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Abstract

Given an infinite word on a finite alphabet, an immediate question arises: can we

understand the frequency of letters in that word? For words that are the fixed points

of substitutions, the answer to this question is often ‘yes’—the details and methods of

these answers have been well-documented. In this paper, toward a better understand-

ing of the fixed points of binary substitutions, we delve deeper by investigating, in fine

detail, the position of letters by defining various position functions and proving results
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about their behavior. Our analysis reveals new information about the Fibonacci substi-

tution and the extended Pisa family of substitutions, as well as a new characterization

of the Thue-Morse sequence.

1 Introduction

Sequences over finite alphabets are pervasive in mathematics. Questions surrounding them
have inspired the development of whole areas of mathematics—combinatorics on words,
analytic number theory, and symbolic dynamics, to name a few. For specific examples one
need look no further than the prime number theorem and the Riemann hypothesis; both
can be stated in terms of the Liouville λ-function—a binary sequence over the alphabet
{−1, 1}, which indicates the parity of the number of prime divisors of an integer. Such
questions often concern the frequency of the values (e.g., prime number theorem) or the
variance from that frequency (e.g., Riemann hypothesis). In this paper, our primary objects
of concern are substitution sequences, and, in particular, those acting on binary (two-letter)
alphabets. By binary substitution, we mean a map µ from binary words to binary words
that is a homomorphism—the natural operation on words being concatenation. Being a
homomorphism, a substitution is defined by how it acts on the binary alphabet. A ubiquitous
example [2] is the Thue-Morse substitution µTM, which is defined by

µTM :

{

a → ab

b → ba .

The one-sided infinite word that is the unique fixed point of this substitution that starts
with the seed a,

t = lim
n→∞

µn
TM(a) = abbabaabbaababbabaababbaabbabaab · · · ,

is often viewed as an infinite sequence (the so-called Thue-Morse sequence or Prouhet-Thue-
Morse sequence), and is a paradigmatic example in several areas—most notably, number
theory, dynamical systems, and theoretical computer science, where it is a canonical example
of a sequence that is output by a deterministic finite automaton; see Allouche and Shallit [3].

A binary substitution is a robust object. Along with it, comes an incidence matrix, which
is nonnegative, and from that, one can often obtain information about the frequency of the
letters in a fixed point, hence the questions of the frequency of values can often be easily
answered [12, 13]. Also, the questions concerning more nuanced behavior (speed of conver-
gence) of the frequency are known for large classes of substitution sequences, in particular,
for those of constant length; see, e.g., Delange [8] and Dumas [9]. There is a plethora of
literature in the area, and we would be remiss if we did not mention some of the more im-
portant results in the area including Cobham’s result [6] that if the frequency of a letter in a
constant-length substitution sequence exists that value is rational, Peter’s necessary and suf-
ficient criterion [14] for the existence of such a frequency, Saari’s generalization [16] of Peter’s
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result to more general substitutions, and Bell’s further generalization [5] that ensures the
logarithmic frequency of words in general substitutions exists. One of our personal favorites
is an under-appreciated result of Allouche, Mendès France, and Peyrière [1] on Dirichlet
series associated with constant-length substitutions, which can be applied to give a wealth
of information.

The position of letters in constant-length substitutions was studied by Cobham [6] and
Minsky and Papert [11], who gave results concerning asymptotics of gaps. Here, toward a
better understanding of the fixed points of binary substitutions, we investigate, in fine detail,
the position of letters by defining various position functions and proving results about their
behavior.

We accomplish this as follows. In Section 2, we define the (relative) position functions
and focus on preliminary results concerning these functions and their interaction with various
operators on words. The two main results of Section 2 are that a relative position function
uniquely determines an infinite binary word (Lemma 5) and that any increasing function
is the relative position function of some infinite binary word (Lemma 8). In Section 3, we
study the relationship between our position functions and the standard letter frequency.
Section 4 contains an extended study of the Fibonacci substitution and the extended Pisa
family of substitutions; in particular, our main result in this section is a characterization
of the Fibonacci word in terms of its position functions (Theorems 38 and 46). In Section
5, we characterize words that give rise to exact and asymptotically linear relative position
functions. We conclude this paper in Section 6, where we obtain a new characterization of
the Thue-Morse sequence—it is the only sequence on {±1} that is equal to its own relative
position sequence.

2 Preliminaries

In this paper, we look (usually) at infinite one-sided binary words, whose elements we call
letters or bits. That is, considering the alphabet Σ = {a, b} having bits a and b, we look at
words

w = ℓ0ℓ1ℓ2 · · · ℓn · · ·
where ℓn ∈ Σ. We let Σ∗ denote the set of finite words over Σ, and let Σω denote the set
of infinite words over Σ. Further, set Σ∞ = Σ∗ ∪ Σω. Here, for any finite word w ∈ Σ∗,
wΣω denotes the set of subwords of Σω beginning with the word w, that is, having w as a
prefix. For example, Σω = aΣω ∪ bΣω. Concatenation of words is written in the usual power
notation; for example, a3 = aaa and (ab)2 = abab. We write (ℓ0ℓ1 · · · ℓn)ω to denote the
infinite periodic word with periodic part ℓ0ℓ1 · · · ℓn. The length of a word w is denoted by
|w|, and the number of a’s and b’s occurring in w are denoted by |w|a and |w|b, respectively.
So, |w| = |w|a + |w|b.

Throughout this paper, we assume that both letters a and b appear infinitely many times
in any infinite binary word w, or equivalently that w is not eventually 1-periodic. We separate
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out this special subset W ⊂ Σω with the notation

W := {w ∈ Σω : |w|a = ∞ and |w|b = ∞} .

We also use the analogous notation to the above to indicate words starting with a given
prefix for this special subset; for example, W = aW ∪ bW , where, for a finite word w, we
write wW to indicate the subset of words of W having prefix w.

While the words we study, in general, are binary words, most of the examples we focus
on are coming from substitutions—for this reason we prefer to use {a, b} as the alphabet
instead of {0, 1}. Here, we define a substitution µ as a morphism on the set Σ∞; that is, given
a (finite or infinite) word w = ℓ0ℓ1ℓ2 · · · ℓn · · · , we have µ(w) = µ(ℓ0)µ(ℓ1)µ(ℓ2) · · ·µ(ℓn) · · · .
For each substitution, we define the incidence matrix M := Mµ to be the matrix whose ij-th
entry is the number of letters ai in µ(aj), where, in our binary case, we take a1 = a and
a2 = b. We call a substitution µ primitive provided Mµ is a primitive matrix.

This choice allows us to use the standard notation for level-n super-tiles; that is, if σ is
a substitution on Σ, we set An := σn(a) and Bn := σn(b).

Let us now recall the notions of codings and isomorphic words. Let w = w0w1 · · · and
l = ℓ0ℓ1 · · · be words on alphabets Σ and Σ′, and assume that the alphabets are reduced,
meaning

Σ = {wn : n ∈ Z≥0} and Σ′ = {ℓn : n ∈ Z≥0} .
We say that l is a coding of w if there exists a map, also called a coding, σ : Σ → Σ′ such
that, for all n ∈ Z≥0 we have ℓn = σ(wn). Here, since we are using binary alphabets, we use
the shorthand (a, b) = (k, l) to denote the coding on the alphabet {a, b} with k = σ(a) and
l = σ(b). We say that w and l are isomorphic if there exists such a mapping σ that is a
bijection. It is easy to see that w and l are isomorphic if and only if each is a coding of the
other.

Finally, given a sequence (xn)n∈N that only takes finitely many values, we often abuse
notation and think about it as being the word w = x1x2 · · · xn · · · . Note here that this
introduces a shift in position, as x1 is in position 0.

With the above ‘stringology’ firmly noted, we move on to the definition of functions that
play important roles in what follows. Here, and below, N denotes the set of positive integers,
and Z≥0 denotes the set of non-negative integers, and C denotes the set of complex numbers.

Definition 1. Let w ∈ W . We define the position functions pa,w(n) and pb,w(n) as the
position of the n-th occurrence of a and n-th occurrence of b in w, respectively. Provided
the context is clear, we use pa and pb in place of pa,w and pb,w, respectively.

In the context of constant-length substitutions, each of these position functions has been
studied separately. In particular, Cobham [6] considered the difference pa(n+1)−pa(n) and
Mirsky and Papert [11] considered the ratio pa(n + 1)/pa(n). See also Allouche and Shallit
[3, Section 8.6]. Here, we consider a relationship between the position functions of different
letters.
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Definition 2. Let w ∈ W . We define the relative position function rw(n) as

rw(n) := pb,w(n)− pa,w(n) .

