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Abstract

We investigate positive integer sequences called throwback sequences, generated by
moving the initial term of a given sequence to the right a number of places equal to
its value, then repeating this step iteratively. Let X be a sequence of distinct positive
integers. We prove that each term x of X appears infinitely often in the throwback
sequence T (X) of X. Further, we provide an explicit formula for the limiting frequency
with which x appears in X. If X is an increasing sequence, we prove that T (X) is
uniformly recurrent, i.e., every block of consecutive terms in T (X) appears infinitely
often with bounded gaps between consecutive appearances. We discuss how throwback
sequences relate to familiar notions such as 2-adic valuations of natural numbers and
the Gray code ubiquitous in modern telecommunications. Finally, we examine sorting
and mixing properties of the iterated throwback operation in certain special cases.

1 Introduction

Sequence A357081 in the On-Line Encyclopedia of Integer Sequences (OEIS) is constructed
iteratively by beginning with the sequence of consecutive integers X = (3, 4, 5, . . . , n+3, . . .)
and “throwing back the leader” a number of places equal to its value at each iteration. This
particular choice of sequence X to demonstrate the throwback idea, rather than a more
obvious choice such as (1, 2, 3, . . .), is a mere historical quirk [1]. The first few iterations
in this case yield the sequences shown in Table 1, where bold font indicates the leader at
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each iteration, and parentheses indicate the term thrown back. A357081 is defined to be
the sequence (3, 4, 5, 6, 3, 7, . . .) of “leaders” at each iteration, called the throwback sequence
T (X) of X. Kozar [2, 3] conjectured that every integer n ≥ 3 recurs infinitely often in
T (X). The throwback procedure generalizes to define a throwback sequence of any sequence
of positive integers, and Kozar’s conjecture prompts us to undertake a broader examination
of the recurrence properties of such sequences.

index n 0 1 2 3 4 5 6 7 · · ·
sequence X: 3 4 5 6 7 8 9 10 · · ·

3 thrown back: 4 5 6 (3) 7 8 9 10 · · ·
4 thrown back: 5 6 3 7 (4) 8 9 10 · · ·
5 thrown back: 6 3 7 4 8 (5) 9 10 · · ·
6 thrown back: 3 7 4 8 5 9 (6) 10 · · ·
3 thrown back: 7 4 8 (3) 5 9 6 10 · · ·

Table 1: Several iterations of the throwback operation on the beginning sequence X =
(3, 4, 5, . . . , n+ 3, . . .).

The rest of this paper is structured as follows. In Section 2, we give precise definitions of
the throwback sequence T (X) and related notions. In Section 3, we present two theorems.
Theorem 2 establishes a generalized version of Kozar’s conjecture for the throwback sequence
T (X) of any sequence X of distinct positive integers. Theorem 4 provides a formula to
compute the limiting frequency of each term x in such T (X). In Section 4, we introduce the
closely related placement sequence P (X), which is useful for proving deeper results about
throwback sequences. In Section 5, we present Theorem 7, which establishes that T (X)
is uniformly recurrent in the case where X is an increasing sequence. This means that
every block of consecutive terms appearing at least once in T (X) recurs infinitely often with
bounded gaps between consecutive appearances. In Section 6, we illustrate examples with
Python code. In Section 7, we offer a thorough discussion and present an additional theorem.
We explain how throwback sequences relate to familiar notions such as the ruler function
A001511 describing 2-adic valuations of natural numbers [2, 4], and the Gray code [5, 6]
used for error correction purposes in modern telecommunications. We also discuss some
interesting sorting and mixing properties of the iterated throwback operation that apply to
certain special cases including A357081. Theorem 9 establishes that the throwback operation
constitutes a perfect mixing process for certain types of sequences.

2 Throwback sequence and related definitions

Let X = (xn)
∞

n=0 be a sequence of positive integers, and construct a modified sequence τ(X)
via the throwback operation τ defined by moving the initial term x0 to the right a number
of places equal to its value, moving all terms of index less than or equal to x0 one place
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to the left, and leaving all terms of index greater than x0 in their current positions. For-
mally, τ(X) := (x1, x2, . . . , xx0

, x0, xx0+1, xx0+2, . . .). Now construct the associated throwback
sequence T = (tn)

∞

n=0 by taking tn to be the initial term (“leader”) of the sequence τn(X)
given by performing the throwback operation iteratively n times on X. In the case where
the terms of X are distinct, define the position of a given term x after iteration n to be
its index in τn(X). In the same case, define the associated sorted sequence S(X) to be the
sequence whose terms are the terms of X in increasing order, and denote by σ(x) the index
of x in S(X). Table 2 shows an example of a sequence of distinct positive integers X with
terms xn, its sorted sequence S(X) with terms sn, the indices σ(xn) of its terms in S(X),
and its throwback sequence T (X) with terms tn.

n 0 1 2 3 4 5 6 7 · · ·
xn 5 7 3 4 6 9 8 10 · · ·
sn 3 4 5 6 7 8 9 10 · · ·

σ(xn) 2 4 0 1 3 6 5 7 · · ·
tn 5 7 3 4 6 9 3 5 · · ·

Table 2: A sequence, sorted sequence, indices in the sorted sequence, and throwback se-
quence.

