all irreducible factors are linear without zero coefficients?

The theorems of Fine and Hajdu et al. show that for ¢ = 2 and ¢ = 3 it holds that the
number of non-zero digits in the binary, resp., ternary expansion of (deg f) + 1 is bounded,
by 1 and 2 respectively.

As a special case of a deep result by Adamczewski et al. [2] on formal power series, it is
possible to find an automaton with output that will help us answer such a question. This
automaton cog, will consist of ¢9=! states. The purpose of this automaton is that, upon
input a g-tuple (k,aq,as,...,a4-1), it outputs the k-th coefficient co,(k,as, ..., a,—1) of the
polynomial

f=@—a)(@—a)® - (z —ag1)"" € Fyla],

where the «; are the distinct elements of F,. The existence of such an automaton follows
from the observation that, summing over all tuples 0 < k,ay, ..., a;—1 < 00,

q
a 1

cos(k,ay,...,a CD)akym gt = |

Z q q 1 q—1 g(l—yi(x—ai))

(using the familiar geometric series identity repeatedly), which is a multivariate power series
that is rational over Fy(z,y1,...,y,—1). Automaticity then results from the multivariate
generalization of Christol’s theorem by Adamczewski and Bell [1|, while [2] contains an
efficient algorithm to compute the automaton. Using an implementation of this algorithm in



(n): ?Isd_3 Ec,d c+d+1=n & (Aa a<=n-1 => co3[allc][d]!=@0)

Figure 2: The 1sd_3-automaton that accepts n = ¢+ d+ 1 such that none of the coefficients
in (X —1)¢(X + 1)¢ are divisible by three. If a transition is missing, the input is rejected.
For instance, 21 is represented by 012 and is accepted, while 22 is represented by 112 and is
rejected.

Magma [3], we generated the automata for ¢ = 3,4, and 5. They become large very quickly,
since one has to specify the ¢? possible transitions for each of the ¢?~! states: leading to a
specification for a text file in Walnut with almost 2 million lines for p = 5.

Starting with the modest automaton co3 having 9 states and 243 transitions, one com-
putes any coefficient of (z — 1)¢(z + 1)¢ modulo three from three 1sd_3 integers k, ¢, d as
input.

To verify its correctness, the effect of multiplication by z — 1 and x + 1 for each state can
be checked. This gives eighteen verifications in total; we list three of them (as predicates
without the eval command, to save space):

"?1sd_3 Aa,c,d(co3[a+1] [c] [d]=@0&co3[a] [c] [d]=0@0)=>co3[a+1] [c+1] [d]=@0":
"?1sd_3 Aa,c,d(co3[a+1] [c] [d]=@1&co3[a] [c] [d]=@0)=>co3[a+1] [c+1] [d]=02":
"?1sd_3 Aa,c,d(co3[a+1] [c] [d]=0@2&co3[a] [c] [d]=@0)=>co3[a+1] [c+1] [d]=01":

These check, for each of the three possible values, that coefficient a + 1 of (z — 1) - f is
obtained as the difference of coefficients a and a + 1 of the original f.
With co3 it is possible in Walnut to check that Theorem 10 holds, as follows.

eval co3no0 "?1sd_3 Ec,d c+d+1=n&(Aa a<=n-1=>co3[a] [c] [d]'=@0)":

The resulting automaton co3no0 for n is shown in Fig. 2. This does indeed confirm The-
orem 10, as the largest number of non-zero digits in an input path (for n) leading to an
accepting state is equal to 3.

Hajdu et al. ask if a far-reaching generalization of these results holds: is it true that for
every prime p there exists a constant ¢, such that any monic polynomial f(z) € Z[x] with
only rational roots and no coefficients divisible by p has at most ¢, nonzero digits in the base
p expansion of deg(f)+ 17 In particular, is this true for ¢, = p— 17 Much more will be said



about this elsewhere, but using Walnut we can prove two results in addition to the cases for
p =2 and p = 3 above.