Provided the context is clear, we use r in place of rw.

Definition 3. For a sequence s : N → C , the difference sequence ∆s : N → C of s is defined
by

∆s(n) := s(n+ 1)− s(n) .

Let w ∈ W . Note the following immediate consequences of the above definitions. Firstly,
we have r(n) 6= 0 for each n. Secondly, the functions pa and pb are strictly increasing. In
particular, ∆pa and ∆pb are positive sequences. Thirdly, the difference sequence ∆pa(n)
equals one plus the number of b’s between the n-th and (n + 1)-th a. This is sometimes
called the sequence of b-runs. Similarly, the difference sequence ∆pb(n) equals one plus the
number of a’s between the n-th and (n+1)-th b. Finally, since both a and b appear infinitely
many times in w, the sets

A = {pa(n) : n ∈ N} and B = {pb(n) : n ∈ N} ,

partition Z≥0 into two infinite sets. Moreover, each such partition corresponds uniquely to
the images of the position functions for a word w ∈ W . In particular, w can be recovered
from A or B.

With the above properties in hand, we now discuss which functions can be position
functions or relative position functions. The following lemma is an immediate consequence
of the definitions—since the proof is straightforward, we omit it.

Lemma 4. Let p : N → Z≥0. The following hold.

(a) There exists some w ∈ aW such that pa = p if and only if p is strictly increasing,
p(1) = 0, and ∆p > 1 infinitely often.

(b) There exists some w ∈ aW such that pb = p if and only if p is strictly increasing,
p(1) > 0, and ∆p > 1 infinitely often.

The question of which r : N → Z can occur as a relative position function is a bit trickier.
As noted above, there are some restrictions on relative position functions, which eliminate
many possibilities. Here, we arrive at the first of the two main results of this section—a
relative position function r uniquely identifies w.

Lemma 5. Let w, w′ ∈ W with relative position functions rw and rw′, respectively. Then
w = w′ if and only if rw = rw′.

Proof. Necessity is clear, so we need only prove sufficiency. Toward this, suppose that
rw = rw′ . We show by induction that pa,w(n) = pa,w′(n), from which the result follows.
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We know that rw(1) = rw′(1). If this value is positive, then the first a must appear before
the first b, hence

pa,w(1) = 0 = pa,w′(1) .

On another hand, if rw(1) = rw′(1) < 0 then

pb,w(1) = 0 = pb,w′(1)

pa,w(1) = 0− rw(1) = 0− rw′(1) = pa,w′(1) .

This shows the claim for n = 1.
Now suppose that pa,w(k) = pa,w′(k) for all positive integers k ≤ n. Then, by the definition

of pa,w, pa,w′ , rw, and rw′ , the first n a’s in w appear at the positions

An := {pa,w(1), pa,w(2), . . . , pa,w(n)},

and that the first n b’s in w appear at the positions

Bn := {pa,w(1) + rw(1), pa,w(2) + rw(2), . . . , pa,w(n) + rw(n)} .

Since rw = rw′ , and pa,w(k) = pa,w′(k) for 1 ≤ k ≤ n, we get that the first n a’s in w′ appear
at the positions An and that the first n b’s in w′ appear at the positions Bn. Set

M := min
(
N\(An ∪Bn)

)
.

We consider the two possible cases.
Suppose rw(n + 1) > 0. Then, in w, the (n + 1)-th a appears before the (n + 1)-th b.

So, for k ≥ n + 1 the k-th b appears after the (n + 1)-th a. Also, for k ≥ n + 2 the k-th a

appears after the (n + 1)-th a. Since the M -th position contains either an a or a b, which
is neither among the first n a’s nor the first n b’s, it must contain the (n + 1)-th a. Thus
pa,w(n + 1) = M . Repeating the argument for w′ instead of w, we get pa,w′(n + 1) = M , and
so pa,w(n+ 1) = M = pa,w′(n+ 1).

If instead, rw(n + 1) < 0, a similar argument shows that pb,w(n + 1) = M = pb,w′(n + 1).
Since rw(n+ 1) = rw′(n+ 1), this gives pa,w(n+ 1) = pa,w′(n+ 1).

The proof of Lemma 5 gives the following algorithm for reconstructing w from rw.

Lemma 6 (Reconstruction algorithm). Let r : N → Z be the relative position function of
some word w ∈ W. Then, we can recover the word w from r by the following simple algorithm.

Step 1. If r(1) > 0, set pa(1) = 0, pb(1) = r(1), otherwise set pa(1) = −r(1), pb(1) = 0.
Step 2. For each n ≥ 2, define

An := {pa(1), pa(2), . . . , pa(n)} = An−1 ∪ {pa(n)}
Bn := {pb(1), pb(2), . . . , pb(n)} = Bn−1 ∪ {pb(n)}.

Step 3. Set kn+1 := min
(
N\(An ∪Bn)

)
. Then,
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(i) if r(n+ 1) > 0, set pa(n+ 1) = kn+1 and pb(n+ 1) = kn+1 + r(n+ 1),

(ii) if r(n+ 1) < 0, set pa(n+ 1) = kn+1 − r(n+ 1) and pb(n+ 1) = kn+1.

Step 4. Increase n by 1 and go back to Step 2.

Remark 7. Given a relative position function r, in Step 3, one of the following two situations
must occur.

(α) If r(n + 1) > 0, then we must have kn+1 > pa(n), kn+1 + r(n + 1) > pb(n), and
kn+1 + r(n+ 1) /∈ An ∪ Bn.

(β) If r(n + 1) < 0, then we must have kn+1 > pb(n), kn+1 − r(n + 1) > pa(n), and
kn+1 − r(n+ 1) /∈ An ∪ Bn.

Moreover, given any function r : N → Z\{0} with r(1) > 0, r is the relative position
function of some w if and only if in the above algorithm the conditions (α) and (β) always
hold. ✸

We now give the second main result of this section—each increasing function r with
r(1) > 0 is a relative position function—and we discuss the relation between monotonicity
and the b-runs.

Lemma 8. For each increasing function r : N → N, there exists some word w ∈ aW with
r = rw.

Proof. The idea of the proof is the same as the reconstruction algorithm—the key is that
r(n) > 0 for each n. We determine the word w by the position of its letters. To this end, we
start by defining pa(1) = 0 and pb(1) = r(1), and proceed by induction.

For each n ≥ 1, set

An := {pa(1), pa(2), . . . , pa(n)} = An−1 ∪ {pa(n)}
Bn := {pb(1), pb(2), . . . , pb(n)} = Bn−1 ∪ {pb(n)}

pa(n+ 1) := minN\(An ∪ Bn)

pb(n+ 1) := pa(n+ 1) + r(n+ 1) .

Since (An−1 ∪ Bn−1) ⊆ (An ∪ Bn), we immediately get that pa(n+ 1) > pa(n). Next,

pb(n+ 1) = pa(n+ 1) + r(n+ 1) > pa(n) + r(n) = pb(n) .

Moreover, by definition pa(n+ 1) /∈ An ∪Bn, which, with pb(n+ 1) > pa(n) and pb(n+ 1) >
pb(n), imply that pb(n + 1) /∈ An ∪ Bn. This immediately implies that for all n we have
An ∩Bn = ∅. Since A1 ( A2 ( · · · and B1 ( B2 ( · · · are nested, we get that the unions

A :=
⋃

n

An and B :=
⋃

n

Bn
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are disjoint infinite sets.
Finally, pa(1) = 0 and pa(n+1) > pa(n) immediately imply that pa(n) ≥ n−1. Therefore.

minN\(An ∪ Bn) = pa(n+ 1) ≥ n,

hence
{1, 2, 3, . . . , n} ⊆ (An+1 ∪ Bn+1) ⊆ (A ∪ B) .

It follows that N = A ∪ B. Now, defining

w := ℓ0ℓ1 · · · where ℓk =

{

a, if k ∈ A;

b, if k ∈ B;

since A ∩ B = ∅, we have that rw = r, which is the desired result.

By applying an analogous argument, we get the following immediate corollary.

Corollary 9. For each decreasing function r : N → Z with r(1) < 0, there exists some
w ∈ bW with r = rw.

Definition 10. The reflection operator, ·̄, on Σ∞, is the substitution a 7→ b and b 7→ a.

The following result is clear, so we omit the proof.

Proposition 11. The refection operator satisfies the following properties.