Returning to the general case of a sequence of positive integers X, and given a pair of
positive integers n and a, denote by FX(n, a) the number of times a appears among the first
n terms of X. Define the limiting frequency fX(a) of a in X to be limn→∞ FX(n, a)/n, if
this limit exists. It is evident that if fX(a) exists for all a ≥ 1, then

∑
∞

a=1 fX(a) = 1. Since
fX(a) = 0 if a does not appear among the terms of X (the converse is generally false), we
focus on the limiting frequencies fX(x) for terms x of X. While we define limiting frequency
for an arbitrary sequence, we are actually interested in the limiting frequency fT (X)(x) of x
in the throwback sequence T (X) of a given sequence X.

3 Recurrence and limiting frequency of individual terms

We begin with the following simple lemma:

Lemma 1. Let X = (xn)
∞

n=0 be a sequence of positive integers and x a term of X. Then x
either reaches a final nonleader position after a finite number of iterations of the throwback
operation τ , or else becomes leader infinitely often.

Proof. The leader position cannot be the final position of x, because a positive integer is
thrown back a positive number of positions by definition. Suppose that x fails to reach a
final nonleader position. Then x moves an infinite number of times. Motion to the right
occurs precisely when x is thrown back from the leader position, so if x moves right an
infinite number of times, there is nothing to show. Assume then that x moves left an infinite
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number of times. Then x returns to the leader position infinitely often since each return
requires only a finite number of moves to the left.

We now prove a generalization of Kozar’s conjecture.

Theorem 2. Let X be a sequence of distinct positive integers. Then each term x of X
appears infinitely often in the associated throwback sequence T (X).

Proof. Suppose that a term x = x̄0 in X reaches a final nonleader position n0 > 0. The
overbar on x̄0 is used to clarify that this term is generally not the term x0 of index 0 in X.
Because the terms of X are distinct, the terms to the left of x̄0 must include a term x̄1 of size
at least n0. Throwing back x̄1 would move x̄0 left, so x̄1 can never be made leader and must
therefore reach a final nonleader position n1 > 0. This argument may be repeated to obtain
a strictly decreasing sequence of positive integers n0 > n1 > . . . whose terms all exceed 0, a
contradiction. Therefore x cannot reach a final nonleader position, and must become leader
infinitely often by Lemma 1.

The hypothesis of distinct terms cannot be removed in general; for example, a sequence
beginning with (1, 1, . . .) yields a throwback sequence with constant value 1. Fully charac-
terizing the precise conditions under which repetition negates the conclusion of Theorem 2
in the general case remains to be done. A key point seems to be that assembling terms of
size at most n in the first n+ 1 positions at some point in the process precludes subsequent
involvement of other terms. A familiar physical analogy is the tendency of a food blender
to remix already-chopped fragments at the bottom, while larger pieces remain motionless at
the top. This analogy anticipates our discussion of the iterated throwback operation as a
“mixing process” in Section 7.

The proof of Theorem 2 suggests a method to find an upper bound for the number of
iterations between consecutive appearances of a given term as leader. For a sequence of
distinct positive integers X and an index n ≥ 0, let N(n) be the number of terms in X
of value less than n, and note that N(n) < n by distinctness. Let M(n) be the maximum
number of iterations of τ required for the term at position n in any of the sequences τm(X)
to move to the leader position. This number exists by induction on n beginning with the
value M(0) = 0 given by definition of the leader position. We then have the following lemma:

Lemma 3. Let X be a sequence of distinct positive integers. Then

M(n) ≤ M(n− 1) +M(N(n)) + 1. (1)

Proof. Let x be a term inX, and apply the throwback operation τ toX iteratively. Whenever
x is at position n, at least n−N(n) terms of value at least n appear among the n terms to the
left of x, so at least one of these terms has position at most N(n). After at most M(N(n))
further iterations, this term becomes leader and is thrown back at the next iteration, so
x moves to position n − 1 after at most M(N(n)) + 1 iterations. By definition, at most
M(n − 1) further iterations move x to the leader position. Adding these expressions yields
Equation (1).
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Besides its intrinsic interest, the existence of such a bound contributes to the proof of
Theorem 7. The bound is not sharp in general because the terms to the left of x are generally
not in the most unfavorable configuration for moving x to the left. However, this bound is
seen to be sharp in the case of the ruler function A001511 via Theorem 9. Table 3 compares
the predictions of Equation (1) to the actual number of iterations required for the first few
terms initially at position n in the sequence X = (3, 4, 5, . . . , n + 3, . . .) to reach the leader
position. The latter numbers seem to equal the terms of the sequence A155167, which is
the (L)-sieve transform of the sequence A004747 = (3, 7, 11, . . . , 4n− 1, . . .). This apparent
connection was pointed out by Sloane [2].

n 0 1 2 3 4 5 6 7 8 9 10 · · ·
xn 3 4 5 6 7 8 9 10 11 12 13 · · ·

bound 0 1 2 3 5 8 12 18 27 40 59 · · ·
actual 0 1 2 3 5 7 10 14 19 26 35 · · ·

Table 3: Upper bound versus actual number of iterations before first leader appearance for
the sequence X = (3, 4, 5, . . . , n+ 3, . . .).