The automaton co5 we produced along the lines sketched above computes the coefficients
of (X —2)"(X —1)¢(X +1)%(X +2)¢ modulo five, but our Walnut computation for the degrees
of polynomials without coefficients divisible by five spirals out of control even on a powerful
machine. As before, for co3, the correctness of cob could inductively be checked easily (using
53 checks in all). It was possible to verify the conjecture for special cases (essentially leaving
out some factors in the product), but it was felt that the general case for p = 5 also ought
to be doable.

Here Nicol and Frohme came to the rescue: they were working on improvements for
Walnut (version 7), to be reported on in a forthcoming paper [11]. This version did succeed in
producing the analogon co5no0 of co3no00. The result is shown in Fig. 3. Again, confirmation

(n): ?msd 5 Ea,b,c,d (a+b+c+d+1=n & $co5no00(a,b,c,d))

Figure 3: The msd_5-automaton that accepts n = b+ ¢+ d 4+ e + 1 such that none of the
coefficients in (X — 2)°(X — 1)%(X + 1)%(X + 2)¢ is divisible by five. Accepting states are
marked by double circles.

of the claims lies in the fact that no path to an accepting state contains more than 4 non-zero
symbols.

The conjecture of Hajdu refers to arithmetic modulo primes p, so in a prime field only.
We decided to also consider the case of Fy, the field of 4 elements {0, 1, g, g*} where g* = g+1
over 5. With some care our algorithm also produced the automaton co4, which verifies the
k-th coefficient of

f=(@+1)"x+g)x+g°)" €Fyfa].
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(n): ?Isd 4 Ea,b,c (a+b+c+1=n & $co4no0(a,b,c))

Figure 4: The 1sd_4-automaton that accepts n = b+ ¢ + d + 1 such that none of the
coefficients of product of linear factors of degree n — 1 is zero. Accepting states are marked
by double circles.

After checking correctness, the automaton co4 easily produced co4no0, shown in Fig. 4. Here
we see that 4 is the largest number of non-zero digits in the 4-ary expansion of (deg f)+1. As
an example, the path 1,1, 2,1 in the automaton, corresponding ton = 1+4+42-4%2+43 = 101
suggests that there exist polynomials over [F, of degree 100 with no non-zero coefficients that
are a product of linear factors. Indeed,

f=(@+1)"(@+9)"(@+g*)"

is readily exhibited by Magma as an example. An automaton recognizing these polynomials
is implicitly also constructed by Walnut.

4 Anti-recurrence sequences

Don’t be unprepared for double negations! Fibonaccis are generated by adding sums of con-
secutive numbers starting from 1 and 2. In contrast, anti-Fibonaccis are generated by delet-
ing sums of consecutive numbers, starting from 1 and 2. Their sum is the anti-Fibonacci 3.
We delete this number and move on to the next two consecutive numbers 4 and 5 to get the
anti-Fibonacci 9. After that we delete 6 + 7 and 8 + 10, and so on. This gives us sequence
A075326, in which 0 is added as the first anti-Fibonacci:

0, 3, 9, 13, 18, 23, 29, 33, 39, 43, 49, 53, ....

The numbers that are missing from this sequence are known as the non-anti-Fibonaccis.
They can be found in A249031:

1, 2, 4, 5, 6, 7, 8 10, 11, 12, 14, 15, 16, ....

The anti-Fibonacci numbers were introduced by Hofstadter in an unpublished note. Za-
slavsky completely cleared up their structure in another unpublished note. Kimberling and
Moses |9] studied general anti-recurrence sequences.
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Zaslavsky proved that the gaps between anti-Fibonaccis come in pairs {6,4} and {5,5}.
If these pairs are labelled a and b respectively, then they form the fixed point of the period-
doubling morphism a — ab, b+ aa. This sequence is implemented as PD in Walnut with a
represented by zero and b represented by one.

Theorem 11 (Zaslavsky). The sequence X,, of anti-Fibonacci numbers is given by:

X2k+1 - 3 + 10]{3,

The non-anti-Fibonaccis Y, are given by:

Yo = 5k,

Y;lk—i-l = 5k + L,

Y;lkJrQ = 5k + 2,

Yiers — 5k + 3+ PD[K].