(a) aW = bW and bW = aW.

(b) Let w, w′ ∈ W. Then w = w′ if and only if rw = −rw′ .

This proposition allows us to restrict our attention to rw for w ∈ aW as needed. Note
that the condition w ∈ aW is equivalent to r(1) > 0, which is equivalent to pa(1) = 0. Also,
r(1) = k > 1 if and only if w ∈ ak−1bW . And, if r(1) = k > 1, then r(2), . . . , r(k − 1) ≥ k.

The reflection operator induces an involution, ·̃, on the class of binary substitutions.

Definition 12. Let σ : Σ → Σ∗ be a binary substitution. Define σ̃ : Σ → Σ∗ by

σ̃(α) = σ(α) ∀α ∈ Σ = {a, b} .

A fast calculation shows that σ̃(s) = σ(s) for all s ∈ Σ∗, hence σ̃(w) = σ(w) for w ∈ W .
The following characterization of the a and b runs is clear.

Lemma 13. Let w ∈ aW and k ≥ 1.

(a) The following are equivalent.

(i) bk is a subword of w.
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(ii) sup{∆pa(n)} > k.

(iii) ∆pb takes the value one at least k − 1 times in a row.

(b) The following are equivalent.

(i) ak is a subword of w.

(ii) ∆pa takes the value one at least k − 1 times in a row.

Note that Lemma 13 implies that sup{∆pa(n)} − 1 is the length of the longest run of
b’s in w and that sup{∆pb(n)} − 1 is the length of the longest run of a’s appearing in w.
Combining this with the fact that ∆pa ≥ 1, we have the following result.

Lemma 14. Let w ∈ aW.

(a) If the function r is strictly increasing, then bb is not a subword of w.

(b) If bb is not a subword of w, then r is increasing.

(c) If bk is a subword of w, there is an n so that ∆r(n+ j) ≤ 0 for all j ∈ {1, . . . , k− 1}.

(d) If ak is a subword of w, there is an n so that ∆r(n+ j) ≥ 0 for all j ∈ {1, . . . , k − 1}.

Proof. (a) Toward a contradiction, assume that bb is a subword of w. By Lemma 13(a),
there exists some n such that ∆pb(n) = 1. Since ∆pa(n) ≥ 1, we get that ∆r(n) ≤ 0, which
contradicts the fact that r is strictly increasing.

(b) Since bb is not a subword of w, by Lemma 13(a), we have ∆pa(n) ≤ 2 for all n and
that ∆pb never takes the value 1, meaning that ∆pb(n) ≥ 2 for all n. It follows immediately
that ∆r ≥ 0 so that r is increasing.

The proofs of (c) and (d) follow mutatis mutandis the proof of part (a) above.

In Lemma 14(a), we cannot assume that r is increasing, and, in Lemma 14(b), we cannot
show that r is strictly increasing. Indeed, here are two witnessing examples.

• The word
w = abaabbaaabbbaaaabbbb · · · = aba2b2a3b3a4b4 · · ·

has the sequence 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, . . ., as its relative position function. Here, r is
increasing, but w contains bb as a subword.

Later, we cover a more interesting example—the word obtained by adding the prefix
aabb to the Fibonacci substitution σ2 contains bb, and its relative position function r
satisfies r(1) = r(2) = r(3) = 2 and is strictly increasing starting at n = 3.

• The periodic word w = (ab)ω does not contain bb and has r(n) = 1 for all n.

Before moving on to periodic sequences, we note that Lemma 13 gives the following
results on the possible boundedness of ∆r.
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Lemma 15. Let w ∈ aW. If bk does not appear in w, then

|∆r −∆pb| ≤ k .

In particular, ∆r is bounded if and only if ∆pb is bounded.

Proof. This follows noting that ∆r = ∆pb −∆pa, and by Lemma 13, ∆pa < k + 1.

For a periodic word w, all of the relative position functions are also periodic, as we shall
prove here. But this relationship cannot be inverted—later, we will see some examples where
∆rw is periodic for an aperiodic word w.

Lemma 16. Let w ∈ aW. Then, the following are equivalent.

(i) w is periodic.

(ii) ∆pa is periodic.

(iii) ∆pa and ∆pb are periodic.

Moreover, if w = (w)ω and w contains k a’s and j b’s, then ∆pa is k-periodic and ∆pb is
j-periodic.

Proof. (i)⇒(iii). Let w = (w0w1 · · ·wk+j−1)
ω, and let w contain k a’s and j b’s. Let 0 = l0 <

l1 < l2 < · · · < lk−1 ≤ k + j − 1 be all the positions of a in the word w0w1 · · ·wk+j−1. Then,
the values of pa(1), pa(2), pa(3), . . . are precisely

l0, l1, l2, . . . , lj−1, l0 + k + j, l1 + k + j, . . . , lj−1 + k + j, l0 + 2(k + j), l1 + 2(k + j), . . . .

Explicitly, if n = qk + r where 1 ≤ r ≤ k when divided by k, then

pa(n) = q(k + j) + lr−1 .

In particular, ∆pa is the k-periodic sequence obtained by repeating

l1 − l0, l2 − l1, . . . , lk−1 − lk−2, l0 − lk−1 + k + j .

The proof for ∆pb is identical.
The claim that (iii)⇒(ii) is clear.
(ii)⇒(i). Assume that ∆pa is periodic with period k. Note that 0 = pa(1) < pa(2) <

· · · < pa(k). Set m = pa(k + 1)− pa(1). Then, for all n = kq + t with 1 ≤ t ≤ k, we have

pa(n) = mq + pa(t) .

This shows that the set of positions of a in w is the finite union of the infinite arithmetic
progressions

pa(1) +mN, pa(2) +mN, . . . , pa(k) +mN ,

which is certainly periodic. The claim follows immediately.
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w ∆pa ∆pb ∆r
(ab)ω 2, 2, 2, 2, 2, 2, . . . 2, 2, 2, 2, 2, 2, . . . 0, 0, 0, 0, 0, 0, . . .
(aab)ω 1, 2, 1, 2, 1, 2, . . . 3, 3, 3, 3, 3, 3, . . . 2, 1, 2, 1, 2, 1, . . .
(abba)ω 3, 1, 3, 1, 3, 1, . . . 1, 3, 1, 3, 1, 3, . . . −2, 2,−2, 2,−2, 2, . . .
(aabb)ω 1, 3, 1, 3, 1, 3, . . . 1, 3, 1, 3, 1, 3, . . . 0, 0, 0, 0, 0, 0, . . .

Table 1: Relative position sequences for some periodic words having small period.

Corollary 17. If w is periodic, so is ∆r(n). Moreover, if w = (w)ω and w contains k a’s
and j b’s, then lcm(k, j) is a period of ∆r.

To illustrate the above properties of periodic words w, we summarize some specific ex-
amples having small period in Table 2.

We note that the example w = (aabb)ω shows that the period of ∆r can be strictly smaller
than the periods of ∆pa and ∆pb.

In the remainder of this section, we discuss three more operators on the set of words
W—the deletion operator, the prefix operator, and the cloning operator.

Definition 18. Let Da : W → W and Db : W → W be the operators that delete the first
a and first b, respectively, in a word. The deletion operator D : W → W is defined by

D := Da ◦Db .

It is quite clear that Db and Da commute with each other, so also, D = Db ◦Da. Also,
the reflection operator, ·̄, satisfies the equalities Da ◦ ·̄ = ·̄ ◦Db and Db ◦ ·̄ = ·̄ ◦Da, so that
D and ·̄ commute, that is, D ◦ ·̄ = ·̄ ◦D.

With the language of the deletion operator in hand, we turn back to periodic sequences.

Lemma 19. Let w ∈ W. Then, ∆pb is periodic if and only if D
pb(1)
a (w) is periodic.

Proof. Since w′ = D
pb(1)
a (w) is just w with its initial run of a’s deleted, if there are any, then

∆pb,w = ∆pb,w′ . Hence, because w
′ ∈ Wb, the conclusion follows from Lemma 16.

Definition 20. The prefix operator, Preu : W → uW is the operator that adds the finite
word u to the start of any word. That is, Preu(w) = uw.

The identity Preu ◦ ·̄ = ·̄ ◦ Preū is immediate from the definitions.
The deletion and prefix operators allow one to classify binary words having the same

number of a’s and b’s. Here, we call a finite word u equilibrious provided it contains an
equal number of a’s and b’s.

Lemma 21. Let u ∈ Σ∗ be a word of length 2k. Then, u is equilibrious if and only if
Dk ◦ Preu = Id.