We next provide a formula for the limiting frequencies of terms in the throwback sequence
of a sequence of distinct positive integers.

Theorem 4. Let X be a sequence of distinct positive integers and x a term of X. Then the
limiting frequency fT (X)(x) of x in the associated throwback sequence T (X) is

fT (X)(x) =
1

x− σ(x) + 1

∏

w<x

w − σ(w)

w − σ(w) + 1
, (2)

where σ(x) is the index of x in the associated sorted sequence S(X).

Proof. Let x be a term in X. We first observe that fT (X)(x) is unaffected by the frequency
FT (X)(n, x)/n over a finite number of terms n. We may therefore assume that all terms w < x
have already been thrown back at least once. These terms thereafter remain at positions
less than the value of x. The number of terms y > x to the left of x upon throwing back
x is therefore equal to x− σ(x). Each such y is made leader before x is made leader again,
so henceforth x appears among the terms of T (X) greater than or equal to x once every
x− σ(x) + 1 times. Therefore, if the limiting frequencies fT (X)(w) for all terms w < x exist,
then

fT (X)(x) =

1−
∑

w<x

fT (X)(w)

x− σ(x) + 1
.

Equation (2) then follows by induction, since x0 moves at every iteration, and therefore
fT (X)(x0) = 1/(x0 + 1).
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The following easy corollary enhances Theorem 2 by establishing that appearances of a
given term x in T (X) do not become arbitrarily rare:

Corollary 5. Let X be a sequence of distinct positive integers and x a term of X. Then the
limiting frequency fT (X)(x) of x in the associated throwback sequence T (X) is nonzero.

Proof. Because the terms of X are distinct positive integers and indexing starts at zero in
the associated sorted sequence S(X), the numerator w−σ(w) in each factor in Equation (2)
is strictly positive. Hence, all the factors of fT (X)(x) are nonzero.

Theorem 4 may be used to infer interesting mixing properties of the iterated throwback
operation, as seen in the proof of Theorem 9.

4 Placement sequence

The proof of Theorem 4 suggests an illuminating alternative construction of the throwback
sequence T (X) in the case where X is increasing. Cloitre described a special case of this
construction in the OEIS entry A001511 involving the ruler function, and similar construc-
tions leading to special sequences of zeros and ones called Toeplitz sequences have previously
appeared in the literature [7]. If X = (xn)

∞

n=0 is an increasing sequence of positive integers,
then we define the associated placement sequence P (X) = (pn)

∞

n=0 iteratively by beginning
with a sequence of empty positions ( , , , . . .), indexed starting at 0, which are then filled
by copies of the terms of X in the following way. First, copies of x0 are placed at positions
0, x0 + 1, 2(x0 + 1), and so on, skipping over x0 positions each time. Next, copies of x1 are
placed periodically in the remaining positions, beginning with the first open position and
skipping x1 − 1 open positions each time. Continuing in this way for each positive integer n
in turn, copies of xn are placed periodically in the remaining positions, beginning with the
first open position and skipping xn − n open positions each time. The placement sequence
P (X) of an increasing sequence X coincides with the throwback sequence T (X), because the
number of terms greater than xn to the left of xn after xn is thrown back is always xn − n,
and these terms correspond to the skipped open positions at each stage of the construction of
P (X). In general, however, the two sequences differ. As illustrated by the proof of Theorem
4, the limiting frequency with which each term appears in the placement sequence P (X)
is easily understood in terms of the limiting frequencies of smaller terms, since each term
occupies a specified proportion of the remaining empty positions.

For the proof of Theorem 7 below, it is useful to extend the process used to construct the
placement sequence P (X) to include negative indices. This yields a family {Pn(X)}∞n=0 of
partially defined doubly infinite sequences, called partial placement sequences, where P0(X)
is defined by placing copies of x0 at positions 0, ±(x0 +1), ±2(x0 +1), and so on, beginning
with a doubly infinite sequence P−1(X) of empty positions. P1(X) is then constructed from
P0(X) by first placing a copy of x1 at position 1, then placing additional copies sequentially in
both directions, skipping x1 − 1 open positions each time. Given Pn−1(X), the next partial
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placement sequence Pn(X) is defined by placing a copy of xn at the first open positively
indexed position, then placing additional copies sequentially in both directions, skipping
xn − n open positions each time. Table 4 shows the sequence X = (3, 4, 5, . . . , n+3, . . .), its
associated placement sequence P (X), in this case equal to its throwback sequence A357081,
and the partial placement sequences P0(X), P1(X), and P2(X), with terms labeled p0n, p1n,
and p2n, respectively. Reflection symmetry about the position −2 is obvious by construction
in this case. The positions −3,−2,−1 are never filled, so the construction process does not
yield a complete doubly infinite sequence in the limit.

n

xn

pn

p0n

p1n

p2n

· · · −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 · · ·

(undefined for n < 0) 3 4 5 6 7 8 9 10 · · ·

(undefined for n < 0) 3 4 5 6 3 7 4 8 · · ·

· · · 3 3 3 · · ·

· · · 4 3 3 4 3 4 · · ·

· · · 5 4 3 3 4 5 3 4 · · ·

Table 4: Sequence, placement sequence, and partial placement sequences.