Proof. To prove this result in Walnut, we implement X, and Y,, as synchronized sequences.
The command antifib specifies X,, and nonafib specifies Y,,.

def antifib "Ek n=2*k+1 & x=3+10%k | Ek n=2%k+2 & PD[k]=0@1 & x=9+10%k

| Ek n=2*k+2 & PD[k]=@0 & x=8+10%*k":

def nonafib "Ek n=4xk & y=5%k | Ek n=4*k+1l & y=b*k+l | Ek n=4*k+2 & y=b*k+2
| Ek n=4*k+3 & PD[k]=0@1 & y=5%k+4 | Ek n=4%k+3 & PD[k]=Q@0 & y=5xk+3":

Now we need to verify that these sequences do indeed have the required properties: they are

complementary and one contains sums of consecutive numbers of the other. In particular
X, =Yo, 1+ Ys5,. We first verify the additive relation between the two sequences:

eval zaslavskyl "An,x,y,z
((n>0) & $nonafib(2*n-1,x) & $nonafib(2*n,y) & $antifib(n,z)) => x+y=z":

Walnut says TRUE. We now verify that the sequences are complementary in two steps. Dis-
jointness is checked by

eval zaslavsky2 "Ei,j,n (n>0) & $nonafib(i,n) & $antifib(j,n)":
on which Walnut returns FALSE. We verify that each number is in one of the two sequences
eval zaslavsky3 "An (n>0) => (Ej $nonafib(j,n) | $antifib(j,n))":

on which Walnut returns TRUE. The sequences are indeed complementary, establishing that
the X,, are the anti-Fibonaccis and the Y;, are the non-anti-Fibonaccis. O

Kimberling and Moses 9] observed that there is another way to describe the non-anti-
Fibonaccis Y,, using the mex or minimal excluded value. For any set of natural numbers the
mex is the minimal element of its complement. Create sequences A,, B, C, starting from
Ay = 1,B; = 2,C1 = 3 and iteratively add new numbers A, 1 = mex({4;, B;,C;: i < n})
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and B, = mex ({A;, B;,Ci: i <n}U{A,1}) and C,,,1 = A1 + Buyg. The C, are the
anti-Fibonaccis. The odd-indexed non-anti-Fibonaccis are A,, and the even-indexed are B,,.

This definition allows us to move beyond anti-Fibonaccis. If we apply the same process
to four sequences A,,, B,,, C,,, D,, instead of three, then we get the anti-Tribonacci sequence.
As in the previous case, A,, B,, C, are defined by the mex and D,, is the sum. The D,, are
the anti-Tribonaccis A2653809:

6, 16, 27, 36, 46, 57, 66, 75, 87, 96, ... .

The other three sequences are A297464, A297465, A297466. Clark Kimberling conjectured
that

0 < 10n—6-—3A, <2,
0 < 10n—2-3B, <3, )
0 < 1on+1-3C, <3,
0 < 10n—3 —D, <2

Following Zaslavsky’s lead, we guess that these four equations form automatic sequences
and verify this using Walnut. We call them the remainders and our guessed 3-automata
are given in Figure 5. We have implemented these as 1sd_3 automata xkimber, ykimber,

y(n)=10n-2-3B(n)

Figure 5: The guessed 1sd_3-automata for the remainders associated to the anti-Tribonacci
sequence.
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zkimber, wkimber. The sequences A, B, C, D are given by

def seqa "71sd_3 s=(10*n-6-xkimber[n-1])/3":
def seqb "?71sd_3 s=(10*n-2-ykimber[n-1])/3":
def seqc "?1sd_3 s=(10*n+1-zkimber[n-1])/3":
def seqd "71sd_3 s=(10*n-3-wkimber[n-1])":

Theorem 12. Kimberling’s conjecture holds. The anti- Tribonacci sequence D,, and its com-
plementary three sequences A, By, C, satisfy Inequality 1.