11



Proof. Let u ∈ Σ∗ be a word of length 2k. Note that for each w ∈ W ,

Dk ◦ Preu(w) = Dk(uw)

deletes the first k a’s and the first k b’s in uw.
Assume that u is equilibrious. Since u contains k a’s and k b, Dk(uw) deletes the first 2k

letters, which is the prefix u. That is, Dk(uw) = w.
Now suppose that Dk ◦ Preu = Id, and, toward a contradiction, let us further assume

that u is not equilibrious. Then, u either contains at least k + 1 a’s or it contains at least
k + 1 b’s. Without loss of generality, suppose that u contains at least k + 1 a’s. Let w ∈ W
be arbitrary and consider

Dk ◦ Preu(w) = Dk(uw) .

Here, u contains at most k− 1 b’s. Therefore, Dk deletes all the b’s in u, and deletes only k
of the at least k + 1 a’s in u. This immediately implies that Dk(uw) starts with an a. Thus,
we have Dk ◦ Preu(W) ⊆ aW ( W , a contradiction that proves the result.

We finish our focus on the prefix operator by showing that the addition of equilibrious
words eventually shifts the (relative) position function(s).

Lemma 22. Let u ∈ Σ∗ be an equilibrious word of length 2k and w ∈ W. Then, pa,Preu(w)(n+
k) = pa,w(n) + 2k and pb,Preu(w)(n+ k) = pb,w(n) + 2k. In particular, rPreu(w)(n+ k) = rw(n).

Proof. Each a and b in w shifts to the right by 2k spots in Preu(w) = uw, and has their
position (in order) increased by k, since there are k bits of same type introduced before it.
The claim follows.

In the last part of this section, we discuss how the (relative) position functions behave
on words under a binary substitution. Here, since we are interested in the set W of words
that have infinitely many occurrences of a and b, we restrict ourselves to the consideration
of binary substitutions µ such that both a and b appear in µ(ab).

In addition to the reflection operator, a particularly well-behaved family is the cloning
substitutions.

Definition 23. Let k > 1 be a positive integer. The cloning substitution φk : Σ → Σ∗ is
defined by

φk :

{

a → ak

b → bk .

Before proceeding, let us note in passing that for all k ≥ 2 we have φk(aW) ( aW and
φk(bW) ( bW . The proof of the following lemma is clear, so we omit it.

Lemma 24. Let w ∈ W and k ≥ 2. Then, for all m ∈ Z≥0 and all 1 ≤ j ≤ k, we have

pa,φk(w)(mk + j) = k pa,w(m+ 1) + j − 1

pb,φk(w)(mk + j) = k pb,w(m+ 1) + j − 1

rφk(w)(mk + j) = k rw(m+ 1) .

12



The formulas in Lemma 24 can be alternatively written in the form

pa,φk(w)(n) = k pa,w

(⌊n

k

⌋

+ 1
)

+ n− k
⌊n

k

⌋

− 1

pb,φk(w)(n) = k pb,w

(⌊n

k

⌋

+ 1
)

+ n− k
⌊n

k

⌋

− 1

rφk(w)(n) = k rw

(⌊n

k

⌋

+ 1
)

,

where ⌊·⌋ is the standard floor function. In particular, we have that the ratios pa,φk(w)(n)/n,
pb,φk(w)(n)/n and rφk(w)(n)/n have the same limits of indetermination as the ratios pa,w(n)/n,
pb,w(n)/n and rw(n)/n, respectively, as n → ∞.

3 Mean values of (relative) position functions

A nice consequence of Lemma 13 is that for binary words where the number of consecutive
identical letters is bounded, the relative position function is bounded, above and below, by
linear functions.

Lemma 25. Let w ∈ aW. Denote the longest run of a single letter in w by c. If

c : = sup{k : ℓn = ℓn+1 = · · · = ℓn+k−1, n ∈ Z≥0}
= sup{∆pa(n)− 1,∆pb(n)− 1 : n ∈ Z≥0} ∪ {pb(1)} < ∞ , (1)

then,

pa(n) ≤ (c+ 1)(n− 1) (2)

pb(n) ≤ (c+ 1)n− 1 . (3)

In particular, (1− c)n+ 1 ≤ r(n) ≤ cn.

Proof. Since ac+1 and bc+1 are not subwords of w, Lemma 13 gives both ∆pa(n) ≤ c+1 and
∆pb(n) ≤ c+ 1. Since pa(1) = 0 and pb(1) ≤ c, an easy induction yields (2) and (3).

Noting that pa(1) = 0, both pa(n) ≥ n − 1 and pb(n) ≥ n, thus combinations of the
upper bounds from the previous paragraph give c(1−n)+ 1 ≤ r(n) ≤ cn, which finishes the
proof.

Remark 26. The condition (1) is equivalent to the sets of positions of a and b, respectively,
being relatively dense in Z≥0. In particular, this always holds for infinite words that are
fixed points of primitive substitutions. For the definitions and examples related to relatively
dense sets and substitutions, see Baake and Grimm [4]. ✸

In general, the upper bounds in (2) and (3) cannot be improved. To see this, note that
for the periodic word w = (abc)ω we get equality in (2), and for the periodic word w = (acb)ω

we get equality in (3).
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Corollary 27. Let w ∈ W whose longest letter run c < ∞. Then,

pa(n) ≤ (c+ 1)n− 1 and pb(n) ≤ (c+ 1)n− 1.

In particular, −cn ≤ r(n) ≤ cn.

Proof. By applying the reflection operator and Lemma 25, we have, for w ∈ bW , that
pa(n) ≤ (c+ 1)n− 1, pb(n) ≤ (c+ 1)(n− 1), and −cn ≤ r(n) ≤ c(n− 1)− 1.

For a word w and a letter α ∈ Σ, let #α(n) = #α,w(n) denote the counting function of the
occurrences of α in the first n bits of w. Note that #α is an increasing function. For α ∈ {a, b},
it is immediate that #α(pα(n)) = n, and #α(m) = n if and only if pα(n) ≤ m < pα(n + 1)
for all n ≥ 1. In particular, #α ◦ pα = Id, pα ◦#α ≤ Id, and pα ◦ (#α + 1) > Id. Here, one
has to be mindful of indices as pα has domain Z≥0. The following lemma and corollary are
direct consequences of the relationships between #α(m) and pα(n),

Lemma 28. Let w ∈ W and α ∈ Σ. Then,

(a) lim
m→∞

#α(m)

m
= d ∈ (0, 1] if and only if lim

n→∞

pα(n)

n
=

1

d
,

(b) lim
m→∞

#α(m)

m
= 0 if and only if lim

n→∞

pα(n)

n
= ∞.

Corollary 29. Let w ∈ W and α ∈ Σ. Then

lim sup
m→∞

#α(m)

m
= lim sup

n→∞

n

pα(n)
and lim inf

m→∞

#α(m)

m
= lim inf

n→∞

n

pα(n)
.

For the remainder of this section, we focus on results concerning the frequency of the
letters in a binary word w. That is, for α ∈ Σ, the limit

Freq(α) = Freqα(w) := lim
m→∞

#α(m)

m
.

Our discussion involves possible existence as well as consequences if the frequency exists.
Note that frequency is often called natural density, especially in number theory. The following
result, follows from Lemma 28, and is also well-known—it is essentially folklore.

Theorem 30. Let w ∈ W and d ∈ (0, 1). The following are equivalent.

(i) Freq(b) exists and is d.

(ii) Freq(a) exists and is 1− d.

(iii) limn→∞ pb(n)/n = 1
d
.

(iv) limn→∞ pa(n)/n = 1
1−d

.
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Corollary 31. Let w be a word such that Freq(b) = d ∈ (0, 1). Then,

lim
n→∞

r(n)

n
=

1

d
− 1

1− d
=

1− 2d

d(1− d)
.

In particular, recalling that in a binary substitution the frequencies of the letters exist
and are proportional to the right Perron-Frobenius eigenvector, the following result holds.

Lemma 32. Let µ : Σ → Σ∗ be a primitive substitution and [u 1]T be a right Perron–
Frobenius eigenvector for the incidence matrix Mµ. Let w ∈ W be a fixed point of µ; that is,
µ(w) = w. Then, the following limits exist

Freq(a) =
u

u+ 1
, Freq(b) =

1

u+ 1
, lim

n→∞

pa(n)

n
= 1 +

1

u
, (4)

lim
n→∞

pb(n)

n
= u+ 1, and lim

n→∞

r(n)

n
= u− 1

u
=

u2 − 1

u
.