Periodicity of partial placement sequences plays an important role in our discussion of
uniform recurrence in Section 5. Such periodicity may be viewed in terms of invariance
under the actions of certain translational groups, and this leads naturally to a broader
examination of symmetry properties of such sequences. A unified viewpoint is given by re-
garding the step-by-step construction of each Pn(X) from Pn−1(X) as a progressive sym-
metry breaking process. Consider the action of the group G−1 of all shifts and reflec-
tions on the set of all positions parameterized by Z. The empty doubly infinite sequence
P−1(X) = (. . . , , , , . . .) is invariant under the entire group. Construction of P0(X)
breaks this symmetry, since P0(X) is invariant only under a particular subgroup G0, which,
in the case of X = (3, 4, 5, . . . , n+3, . . .), shifts by multiples of 4 and/or reflects across index
positions that are multiples of 2. Construction of each Pn(X) further breaks this symmetry,
yielding a descending chain G−1 ⊃ G0 ⊃ G1 ⊃ . . . of subgroups. The intersection

⋂
∞

m=−1 Gm

is isomorphic to Z2, generated by the reflection across −2 noted above.

5 Uniform recurrence

A sequence is called recurrent if every block B of consecutive terms in the sequence recurs
infinitely often. Theorem 2 establishes a restricted form of recurrence that applies to blocks
of size 1 in certain throwback sequences. A stronger property is uniform recurrence, which
means that the gaps between recurrences of a given block are bounded in size. Uniform
recurrence implies nonzero “block frequencies” generalizing the result for frequencies of blocks
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of size 1 established by Corollary 5. Theorem 7 below establishes uniform recurrence for
throwback sequences of increasing sequences of positive integers in general.

To set up the proof of Theorem 7, we first consider the notion of generalized blocks in
partially defined sequences for which each index position may contain either a positive integer
or an empty space. The examples of present interest are the partial placement sequences
Pn(X) defined above. We define a block B in such a partially defined sequence to be the
ordered contents of a finite number of consecutive index positions, where the content at each
position may be either an empty space or a positive integer. Every block of consecutive
terms in a totally defined sequence is also a block in this generalized sense. Two blocks
beginning at different positions are considered to be equal if they share the same size and if
the corresponding positions in each block share the same contents. For example, the block of
size 4 with ordered contents 3, 4, , and beginning at position 0 in the partial placement
sequence P1(X) of the sequenceX = (3, 4, 5, . . . , n+3, . . .) is equal to the block with the same
ordered contents beginning at position 16. We denote this block by (3, 4, , ) regardless of
its starting position, and similarly for other blocks.

We define the past B− of a block B to be the ordered contents of all index positions
preceding the initial position of B. We define the future B+ of B to be the ordered contents
of all index positions succeeding the terminal position of B. A complete block in the nth
partial placement sequence Pn(X) of an increasing sequence of positive integers X is defined
to be a block containing all the terms x0, . . . , xn from X whose copies are used to construct
Pn(X). For a block B in Pn(X), the direct past B−

1 of B is defined to be the minimal
complete block whose terminal position directly precedes the initial position of B, and the
direct future B+

1 of B is defined to be the minimal complete block whose initial position
directly succeeds the terminal position B. Figure 1 shows an incomplete block B = (3, 5, )
in the partial placement sequence P2(X) of the sequence X = (3, 4, 5, . . . , n+3, . . .), together
with its direct past B−

1 and direct future B+
1 .

· · · 5 4 3 3 4 5 3 4 3 5 4 3 5 3 4 · · ·

n = 0 B−

1 B B+
1

Figure 1: A block B in the partial placement sequence P2(X) of the sequence X =
(3, 4, 5, . . . , n+ 3, . . .), together with its direct past B−

1 and direct future B+
1 .

Two equal blocks occurring at different positions in the partial placement sequence Pn(X)
may have different pasts and/or futures; for example, the block (3, 4) of size 2 beginning at
position 0 in Figure 1 is preceded by an empty position, while the same block beginning at
position 16 is preceded by a copy of 5. However, by construction, a complete block uniquely
determines its entire past and future, and hence the entire partial placement sequence Pn(X).
Indeed, specifying a single position occupied by x0 determines all other such positions; sup-
plementing this information by specifying a single position occupied by x1 determines all
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other such positions, and so on. These determinations involve only relative distances from
the specified positions. Hence, if two copies of the same complete block begin at different
positions l < m in Pn(X), then the entire sequence is periodic with period m − l since the
empty space or positive integer at each position m+k for each k ∈ Z must match the empty
space or positive integer at each position l+ k. Further, a minimal complete block in Pn(X)
has size bounded in terms of n by Equation (1), so only a finite number of minimal complete
blocks exist, since the number of possible configurations of copies of x0, . . . , xn in a finite
number of positions is finite.