Proof. We need to verify that the sequences seqa up to seqd are indeed the (non)-anti-
Tribonaccis. They need to be complementary, defined by the mex, and satisfy A+ B+C = D.
We first check that A, < B, < C,, < A,11, proving that A, B, C' are disjoint:

eval testl "?1sd_3 An,s,t,u,v ($seqa(n,s) & $segb(n,t)

& $seqc(n,u) & $seqa(nt+l,v)) => ((s<t)&(t<w)&(u<v))":

Next, we verify that the union of the four sequences is equal to N:

eval test2 "71sd_3 As (s>0) => Em ($seqa(m,s) |$seqb(m,s) |$seqc(m,s) |$seqd(m,s))":

In both cases Walnut says TRUE. We now verify that D is disjoint from AU BUC to establish
that the sequences are complementary:

eval test3 "71sd_3 Em,n,s $seqd(n,s) & ($seqa(m,s) | $segb(m,s) | $seqc(m,s))":

Walnut returns FALSE which confirms that the sequences are complementary. Finally, we
check that A+ B+ C = D:

eval test4 "71sd_3 An,s,t,u,v ($seqa(n,s) & $seqgb(n,t) &
$seqc(n,u) & $seqd(n,v)) => v=s+t+u":

Walnut says TRUE. From A + B + C = D we easily deduce that D, > C, and therefore
A, B, C are indeed defined by the mex, confirming the conjecture. O]

Kimberling also conjectured that A, .4 + A, = A3+ A,.1, which is verified by:

eval kimconj "?1sd_3 An,r,s,t,u
($seqa(n,r) & $seqa(n+l,s) & $seqa(nt+3,t) & $seqa(ntd,u)) => r+u=s+t":

As any clergyman will tell you, there is no need to stop at four. Indeed, Kimberling
also considered the five complementary sequences A,, B,,C,, D,, E, in which E, are the
anti- Teranaccis and the other sequences are the non-anti-Teranaccis (or missing numbers)
defined by mex. Again, these sequences are complementary and the anti-Teranaccis are sums
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remainders 17n-5-E(n) of
the anti-teranaccis

Figure 6: The guessed 1sd_2-automaton for the anti-Teranacci remainder

of the missing numbers. The anti-Teranaccis form sequence A299409 where it is conjectured

that

0 < 17Tn—11—44, <4,
0 < 1Tn— 7—4B, <4,
0 < 17n— 3—4C, <3,
0 < 17n+ 1—4D, <3,
0 < 1Tn— 5- E, <3

Again, we can guess automata for the remainder sequences, which we call xx, yy, zz, vv, ww
this time, and define the sequences A,B,C,D,E from them. It turns out that there is a typo
in the conjecture. The remainder of C' is bounded by 4 instead of 3.

def
def
def
def
def

seq4A
seq4B
seq4C
seq4D
seq4E

"?71sd_2
"?1sd_2
"?71sd_2
"71sd_2
"71sd_2

s=(17#n-11-xxkimber [n-1])/4":
s=(17*n-7-yykimber [n-1])/4":
s=(17#n-3-zzkimber [n-1])/4":
s=(17#n+1-vvkimber[n-1])/4":
s=(17#n-5-wwkimber [n-1])":

We run the same four tests which again return TRUE, TRUE, FALSE, TRUE, as required.

eval testl "7?lsd_2 An,s,t,u,v,w ($seqd4A(n,s) & $seqd4B(n,t)
& $seq4C(n,u) & $seqdD(n,v) & $seqdA(nt+l,w)) => ((s<t)&(t<w)&(u<v)&(v<w))":

eval test2 "71sd_2 As (s>0) => Em ($seq4A(m,s) | $seq4B(m,s) | $seqd4C(m,s) |

$seq4D(m, s)

| $seq4E(m,s))":

eval test3 "71sd_2 Em,n,s $seq4E(n,s) & ($seqdA(m,s) | $seq4B(m,s) |
$seq4C(m,s) | $seq4D(m,s))":
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eval test4 "7?1sd_2 An,s,t,u,v,w ($seqd4A(n,s) & $seqdB(n,t) & $seqéC(n,u) &
$seq4D(n,v) & $seqd4E(n,w)) => w=s+t+utv":

remainder A 0,1 remainder B Ol
17n-11-4A(n)

17n-7-4B(n)

remainder C remainder D
17n-3-4C(n) 2 17n+1-4D(n)

Figure 7: The four guessed 1sd_2-automata for the remainders of the non-anti-Teranaccis.

We define the anti-k-naccis as the sums of k consecutive missing numbers. There is an
obvious pattern.