Moreover, all the above limits belong to Q(λPF ), where λPF is the Perron–Frobenius eigen-
value of Mµ.

Proof. The equations in (4) follow from the fact that the frequencies exist and are propor-
tional to [u 1]T . The existence and values of the remaining limits follow immediately from
the previous results.

Let Mµ ∈ M2(Z) be the incidence matrix, λPF its Perron–Frobenius eigenvalue. Then
0 6= u ∈ Q(λPF ).

Proposition 33. Let w ∈ W, and suppose that limn→∞ r(n)/n =: r ∈ [−∞,∞]; that is, r
takes a value in the extended real numbers. Then

Freq(b) =







0, if r = ∞;

1, if r = −∞;
1
2
, if r = 0;

2+r−
√
4+r2

2r
, if r ∈ (−∞, 0) ∪ (0,∞).

Proof. First, suppose r = ∞. Since r(n)/n = pb(n)/n − pa(n)/n is the difference of two

positive sequences then we must have limn→∞
pb(n)
n

= ∞. Thus, by Theorem 30, Freq(b) = 0.

If r = −∞, then, as above, we must have limn→∞
pa(n)
n

= ∞. Thus, by Lemma 28, we
have Freq(a) = 0, so Freq(b) = 1.

Now suppose that r ∈ (−∞,∞). Due to the existence of limn→∞ r(n)/n and that r(n) =
pb(n)− pa(n), a classical limit equality gives that

lim sup
n→∞

pb(n)

n
= lim sup

n→∞

r(n) + pa(n)

n
= lim

n→∞

r(n)

n
+ lim sup

n→∞

pa(n)

n
.
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Then, using Corollary 29,

r = lim
n

r(n)

n
= lim sup

n→∞

pb(n)

n
− lim sup

n→∞

pa(n)

n

=
1

lim inf
m→∞

#b(m)

m

− 1

lim inf
m→∞

#a(m)

m

=
1

lim inf
m→∞

#b(m)

m

− 1

1− lim inf
m→∞

#b(m)

m

=
1− 2 lim inf

m→∞

#b(m)

m

lim inf
m→∞

#b(m)

m

(

1− lim inf
m→∞

#b(m)

m

) .

Set d− := lim infm
#b(m)

m
∈ (0, 1) to make the analysis cleaner. Hence,

r =
1− 2d−

d−(1− d−)
.

When r = 0, we thus have d− = 1
2
, while when r 6= 0, we obtain rd2− − (2 + r)d− + 1 = 0 so

that

d− =
2 + r ±

√

(2 + r)2 − 4r

2r
=

2 + r ±
√
4 + r2

2r
.

Note that when r 6= 0, the quadratic polynomial f(x) = rx2 − (2 + r)x + 1 satisfies f(0) =
1 > 0 and f(1) = −1 < 0, and therefore, has exactly one zero d− ∈ (0, 1), which uniquely
identifies d−.

Repeating the same argument with d+ := lim supm→∞
#b(m)

m
∈ (0, 1) yields

r = lim inf
n

r(n)

n
=

1− 2d+
d+(1− d+)

.

By uniqueness, d− = d+, so d = Freq(b) exists. As noted above, if r = 0, then d = 1
2
, and

when r 6= 0, d is equal to the single value satisfying

d =
2 + r ±

√
4 + r2

2r
∈ (0, 1).

If r > 0,
√
4 + r2 > r so that 2+r+

√
4+r2

2r
> 1, and d = 2+r−

√
4+r2

2r
. On the other hand, if

r < 0, then −r = |r| < 2 +
√
4 + r2, and

2 + r +
√
4 + r2

2r
< 0

Thus, again, d = 2+r−
√
4+r2

2r
.
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Theorem 34. If one of the limits

r := lim
n

r(n)

n
, p := lim

n

pb(n)

n
, or q := lim

n

pa(n)

n
,

exist, then they all exist and 1
p
+ 1

q
= 1. Moreover, on the extended reals,

p =
2 + r +

√
4 + r2

2
and q =

2− r +
√
4 + r2

2
.

Proof. The previous proposition proves the simultaneous existence of these limits. Hence,
we have r = p − q and 1

p
+ 1

q
= Freq(b) + Freq(a) = 1. Thus, r = p − p

p−1
, so that

p2 − (2 + r)p+ r = 0, from which we obtain

p =
2 + r ±

√
4 + r2

2
.

By the previous proposition, when r ∈ (−∞, 0) ∪ (0,∞),

p =
1

d
=

2r

2 + r −
√
4 + r2

=
2r(2 + r +

√
4 + r2)

(2 + r)2 − (4 + r2)
=

2 + r +
√
4 + r2

2
.

Observe that this formula also holds true for r ∈ {0,±∞}, and q = p− r = 2−r+
√
4+r2

2
.

We finish this section by considering what happens to the asymptotics of the (relative)
position functions under a binary substitution. This is addressed by the following result on
the frequency of letters of a fixed point of a binary substitution—this result is folklore, so
we omit its proof.

Theorem 35. Let µ : Σ → Σ∗ be a substitution with incidence matrix Mµ ∈ M2(Z) such
that a and b appear in µ(ab). If w ∈ W is any word such that Freq

a
(w) exists, then

[
Freq

a
(µ(w))

Freq
b
(µ(w))

]

=
1

|µ(a)| · Freq
a
(w) + |µ(b)| · Freq

b
(w)

·Mµ ·
[
Freq

a
(w)

Freq
b
(w)

]

.

Of course, once you have the letter frequencies, you have the relative position asymptotics.

Example 36. Let w ∈ W , k ≥ 2, and let φk be the k-cloning substitution. The incidence
matrix of φk is kI2. Using the above theorem, or Lemma 24, if one of the limits below exist,
then all exist, and Freqα(w) = Freqα(φk(w)) for α ∈ Σ,

lim
n→∞

rw(n)

n
= lim

n→∞

rφk(w)(n)

n
, lim

n→∞

pa,w(n)

n
= lim

n→∞

pa,φk(w)(n)

n
,

and lim
n→∞

pb,w(n)

n
= lim

n→∞

pb,φk(w)(n)

n
.
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4 The Fibonacci and extended Pisa substitution family

In this section, we look at the extended Pisa family of substitutions, whose canonical example
is the Fibonacci substitution. To introduce this family, we start this section by focusing on
the Fibonacci substitution and emphasize some features that are exclusive to this example.

Definition 37. We call the substitution,

µF :

{

a → ab

b → a ,

the Fibonacci substitution, and the resulting one-sided infinite fixed point,

f := abaababa · · · = lim
n→∞

µn
F (a) ,

the Fibonacci word.

We start with the first of two main results of this section.

Theorem 38. The Fibonacci word f has the following properties.

(a) ∆pa is the sequence obtained from the Fibonacci word under the coding (a, b) = (1, 2).

(b) ∆pb is the sequence obtained from the Fibonacci word under the coding (a, b) = (2, 3).

(c) r(n) = n and ∆r = 1. In particular, ∆r is periodic.

Proof. (a) Consider the level-1 supertiles A1 := µF (a) = ab and B1 := µF (b) = a. Each such
supertile contains exactly one a, at the beginning. This means that, for all n ≥ 1 the n-th
a is the first letter of the n-th level-1 supertile.

Now, if the n-th letter in the Fibonacci word is a, then the n-th supertile is A1 = ab.
This means that the n-th a is followed by b, and then, since there are no two b’s in a row,
that b is followed by a. This implies that the distance between the n-th and (n+ 1)-th a is
2 whenever the n-th letter in the Fibonacci word is a.

Next, if the n-th letter in the Fibonacci word is b, then the n-th supertile is B1 = a. Since
B1B1 never appears, this B1 is followed by A1 = ab. This implies that the distance between
the n-th and (n+ 1)-th a is 1 when the n-th letter in the Fibonacci word is b. Therefore

∆pa(n) =

{

2, if the nth letter in f is a;

1, if the nth letter in f is b.

(b) Consider the level-2 supertiles A2 := µ2
F (a) = aba and B2 := µ2

F (b) = ab. Each such
supertile contains exactly one b, in the second position. This means that, for all n ≥ 1 the
n-th b is the second letter of the n-th level-2 supertile.
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Now, if the n-th letter in the Fibonacci word is a, then the n-th level two supertile is
A2 = aba. The next supertile starts with ab since A2 = aba and B2 = ab. This implies that
the distance between the n-th and (n+1)-th b is 3 whenever the n-th letter in the Fibonacci
word is a.