A more refined counting argument gives an upper bound for the number of minimal
complete blocks in Pn(X). Given the starting position of such a block, there are at most
x0 + 1 possible positions for the first appearance of x0, then x1 remaining possible positions
for the first appearance of x1, and so on, up to xn−n+1 remaining possible positions for the
first appearance of xn. Once these positions are specified, the entire block, and indeed the
entire sequence Pn(X), are determined. Hence, the maximum possible number of minimal
complete blocks is

n∏

k=0

(xk − k + 1). (3)

For example, there are at most 43 = 64 minimal complete blocks in the partial placement
sequence P2(X) of the sequence X = (3, 4, 5, . . . , n + 3, . . .), since the first copy of 3 may
appear in any of the first four positions in the block, after which the first copy of 4 may
appear in any of the first four remaining positions, after which the first copy of 5 may
appear in any of the first four remaining positions. It is easy to check that 64 distinct
minimal complete blocks actually occur in this case, so the bound in Equation (3) can be
sharp in some cases. Theorem 9 explains and extends this observation. On the other hand,
complications such as the presence of common factors among consecutive terms in the original
sequence can reduce the number of minimal complete blocks that actually appear in Pn(X);
for example, sequences beginning with (2, 4, . . .) or (3, 6, . . .) or (4, 6, . . .) produce partial
placement sequences with fewer than the maximum possible number of minimal complete
blocks given by Equation (3). However, the mere fact that the number of such blocks is
finite is sufficient for the proof of the following lemma:

Lemma 6. The partial placement sequence Pn(X) of an increasing sequence of positive
integers X is periodic.

Proof. Given a block B, first extend B to a complete block B0, if necessary, by adding a finite
number of positions to the right and/or left; this is always possible due to the bound given
by Equation (1). Next, construct a sequence of disjoint minimal complete blocks (Bm)

∞

m=1,
where B1 is the direct future of B0, and where each Bm is the direct future of Bm−1 for
m > 1. Since the number of such blocks is finite, two of them must coincide, so Pn(X) is
periodic by the previous discussion.

Establishing such periodicity is the motivation for extending the partial placement se-
quences Pn(X) to include negative indices and for noting that both the past B− and the

9



future B+ of a complete block B are determined by B. Restricting attention to positive
indices and future determinations would yield only eventual periodicity of blocks. Theo-
rem 7 now follows from the simple observation that any block in the placement sequence
P (X) of an increasing sequence of positive integers X is already present in one of the partial
placement sequences.

Theorem 7. The throwback sequence T (X) of an increasing sequence of positive integers X
is uniformly recurrent.

Proof. Let B be a block in T (X), and let xn be the largest term in B. Since X is increasing,
T (X) coincides with the placement sequence P (X) of X. The partial placement sequence
Pn(X) contains all the terms of P (X) up to and including xn, in the same positions, so B
appears as a block in Pn(X). Therefore, by Lemma 6, B appears periodically in Pn(X), and
hence also in T (X).

While the period arising from Lemma 6 bounds the gaps between consecutive appearances
of B in T (X), additional appearances of B are possible and seem to occur in most cases.
This phenomenon seems to be related to the existence of several different pasts and futures
for incomplete blocks occurring at different index positions. For example, the block (3, 5) in
the partial placement sequence P2(X) of the sequence X = (3, 4, 5, . . . , n+3, . . .) illustrated
in Figure 1 occurs at position 8 with direct future ( , 4, 3, , , 5), at position 36 with direct
future (4, , 3, , , 4, 3, 5), and at position 44 with direct future ( , , 3, 4, , 5). The gaps
between consecutive appearances of this block seem to follow the pattern of sizes 28, 8, 28,
which sum to the period size 64.

We now establish the useful though unsurprising fact that minimal complete blocks in
the partial placement sequence Pn(X) of an increasing sequence X correspond bijectively to
configurations of the terms x0, . . . , xn that result from repeated application of the throwback
operation τ to X. This relationship is expected because the same counting argument leading
to Equation (3) applies to such configurations: there are x0 + 1 possible positions for x0,
leaving x1 remaining possible positions for x1, and so on. Such configurations are of interest
because they measure how repeated application of the throwback operation τ sorts and/or
mixes the terms of X, the subject of Theorem 9 below. For example, the minimal complete
block (4, 3, , , 5) beginning at index position 11 in the partial placement sequence P2(X)
of X = (3, 4, 5, . . . , n + 3, . . .) illustrated in Figure 1, indicates that the sequence τ 11(X)
begins (4, 3, ∗, ∗, 5, . . .), where the symbol ∗ is used as shorthand for any term greater than 5
(in this case 6 and 10). The index positions of the terms 3, 4, and 5 in τ 11(X) are therefore
1, 0, and 4, respectively. Generalizing this example, we define a configuration C of the terms
x0, . . . , xn of an increasing sequence of positive integers X to be an ordered list of n + 1
non-negative integers specifying the index positions of these terms in X or in a rearranged
version of X, including the sequences τ k(X). Note that τ may be applied unambiguously to
such a configuration since throwing back a term larger than xn moves all the terms x0, . . . , xn

one place to the left. We now have the following lemma:
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Lemma 8. Minimal complete blocks in the partial placement sequence Pn(X) of an increasing
sequence of positive integers X correspond bijectively to configurations of the terms x0, . . . , xn

appearing in the sequences τ k(X) for nonnegative integers k.