Conjecture 13 (The Clergyman’s Conjecture). Let X, be the sequence of anti-k-naccis.
The difference X,, — (k* + 1)n is k-automatic.

5 Sumfreeness

Motivated by problems that were posed by Stephan [17] on the occasion of the 100,000-
th entry in the OEIS, we consider greedy 3-sumfree sequences in this section. Consider an
increasing sequence a of positive integers, defined by starting values aq, as, az, extended by
the rule that a,, for n > 3 satisfies that a,, is the smallest number exceeding a,,_; that is
not the sum of three different previous entries: so a,, # a; +a; + a5 for 1 <i < j <k < n.
In his note [17| Stephan lists several conjectures (in Section 2.3.1) of the following kind. If
a=(1,2,3,...) then a,16 — ap15 = apr1 — a, for n > 6.

Queneau [13] defined an s-additive sequence with base (a1, as, ..., a,,) as the infinite se-
quence aq,as,as, ... with a,, for n > m, equal to the least integer exceeding a,,_; with s

16



solutions of the form a,, = a;+a; with 1 <17 < j <n—1. The special case s = 0 is essentially
what we could call 2-sumfree sequences; these are also referred to in the literature as sumfree
sequences (although sometimes the stricter condition a,, # a; +a; with 1 <i < j <n—1
is then imposed). Apparently, it remains an open question if such sequences are always
ultimately periodic, by which is meant that the sequence of first differences (a,+1 — an)n>1
would be ultimately periodic, see Finch [5].

We will use the notation S, , . for the greedy 3-sumfree sequence with starting values
x <y < z. The cases S123 and Sy 34 appear as A026471 and A026475 in the OEIS.

Since it was not clear to us how to verify conjectures like that of Stephan using Walnut, we
first reworked them in a more explicit form that is amenable to direct verification, and then
attempted to do this in Walnut. This led to families of conjectures of increasing generality
(see Conjectures 14, 16 and 17 below) for (almost all) greedy 3-sumfree sequences starting
with 1. The example for (1,2,3,...) reads as follows.

Conjecture 14. Let z be a positive integer. Then
z€S125 <<= 2z€1,513 or zmod 23 € {2,3,4, 14, 15}.

It is easy to verify by hand that S 3 starts as:
Si23=1,2,3,4,5,13,14, 15, 25, 26, 27, 37, 38, 48, 49, 50, 60, 61, . ..

and the conjecture would imply that from the seventh entry ‘14’ on, the sequence modulo
23 is periodic with period 5.

With a few lines of Walnut code we can indeed verify this! First define residue classes
modulo 23:

def res "Ek z=k*23+r":
which enables us to define the characteristic function for the sequence from the conjecture:

def seql123 "(z=1 | z=5 | z=13 | $res(2,z) | $res(3,z) | $res(4,z) |
$res(14,z) | $res(15,z))":

and we can now test the property that a positive integer z is in the sequence if and only if
it is not the sum of 3 previous entries:

eval prop "Az z>0 => ($seql23(z) <=> z>0 & "(E a, b, c a<b & b<c &
$seq123(a) & $seq123(b) & $seql23(c) & atbtc=z))":

Walnut returns TRUE in little over a second: our conjecture is now a Theorem! We later
noticed that according to a note (without reference) in A026471 this was also proved by
Matthew Akeran.

We state (and proved by Walnut) this also for two more cases, Sy 34 and Sy 45.
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Theorem 15. For positive integers z:
2 € S1035 < z€1,5,13 or zmod 23 € {2,3,4, 14, 15};

z€ 5134 < 2€1,7,19 or zmod 33 € {3,4,5,6,20,21,22};
z€ S145 <<= 2€1,9,25 or zmod43 € {4,5,6,7,8,26,27,28,29}.

In fact we believe the following generalized conjecture to hold.

Conjecture 16. For every g > 2 the greedy 3-sumfree sequence S} 4 441 is characterized by:

2€S1gg+1 = 2z€{l,2g+1,6g+1} or zmod 109+ 3 €
{9,9+1,...,2g} U{6g + 2,69 +3,...,7g+ 1}.

In particular, after the first g+ 4 entries the sequence modulo 10g + 3 is periodic with period
29 + 1.