Next, if the n-th letter in the Fibonacci word is b, then the n-th level-2 supertile is
B2 = ab. The next level-2 supertile starts with ab, again since both A2 and B2 start with
ab. This implies that the distance between the n-th and (n+1)-th b is 2 whenever the n-th
letter in the Fibonacci word is b. Therefore

∆pb(n) =

{

3, if the nth letter in f is a;

2, if the nth letter in f is b.

(c) By (a) and (b) we have ∆r(n) = 1 for all n. By looking at the first 2 letters in the
Fibonacci word f, we get that r(1) = 1.

Theorem 38 implies that the Fibonacci word is the only word such that r(n) = n.
Theorem 57 below gives a different proof of the fact that rf(n) = n. We prove below, in
Theorem 46, that the Fibonacci word is the unique non-periodic word that satisfies properties
(a) and (b) in Theorem 38, with (1, 2) and (2, 3) replaced by any two tuples.

Let τ = 1+
√
5

2
be the golden ratio. By Lemma 32, the Fibonacci f word satisfies

Freq
f
(a) =

τ

τ + 1
, Freq

f
(b) =

1

τ + 1
, and lim

n→∞

rf(n)

n
= τ + 1− τ + 1

τ
=

τ 2 − 1

τ
= 1 .

Of course this holds by the previous theorem, but it is important to realize that the substi-
tution itself was telling us that rf(n) had to at least be asymptotically n.

We can characterize all substitutions such that limn→∞ r(n)/n = 1. We require the
following preliminary result.

Lemma 39. Let M ∈ M2(Z). Then, [τ 1]T is a right eigenvector for M if and only if there
exists m,n ∈ Z such that

M =

[
m+ n m
m n

]

= m

[
1 1
1 0

]

+ n

[
1 0
0 1

]

.

Moreover, in this case, the eigenvalues of M are n+mτ and n+mτ ′, where τ ′ = (1−
√
5)/2

is the algebraic conjugate of τ .

Proof. (⇐). This direction follows easily from
[
m+ n m
m n

] [
τ
1

]

=

[
mτ + nτ +m

mτ + n

]

= (mτ + n)

[
τ
1

]

.

(⇒). Define M by

M =

[
k l
m n

]

∈ M2(Z).
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The eigenvalue-eigenvector equation M [τ 1]T = λ [τ 1]T is equivalent to the linear system

kτ + l = τλ

mτ + n = λ .

Therefore, λ = λ1 = mτ + n = k − lτ ′ ∈ Z[τ ]. Since M has integer entries, the second
eigenvalue is the algebraic conjugate λ2 = mτ ′ + n = k − lτ . Then,

k + n = Tr(M) = λ1 + λ2 = (mτ + n) + (mτ ′ + n) = (k − lτ ′) + (k − lτ) .

It follows that k + n = 2n+m = 2k − l, hence k = n+ l and l = m. Therefore,

M =

[
m+ n m
m n

]

,

which is the desired result.

Example 40. When m = fk, n = fk−1 are consecutive Fibonacci numbers, we have

M =

[
m+ n m
m n

]

=

[
fk+1 fk
fk fk−1

]

=

[
1 1
1 0

]k

.

The ring Z[τ ] is a free Z-module with basis {τ, 1}. Now, each element mτ + n induces a
Z-linear homomorphism Tmτ+n : Z[τ ] → Z[τ ]. The matrix M is exactly the matrix of the
linear mapping Tmτ+n with respect to the canonical basis {τ, 1}. The product of the matrices
M and

M ′ =

[
m′ + n′ m′

m′ n′

]

has [τ 1]T as a right eigenvector, hence MM ′ must also be of this form. ✸

Lemma 41. Let µ : Σ → Σ∗ be any primitive substitution, w ∈ W such that µ(w) = w, and
Mµ be the incidence matrix of µ. The following are equivalent.

(i) limn→∞ r(n)/n = 1.

(ii) [τ 1]T is a right Perron–Frobenius eigenvector for Mµ.

Proof. Let [u 1]T be a right Perron–Frobenius eigenvector of Mµ. By Lemma 32, we have

lim
n→∞

r(n)

n
=

u2 − 1

u
.

Now, (i) holds if and only if u2−1
u

= 1, so u ∈ {τ, τ ′}. Since the right Perron–Frobenius
eigenvector is positive, (i) holds if and only if u = τ . This shows (i)⇔(ii).
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Example 42. For each m ∈ N and n ∈ Z≥0, the substitution

µ :

{

a → am+nbm

b → ambn

is a primitive substitution with incidence matrix

Mµ =

[
m+ n m
m n

]

.

This family of substitutions, and all their permutations such that µ(a) starts with a, give all
the substitutions with fixed words w ∈ aW satisfying

lim
n→∞

r(n)

n
= 1 , (5)

while all the permutations of these µ(a) and µ(b) with the property that µ(b) starts with b

yield all the substitutions with fixed words w ∈ bW satisfying (5). ✸

Now, we discuss the binary words satisfying r(n) = n + 1, and then the generalization
r(n) = n+ j for any j. Since r(n) does not vanish, we must have j ≥ 0. On the other hand,
for j ≥ 0, the sequence r(n) = n + j is a strictly increasing sequence of positive integers,
hence there exists a unique w such that r(n) = n+ j.

We start this discussion with the following corollaries of Theorem 38.

Theorem 43. Let f be the Fibonacci word and w = D(f) be the Fibonacci word with the
initial ab deleted. Then, rw(n) = n+ 1 for all n.

Theorem 44. Let wk = Dk(f), the word obtained from the Fibonacci by deleting the first
k a’s and the first k b’s. Then, there exists some N = N(k) such that, for all n > N ,
rwk(n) = n+ k.

Now, the word D2(f) has r(n) = n + 2 for all n ≥ 2 and r(1) = 2. Moreover, we show
below that Dk(f) is not a fixed point of a primitive substitution for any k ≥ 1.

We now show that w = D(f) can be obtained from Fibonacci via a different process. In
particular, we get that two completely unrelated processes applied to the Fibonacci word
lead to the same result.

Theorem 45 (The Fibonacci switch). Let µ : Σ → Σ∗ be defined by µ(a) = aab and
µ(b) = ab. Next, split the Fibonacci word f into level-2 supertiles, replace each level-2
supertile A2 = aba by µ(a) = aab, and keep each level-2 supertile B2 = ab = µ(b) unchanged.
Let

w = aab
︸︷︷︸

µ(a)

ab
︸︷︷︸

µ(b)

aab
︸︷︷︸

µ(a)

aab
︸︷︷︸

µ(a)

ab
︸︷︷︸

µ(b)

aab
︸︷︷︸

µ(a)

ab
︸︷︷︸

µ(b)

aab
︸︷︷︸

µ(a)

· · ·

be the word obtained via this Fibonacci switch. Then w = µ(f) = D(f).
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Proof. Consider the n-th letter in the Fibonacci word f. Let us compare the switches in

w = aab
︸︷︷︸

µ(a)

ab
︸︷︷︸

µ(b)

aab
︸︷︷︸

µ(a)

aab
︸︷︷︸

µ(a)

ab
︸︷︷︸

µ(b)

aab
︸︷︷︸

µ(a)

ab
︸︷︷︸

µ(b)

aab
︸︷︷︸

µ(a)

· · ·

f = aba
︸︷︷︸

A2

ab
︸︷︷︸

B2

aba
︸︷︷︸

A2

aba
︸︷︷︸

A2

ab
︸︷︷︸

B2

aba
︸︷︷︸

A2

ab
︸︷︷︸

B2

aba
︸︷︷︸

A2

· · ·

Here, the supertiles we are comparing are

A2 = aba ↔ µ(a) = aab and B2 = ab ↔ µ(b) = ab.

Each of these four supertiles contains exactly one b, and the order of A2 and B2 (µ(a) and
µ(b)) is the same as the order of letters in the Fibonacci word. Whenever an A2 supertile
appears, then the position of the corresponding b in µ(a) increases by 1. Whenever a B2
supertile appears, then the position of the corresponding b in µ(b) stays the same. It follows
that

pb,w(n) =

{

pb,f(n) + 1, if the nth letter in f is a;

pb,f(n), if the nth letter in f is b.

Next, recall that

A2 = A1B1 = (ab)a ↔ µ(a) = aab and B2 = A1 = ab ↔ µ(b) = ab.