Proof. Given a configuration of x0, . . . , xn in τ k(X) for some k ≥ 0, it is clear that additional
applications of τ will produce a specific minimal complete block beginning at position k in the
partial placement sequence Pn(X) of X, and that every minimal complete block appearing
in Pn(X) arises in this way. It remains to show that different configurations lead to different
blocks. Consider two different configurations C1 and C2, and let xm be the smallest among
the terms x0, . . . , xn whose positions in C1 and C2 differ; assume without loss of generality
that the position of xm is smaller in C1. If xm is the leader in C1, then there is nothing to
show. Otherwise, apply τ to both configurations. The terms thrown back are either both
larger or both smaller than xm because the positions of the smaller terms agree in C1 and C2.
If both terms thrown back are larger than xm, then xm moves one place to the left in both
cases, and the argument may be repeated because the positions of the smaller terms change
in the same way for both configurations. If both terms thrown back are smaller than xm,
then they are the same term for C1 and C2, since xm is the smallest term whose positions
in the two configurations differ. Hence, if xm moves left in C2, then it also moves left in C1,
and the argument may be repeated because the positions of the smaller terms change in the
same way for both configurations. Therefore xm becomes leader earlier in the case of C1,
producing a different block than in the case of C2.

6 Examples with code

We now illustrate how some of these ideas may be explored numerically, using for illustration
the increasing sequence X = (1, 3, 4, 5, . . . , n + 3, . . .), which consists of all positive integers
except 2. The following Python code generates the first 104 terms of the associated throw-
back sequence T (X) and prints its first 20 terms:

X=[1]

for i in range(0,100):

X.append(i+3)

Y=X; T=[]; loops=10000

for l in range(0,loops):

leader=Y[0]

T.append(leader)

Y.pop(0)

Y.insert(leader,leader)

print(T[0:20])

The output is
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[1, 3, 1, 4, 1, 5, 1, 3, 1, 6, 1, 4, 1, 3, 1, 7, 1, 5, 1, 3].

The following Python code computes and prints the frequencies of the first 10 terms of
X over the first 104 terms of T (X):

M=max(T)

counter vector=np.zeros(M); freq vector=np.zeros(M)

for i in range(0,M):

for j in range(0,len(T)):

if T[j]==i:

counter vector[i]+=1

for i in range(0,M):

freq vector[i]=counter vector[i]/loops

for i in range(0,10):

print(round(freq vector[i],5),end=", ")

The output is

0.0, 0.5, 0.0, 0.1667, 0.1111, 0.0741, 0.0494, 0.0329, 0.0220, 0.0146,

which closely agrees with the formulae fT (X)(x0) = 1/2 and fT (X)(xn) = 2n−2/3n for n ≥ 1
from Equation (2). The following Python code generates the first few terms of the corre-
sponding placement sequence P (X):

places=100

P=np.zeros(places,dtype=int)

max fill=11

for i in range(0,max fill):

counter=0

for j in range(0,places):

if P[j]==0:

if counter%(X[i]-i+1)==0:

P[j]=X[i]

counter+=1

print(P[0:20])

The output is, as expected, the same as for the throwback sequence T (X):

[1, 3, 1, 4, 1, 5, 1, 3, 1, 6, 1, 4, 1, 3, 1, 7, 1, 5, 1, 3].

The following Python code generates and prints recurrences of the initial block (1, 3, 1, 4)
in the first 300 terms of T (X):
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recur list=[]

gaps list=[]

for i in range(0,300):

if T[i]==1:

if T[i+1]==3:

if T[i+2]==1:

if T[i+3]==4:

recur list.append(i)

for k in range(0,len(recur list)-1):

gaps list.append(recur list[k+1]-recur list[k])

print(gaps list)

The output is

[18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18],

which suggests that this block recurs periodically with gaps of size 18, the largest possible
size in view of Equation (3).

7 Discussion and historical notes

The throwback sequence of the sequence Z
+ = (1, 2, 3, . . .) of all positive integers is the

familiar ruler function A001511 [2, 4], whose value at n is the 2-adic valuation of 2n; i.e.,
the highest power of 2 that divides 2n. This is readily seen from the viewpoint of the
placement sequence, since each number fills half the remaining open positions. The ruler
function defines the order in which bits are changed for purposes of binary counting in the
Gray code [5, 6], used extensively in modern telecommunications for the purpose of error
correction. A basic advantage of the Gray code is that incrementing a number from n to
n + 1 changes only one bit, in contrast to ordinary binary counting, where, for example,
incrementing from 3 to 4 changes all the bits 011 to 100. Changing only one bit at a time
reduces the risk of computing errors of physical origin caused by lack of precise simultaneity
in changing multiple bits. Some of these notions might generalize in interesting ways to
other throwback sequences. Kozar [3] outlined a number of additional questions and open
problems involving throwback sequences, such as describing the precise patterns in which
terms recur, and investigating the sequences of indices at which terms first appear. Other
closely-related sequences and/or sequences involving variants of the throwback procedure
include A087165, A155167, A354223, and A355080 on the OEIS.