Although such statement is not difficult to prove for given g, the parametrized statement
is not so easily proved in Walnut. To be more precise, what one could attempt is to define
the following:

def mod "Ek,w (((w>=g & w<=2%g) | (w>=6*g+2 & w<=T*xg+l)) & z=k*(10*g+3)+w)":
def inG "z=1 | z=2*g+l | z=6%g+l | $mod(g,z)":

and then universally quantify (over g) this property:

eval prop "Az z>=g+4 => ($inG(z) <=> “(E a, b, c a<b & b<c & atb+c=z &
$inG(a) & $inG(b) & $inG(c) ))":

The problem here is that the definition of mod is not allowed in Walnut because of the
multiplication by variables £ and g:

the operator * cannot be applied to two variables

Whenever a numerical value is substituted for g in the definition of mod and inG all is fine.
In fact we did this for all g € {2,3,...10} successfully.

As a matter of fact we have firm computational evidence, from an implementation in
Magma [3], for the following meta-conjecture.

Conjecture 17. Let d > 2. For every g > d + 1 the greedy 3-sumfree sequence S; 4444 is
characterized as follows:

z2€ Si1ggra = 2z€{l,9.29+d—1,29+d} or z>g+dand
zmodbg+2de{g+d—2,9g+d—1,...,29+d—2}.

In particular, for d > 2 and every g > d + 1 after the first g + 3 entries (in a preperiod) the
sequence 51441+ modulo 5g + 2d is periodic with period g + 1.
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Remarks 18. Note that Conjecture 16, although of the same form, is not a special case of
the meta-conjecture, as the specific values (for modulus and (pre)period length) are irregular.

Also note that most, but not all, greedy 3-sumfree sequences are covered by the meta-
conjecture: usually the cases of small values for g for given d are special in the sense that the
indicated modular periodicity occurs for deviating values of modulus m and period length
p. Below is one example.

In the regular cases of the meta-conjecture, it is also possible to state explicitly what the
shape of the period (and preperiod) will be.

Example 19. For d = 7 and g = 5 the sequence S} 512 becomes periodic modulo 321 with
period length 32.

Here, by way of example, is a verification of the case d = 4, g = 4 of Conjecture 17. We
first define the right residue classes modulo 5g + 2d = 28 and then ask whether or not the
3-sumfree property holds for all entries in S 45 after 1,4, 8:

def isres "Eh, k h>= 6 & h<=10 & z=kx28+h":

def seql148 "(z=1 | z=4 | z=11 | z=12 | (2z>=8 & $isres(z)))":
eval prop "Az z>8 => ($seql48(z) <=> “(E a, b, c a<b & b<c
& $seqld8(a) & $seql4d8(b) & $seqld8(c) & atb+c=z))":

which returns TRUE almost instantly.

Finally, it may be worthwhile to say something about the manner in which these conjec-
tures were obtained. At first sight it is not clear at all that the definition of sumfree sequence
leads to automatic sequences. Since this is important for the success of any attempt to invoke
Walnut, it is useful to see how it arises naturally. But also, although not fitting in with the
nature of this paper, it is useful for finding ‘pen and paper’ proofs for the claims, some of
which we hope to present elsewhere.

The simple case is that it pays off to look at the sequence of first differences of these
sumfree sequences. Consider again S 23. A straightforward computation leads to this initial
segment:

S123=1,2,3,4,5,13,14, 15, 25, 26, 27, 37, 38, 48, 49, 50, 60, 61, 71, 72,73, . ..
and the corresponding sequence of differences:
D=1,1,11,8,1,1,10,1,1,10,1,10,1,1,10,1,10,1,1, . ...

Considering this it is not difficult to infer the conjectured periodicity.

6 Conclusion

We would like to thank several people that assisted us along the way. John Nicol and Markus
Frohme ran the co5 automaton for us on their upcoming new version of Walnut. Rob Burns
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pointed out an omission in an earlier draft of this paper. Jeffrey Shallit helped us out with
Walnut commands and gave a lecture in our mastermath course. The final draft of this
paper was written during a visit of the workshop on Uniform Distribution of Sequences at
the Erwin Schrodinger Institute in Vienna. We would like to thank the ESI staff for their
hospitality.
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