Looking at the position changes of a’s, we see immediately that the a in B1 moves one position
back in w, and the a in A1 stays in the same position. Thus,

pa,w(n) =

{

pa,f(n), if the nth letter in f is a;

pa,f(n)− 1, if the nth letter in f is b.

This implies that w has relative position function rw(n) = rf(n) + 1 = n + 1. Thus, by
uniqueness and Theorem 43, w = µ(f) = D(f).

We now prove our second and final main result of this section—combining the property
of aperiodicity/non-triviality with the generalization of the properties in Theorem 38(a) and
Theorem 38(b) uniquely identifies the Fibonacci word f.

Theorem 46. Let w ∈ aW be a word. Then, both ∆pa and ∆pb are codings of w if and only
if either w = f or w = (ab)ω.

In particular, f is the only aperiodic word in aW that is isomorphic to both ∆pa and ∆pb.

Proof. Before proceeding, we summarize our strategy. First, we show that any word starting
with aa and satisfying the given conditions must consist of a’s only. Therefore, we can focus
on words starting with ab. This means that ∆pa(1) and ∆pa(2) uniquely identify k and l
and ∆pb(1) and ∆pb(2) uniquely identify m and n. To obtain one of these, we need to look
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at the first few bits of w. Finally, knowing one of the pairs (k, l) or (m,n) and that w ∈ abW ,
we can reconstruct w. Let us proceed along these lines.

Toward a contradiction, assume that w starts with aa. Then, under the coding a → k,
the sequence ∆pa starts with k, k. Since ∆pa(1) = 1, we get that k = 1, hence ∆pa starts
with 1, 1. A short induction proves that for each n, w starts with an, and so ∆pa(1) starts
with n repeated 1s. Therefore, w = aω /∈ aW , a contradiction.

Now, we look at six cases.
Case 1. Suppose w = abaa · · · . Under the coding (a, b) = (k, l), the sequence ∆pa

starts with k, l, k, k. Since ∆pa(1) = 2 and ∆pa(2) = 1, we get that (k, l) = (2, 1). For
simplicity, let w = ℓ0ℓ1ℓ2 · · · and f = f0f1f2 · · · . We prove by induction that fj = ℓj for
all j ∈ Z≥0. By hypothesis, fj = ℓj for 0 ≤ j ≤ 3. Next, suppose fj = ℓj, 0 ≤ j ≤ r.
Then, ∆pa,w(j) = ∆pa,f(j), for 0 ≤ j ≤ r. As pa,w(1) = 0 = pa,f(1), it follows that the
positions of the first r + 1 a’s in w and f agree. Hence, the bits of w and f are the same
up to position pa,w(r + 1) = pa,f(r + 1). Now, since pa,f(2) = 2, we trivially get that
pa,f(r + 1) = pa,w(r + 1) ≥ r + 1. Therefore ℓr+1 = fr+1.

Case 2. Suppose that w = ababa · · · . Then, the sequence ∆pa starts with k, l, k, l, k,
hence k = l = 2. This shows that ∆pa(j) = 2 for all j ≥ 1. Thus w = (ab)ω.

Case 3. Suppose w = ababb · · · . Then, the sequence ∆pb starts with m,n,m, n, n, which
gives (m,n) = (2, 1), hence ∆pb starts with 2, 1, 2, 1, 1. Since pb(1) = 1, the first six positions
of b in w are 1, 3, 4, 6, 7, 8, so w = ababbabbb · · · , which implies that ∆pa starts with 2, 3,m
with m ≥ 4, a contradiction to the hypothesis that ∆pa is obtained from w by under a coding
(a, b) = (k, l).

Case 4. Suppose w = abbaa · · · . Here, ∆pa(1) = 3 and ∆pa(2) = 1, which gives that
(k, l) = (3, 1), hence ∆pa starts with 3, 1, 1, 3, 3. Since pa(1) = 0, the first six positions of a
in w are 0, 3, 4, 5, 8, 11, so w = abbaaabbabba · · · . This immediately implies that ∆pb starts
with 1, 4, 1, 2, which contradicts the fact that ∆pb is obtained from w by under a coding
(a, b) = (m,n).

Case 5. Suppose w = abbab · · · . In this case, ∆pb(1) = 1 and ∆pb(2) = 2, which
implies that (m,n) = (1, 2), hence ∆pb starts with 1, 2, 2, 1, 2. Since pb(1) = 1, the first six
positions of b in w are 1, 2, 4, 6, 7, 9, so w = abbababbab · · · . This immediately implies that
∆pa starts with 3, 2, 3, which contradicts the fact that ∆pa is obtained from w by under a
coding (a, b) = (k, l).

Case 6. Finally, suppose w = abbb · · · . This implies that ∆pb starts with 1, 1. Therefore,
∆pb is obtained from w under the coding (a, b) = (1, 1), which implies that ∆pb(n) = 1 for
all n. In particular, a appears in w only on the first position, which contradicts w ∈ aW .

This completes the proof.

Remark 47. For each pair (k, l) ∈ N × N with k 6= 1, there exists a unique word wk,l ∈ aW
with the property that ∆pa is obtained from wk,l under the coding (a, b) = (k, l). ✸

Combining Theorem 46 with the reflection operator, we obtain

Corollary 48. Let w ∈ bW be a word. Then, both ∆pa and ∆pb are codings of w if and only
if either w = f̄ or w = (ba)ω.
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In particular, f̄ is the only aperiodic word in bW that is isomorphic to both ∆pa and ∆pb.

Since the Fibonacci word f is isomorphic via reflection to f̄, we have the following.

Corollary 49. The Fibonacci word f is, up to isomorphism, the only aperiodic binary word
that is isomorphic to the difference sequence of the position function of each letter.

Now, we consider a variant of the Fibonacci substitution.

Definition 50. We call the substitution,

µ′
F :

{

a → ba

b → a ,

the backwards Fibonacci substitution, or the iccanobiF substitution.

The substitution µ′
F does not have a fixed point, but (µ′

F )
2 has two fixed points, one

starting with a, and one starting with b. We look at the fixed points of (µ′
F )

2 and their
relative position functions. To explicitly calculate these fixed points, we relate µ′

F to the
Fibonacci substitution µF .

The substitutions µF and µ′
F are conjugate [4, Remark 4.6]. More precisely, for all words

w ∈ Σ∗, we have µF (w)a = aµ′
F (w). Our immediate goal is to show that we can relate

µn
F and (µ′

F )
n via conjugation relations. Noting that for n ≥ 1, we have µn

F (b) = µn−1
F (a)

and (µ′
F )

n(b) = (µ′
F )

n−1(a), it suffices to relate µn
F (a) to (µ′

F )
n(a). We achieve this in the

following result.

Proposition 51. For all n ≥ 1, we have both

(a) abµ2n
F (a) = (µ′

F )
2n(a)ba, and

(b) baµ2n−1
F (a) = (µ′

F )
2n−1(a)ab.

Proof. We prove both by induction.
(a) For n = 1, we have abµ2

F (a) = ababa = (µ′
F )

2 (a)ba. Now suppose the result holds
for some n ≥ 1. Then

abµ2n+2
F (a) = abµ2n

F (aba) = abµ2n
F (a)µ2n−1

F (a)µ2n
F (a)

= (µ′
F )

2n(a)baµ2n−1
F (a)µ2n

F (a) = (µ′
F )

2n(a)(µ′
F )

2n−1(a)abµ2n
F (a)

= (µ′
F )

2n(a)(µ′
F )

2n−1(a)(µ′
F )

2n(a)ba = (µ′
F )

2n(aba)ba = (µ′
F )

2n+2(a)ba .

(b) For n = 1, we have baµ1
F (a) = baab = (µ′

F )
1 (a)ab. Now suppose the result holds for

some n ≥ 1. Then

baµ2n+1
F (a) = baµ2n−1

F (aba) = baµ2n−1
F (a)µ2n−2

F (a)µ2n−1
F (a)

= (µ′
F )

2n−1(a)abµ2n−2
F (a)µ2n−1

F (a) = (µ′
F )

2n−1(a)(µ′
F )

2n−2(a)baµ2n−1
F (a)

= (µ′
F )

2n−1(a)(µ′
F )

2n−2(a)(µ′
F )

2n−1(a)ab = (µ′
F )

2n(aba)ba = (µ′
F )

2n+2
(a)ab.
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Similarly, we have the following result.

Proposition 52. For all n ≥ 1, we have both

(a) abµ2n+1
F (b) = (µ′

F )
2n+1 (b)ba, and

(b) baµ2n
F (b) = (µ′

F )
2n (b)ab.