Despite close similarities in construction and/or structure among such sequences, their
levels of complexity seem to differ in significant ways, and certain properties that appear
likely to be true based on numerical evidence seem significantly easier to prove for some
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such sequences than for others. For example, both A357081 (the throwback sequence of
X = (3, 4, 5, . . . , n+ 3, . . .)) and A001511 (the ruler function, or throwback sequence of Z+)
are uniformly recurrent by Theorem 7, but the precise behavior of blocks seems to be much
simpler in the latter sequence. Each block B in A001511 seems to recur with gaps of size
2n, where n is the largest element in the block. An easy application of Theorem 9 below
shows that this is indeed the case. By contrast, blocks in A357081 exhibit a variety of
different types of behavior. For example, the block (3, 4, 5) appears to recur with uniform
gaps of size 43 = 64, while the block (6, 3, 7) appears to recur with the pattern of gap sizes
228, 492, 228, 76, which sum to 1024 = 45, the apparent gap size for the complete “parent”
block (3, 4, 5, 6, 3, 7), which matches the upper bound given by Equation (3). More generally,
it appears to be true that τ 4

n

fixes the first n terms of the sequence (3, 4, 5, . . . , n + 3, . . .).
This observation, also established by Theorem 9, leads to consideration of two other general
properties that seem to be satisfied by the iterated throwback operation in certain cases,
and that are of obvious interest in computer science.

First, repeated application of τ to an arbitrary sequence of distinct positive integers X
may be regarded as an average sorting process in the sense that each term x of X remains
within distance x of position zero after it is first thrown back. This idea could be quantified
and refined by deriving formulae for the limiting average positions of terms, analogous to
the limiting frequencies established by Theorem 4. Such results might be of interest in
the context of random number generation, since a specified distribution of integers would
result from querying a given position repeatedly while running many iterations of τ . The
same notion of average sorting could also be extended to a broader context including negative
integers and doubly infinite sequences, in which positive integers are thrown to the right from
position zero, while negative integers are thrown to the left. In either context, recurrence
results such as those given by Theorems 2 and 7 could be generalized to describe the eventual
behavior of blocks of “previously sorted” integers; i.e., those that have already been thrown
back at least once.

Second, for certain privileged sequences X, repeated application of τ constitutes a perfect
mixing process, meaning that the first n terms x0, . . . , xn of X pass through every possible
configuration before returning to their initial order. Theorem 9 establishes that sequences
of consecutive positive integers satisfy this property. For example, for the sequence X =
(3, 4, 5, . . . , n + 3, . . .), there are 42 = 16 possible configurations of 3 and 4, equal to the
maximum possible number of minimal complete blocks in the partial placement sequence
P1(X) ofX given by Equation (3), since such blocks and configurations correspond bijectively
by Lemma 8. Figure 2 demonstrates how all these configurations indeed result from repeated
application of τ , where the symbol ∗ is used as shorthand for any term greater than 4, and
where dots indicating continuation are suppressed for legibility.

Perfect mixing seems to be related to divisibility properties in an interesting way, which
we illustrate by proving a special case. We first note that the family of minimal complete
blocks that actually occur in the partial placement sequence Pn(X) of an increasing sequence
of positive integers X must appear in some linear order, with each block overlapping one
or more succeeding blocks for n > 0. No block may repeat before all the blocks have
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τ 0 : 3, 4, ∗, ∗, ∗ τ 4 : 3, ∗, 4, ∗, ∗ τ 8 : 3, ∗, ∗, 4, ∗ τ 12 : 3, ∗, ∗, ∗, 4

τ 1 : 4, ∗, ∗, 3, ∗ τ 5 : ∗, 4, ∗, 3, ∗ τ 9 : ∗, ∗, 4, 3, ∗ τ 13 : ∗, ∗, ∗, 3, 4

τ 2 : ∗, ∗, 3, ∗, 4 τ 6 : 4, ∗, 3, ∗, ∗ τ 10 : ∗, 4, 3, ∗, ∗ τ 14 : ∗, ∗, 3, 4, ∗

τ 3 : ∗, 3, ∗, 4, ∗ τ 7 : ∗, 3, ∗, ∗, 4 τ 11 : 4, 3, ∗, ∗, ∗ τ 15 : ∗, 3, 4, ∗, ∗

Figure 2: Perfect mixing: every possible configuration of 3 and 4 occurs under repeated
application of τ to X = (3, 4, 5, . . . , n+ 3, . . .).

appeared, since repetition of a block implies the beginning of a new period. For example,
in the partial placement sequence P1(X) of the sequence X = (3, 4, 5, . . . , n+ 3, . . .), the 16
minimal complete blocks appear in the overlapping order

(3, 4), (4, , , 3), ( , , 3, , 4), ( , 3, , 4), (3, , 4), . . .

where block n + 1 is constructed by deleting the first entry of block n and then adding the
minimal number of positions to the right necessary to (re)complete the block. The leading
elements of each of these blocks, are, of course, the terms of Pn(X). Since Pn(X) is periodic
by Lemma 6, the limiting frequency with which each term x appears in Pn(X), and hence
in the throwback sequence T (X), is just the ratio of the number of minimal complete blocks
beginning with x to the total number of such blocks. However, this limiting frequency is also
given by Theorem 4. Equating these two results for the sequence X = (3, 4, 5, . . . , n+3, . . .)
leads to the equation

minimal complete blocks starting with x

total minimal complete blocks
=

3x−3

4x−2
, (4)

where the right hand side comes from Theorem 4, and the denominator is the upper bound
for the maximum possible number of minimal complete blocks given by Equation (3). This
denominator must equal the total number of minimal complete blocks because 3 and 4 are
coprime. Therefore, every possible minimal complete block actually appears in this case, and
since these blocks correspond bijectively with possible configurations of the terms x0, . . . , xn

by Lemma 8, perfect mixing occurs. We can readily generalize this argument to apply to
sequences of consecutive positive integers.

Theorem 9. Let X be a sequence of consecutive positive integers beginning with some positive
integer m. Then repeated application of the throwback operation τ is a perfect mixing process
in the sense that the first n+ 1 terms m,m+ 1, . . . ,m+ n of X pass through every possible
configuration before returning to their original order with the (m+ 1)n+1th application of τ .

Proof. The ratio of the number of minimal complete blocks beginning with m + n to the
total number of such blocks that actually appear in the partial placement sequence Pn(X) of
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X is mn

(m+1)n+1 by Theorem 4. Since m and m+ 1 are coprime, the total number of minimal

complete blocks that actually appear is equal to the denominator (m+1)n+1, which is equal
to the upper bound given by Equation (3). Since this number is also equal to the maximum
possible number of configurations of the first n terms of X by Lemma 8, every possible
configuration appears.

For example, 2n+1 applications of τ fix the first n + 1 terms of the ruler function, just
as one would expect. Perfect mixing does not seem to be restricted to sequences of con-
secutive positive integers. For example, the maximum possible period size of 18 observed
numerically for recurrence of the block (1, 3, 1, 4) in the throwback sequence of the sequence
X = (1, 3, 4, 5, . . . , n + 2, . . .) in Section 6 suggests perfect mixing for the terms 1, 3, and
4 in this sequence. However, Theorem 4 does not seem to provide a straightforward argu-
ment for why every possible configuration should occur in this case; it allows for a period of
either 9 or 18. Failure of perfect mixing sometimes seems to be related to the presence of
common factors, as observed from the perspective of minimal complete blocks for sequences
beginning with (2, 4, . . .) or (3, 6, . . .) or (4, 6, . . .) in the discussion following Equation (3).
However, perfect mixing often fails even when common factors are absent; for example, the
block (2, 3, 5) in the throwback sequence of the sequence of primes recurs every 9 positions,
instead of the maximum possible of 36 given by Equation (3). Hence, characterizing which se-
quences exhibit perfect mixing remains mostly open, although further divisibility arguments
involving Theorem 9 can likely provide useful constraints on the numbers of configurations
in some cases.

Extending the placement sequence P (X) to include negative indices in the construction of
the partial placement sequences Pn(X) naturally suggests the idea of inverting the throwback
procedure. This then leads to consideration of which sequences could have been obtained
by throwing back the initial term of another sequence. The answer is straightforward: a
sequence X can be τ(W ) for some sequence W if and only if the index of some term in X
equals its value. For example, the sequence X = (3, 4, 5, . . . , n+3, . . .) cannot be obtained by
applying τ to any sequence of positive integers because the value of every term in X exceeds
its index. This offers another explanation for why the positions −3,−2, and −1 are never
filled during the construction of the partial placement sequences for X illustrated in Table
4. Admitting transfinite ordinals to the picture could alter such considerations; for example,
the sequence (3, 4, 5, . . . , n+3, . . . , ω) could be regarded as τ(ω, 3, 4, 5, . . . , n+3, . . .), where
ω is the smallest transfinite ordinal. We also note that inverting τ is generally non-unique;
for example, a sequence beginning (7, 5, 1, 3, 4, 8, . . .) could be the throwback sequence of
a sequence beginning either (3, 7, 5, 1, 4, 8, . . .) or (4, 7, 5, 1, 3, 8, . . .). The extent of non-
uniqueness is measured by how many terms have values equal to their indices.

The historical origin of the throwback operation remains somewhat obscure. The earliest
mention we can find in the literature appears in a Popular Computing article from 1977 [1].
Photocopied images of this article appear on the OEIS page for A357081 [2]. There seem
to have been several distinct publications named Popular Computing around this time [3].
The one of present interest was initiated in 1973 by Gruenberger [8, 9], who produced the
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magazine on a monthly basis until 1981, before selling it to McGraw Hill who produced
it until 1985. No digital public copies of Popular Computing are known to exist, though
physical copies of certain issues apparently remain. We could not find complete copies of
the relevant 1977 issue, or otherwise determine if the throwback operation mentioned there
might originate from some earlier source.
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