As a consequence, we can understand the fixed points of (µ′
F )

2.

Theorem 53. Let µ′
F be the iccanobiF substitution and f be the Fibonacci word. Then, the

one-sided fixed points of (µ′
F )

2 (starting with a or b) exist, and satisfy

lim
n→∞

(µ′
F )

2n(a) = Preab(f) ∈ aW and lim
n→∞

(µ′
F )

2n(b) = Preba(f) ∈ bW .

Moreover, we have both

rPreab(f)(n) =

{

1, if n = 1;

n− 1, if n > 1;
and rPreba(f)(n) =

{

−1, if n = 1;

n− 1, if n > 1.

Proof. By Proposition 51, we have (µ′
F )

2n(a)ba = abµ2n
F (a). Letting n tend to infinity, we

get abf = Preab(f). Similarly, (µ′
F )

2n−1(a)ab = baµ2n−1
F (a), which gives baf = Preba(f).

The remaining claims follow immediately.

Remark 54. The Fibonacci word f is the coding of the intercept 1/τ 2 under the 2-interval
exchange Ia = [0, 1/τ) and Ib = [1/τ, 1]. From this point of view, it is clear that Preab(f) and
Preba(f) are codings of intercepts 0 and 1, respectively, under the same interval exchange.
Hence, it is clear that both are fixed by the same substitution; see Dekking [7]. ✸

We now note a result, which shows what one can obtain words w from the Fibonacci
words such that eventually rw(n) = n+ j for all values of j.

Theorem 55. Let w be any equilibrious word of length 2j and let wj = Prew(f). Then, for
all n > j we have rwj(n) = n− j.

Moreover, if w = (ab)j, then rwj(1) = rwj(2) = · · · = rwj(j) = 1.

We now turn to the one-sided fixed points of the family of substitutions µ on Σ with the
property that µ(a) and µ(b) contain one b in total. We add two further restrictions on this
family. First, if the b appears in µ(b), then a → µ(a) generates the 1-sided word containing
only a, which is not interesting. Therefore, we assume that the single b appears in µ(a).
In this case, the only way of getting a fixed point for µ, and not only for one of its larger
powers, is if µ(a) starts with a—this is our second restriction. Therefore, we consider the
following family of substitutions.

Definition 56. The extended Pisa family of substitutions is given by σk,l,m with k,m ≥ 1
and l ≥ 0, where

σk,l,m :

{

a → akbal

b → am .
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Note that, in the case l = 0 and m = 1, the substitutions σk,0,1 are called the noble means
substitutions [4, Rem. 4.7] [10], and σ1,0,2 is the period-doubling substitution [4, Sect. 4.5.1].

For general k, l, and m, the incidence matrix is

M = Mσk,0,1
=

[
k + l 1
m 0

]

.

Since M2 > 0, M is a primitive matrix. Its two distinct eigenvalues are

λ± =
(k + l)±

√

(k + l)2 + 4m

2
,

which only depend on the two parameters k + l and m. Since the product of eigenvalues
is det(M) = −m < 2, we have λ− < 0. Thus, the substitution is Pisot (see Sing [17] for
definition and properties) if and only if m < (k+l)+1. When m = (k+l)+1, the eigenvalues
are λ+ = (k + l) + 1 and λ− = −1.

We now prove a result, which significantly extends the results on the Fibonacci substi-
tution, (k, l,m) = (1, 0, 1).

Theorem 57. Let k,m ≥ 1, l ≥ 0, and w be the one-sided fixed point of σk,l,m. Then,

pb(n) = m · pa(n) + (k + l + 1−m)n+m− l − 1 .

In particular,
r(n) = (m− 1) · pa(n) + (k + l + 1−m)n+m− l − 1. (6)

Moreover, w is the unique word satisfying (6).

Proof. We split w into level-1 supertiles A = akbal and B = am, so that

w = a · · ·
︸︷︷︸

X0=A

a · · ·
︸︷︷︸

X1

a · · ·
︸︷︷︸

X2

· · · ,

where Xi ∈ {A, B} for each i ≥ 0. To calculate the position pb(n) of the n-th b, we note that
each A contains exactly one b and each B contains no b. This means that the n-th b appears
in the n-th A supertile. For simplicity, set j := pa(n), so that the n-th b appears inside Xj .
Now, there are j supertiles before Xj. Since Xj is the n-th A supertile, there are exactly
n− 1 supertiles A before Xj . The remaining j − n+1 supertiles are B supertiles. Since each
A supertile contains k + l + 1 letters and each B supertile contains m letters, there are

(n− 1)(k + l + 1) + (j − n+ 1)m

letters before the supertile Xj . Further, the single b is in position k + 1 inside Xj. Remem-
bering that our index count starts at 0, for w = ℓ0ℓ1 · · · , we have

pb(n) = (n− 1)(k + l + 1) + (j − n+ 1)m+ k

= n(k + l + 1) + (pa(n)− n+ 1)m+ k − (k + l + 1)

= m · pa(n) + (k + l + 1−m)n+m− l − 1 ,
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which proves the first claim as well as (6).
Lastly, we prove uniqueness of w satisfying (6). Note that this is not a trivial fact, since,

in general, r(n) uniquely determines w only when it is a specific function of n. Suppose
w′ ∈ W has a relative position function satisfying (6) for some k,m ≥ 1 and l ≥ 0. Since
pa,w′(n) ≥ n,

pb,w′(n) = m · pa,w′(n) + (k + l + 1−m)n+m− l − 1

≥ pa,w′(n) + (m− 1)n+ (k + l + 1−m)n+m− l − 1

= pa,w′(n) + kn+ ln+m− l − 1

= pa,w′(n) + kn+ l(n− 1) + (m− 1) > pa,w′(n) .

This implies that pa,w′(1) = 0. Now, we reconstruct in the straightforward manner, where
the (n+ 1)-th a is placed in the first unoccupied spot and the (n+ 1)-th b is placed further
along according to the formula. Thus, there is only one word that is constructed from these
formulas, which must be the fixed point of σk,l,m.

Corollary 58. Let k,m ≥ 1, l ≥ 0, and w be the one-sided fixed point of σk,l,m. Then,

r(n) =

(
m− 1

m

)

pb(n) +

(
k + l + 1−m

m

)

n+
m− l − 1

m
.

Now, we illustrate this result with a few examples.

Example 59. Recall from above, the family of noble means substitutions are given by σk,0,1.
The members of this family behave like the Fibonacci substitution. In particular, for each
fixed point, we have r(n) = kn. ✸

Example 60. The period-doubling substitution µpd is given by

µpd := σ1,0,2 :

{

a → ab

b → aa ,

which has the unique one-sided fixed point

w = lim
n→∞

µn
pd(a) = lim

n→∞
σn
1,0,2(a) = abaaabababaa · · · .

By Theorem 57, we have pb(n) = 2pa(n) + 1, and

r(n) = pa(n) + 1 =
1

2
· pb(n) +

1

2
.

Analogous to the noble means family, the period-doubling substitution and its fixed point is
part of a well-behaved family, specifically,

σk,0,k+1 :

{

a → akb

b → ak+1 ,

where pb(n) = (k + 1)pa(n) + 1 and r(n) = k · pa(n) + 1 =
(

k
k+1

)
pb(n) +

k
k+1

. ✸
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Example 61. The “mixture/addition” of Fibonacci and period-doubling is most interesting.
Here, let w be the one-sided fixed point of

σ2,0,2 :

{

a → aab

b → aa.

Then, by Theorem 57, pb(n) = 2 · pa(n) + n + 1 and r(n) = pa(n) + n + 1. Further, since
each level-1 supertile contains exactly two a’s, which are consecutive, we can relabel this
substitution using (α, β) := (aa, b). The relabeled fixed word is the fixed word w′ of the
substitution σ′ satisfying

σ′(α) = σ2,0,2(aa) = aabaab = αβαβ and σ′(β) = σ2,0,2(b) = aa = α .

Moreover, the relation pb,w(n) = 2 · pa,w(n) + n+ 1 implies that

pβ,w′(n) = pa,w(n) + n+ 1 ,

so that
rw(n) = pb,w(n)− pa,w(n) = pβ,w′(n),

which, we find, is an interesting relationship between these infinite words. ✸

To finish this section, we obtain the letter frequencies and the mean values of the the
(relative) position functions for the entire extended Pisa family, which come as a generaliza-
tion of the Fibonacci example. First, note that the Perron–Frobenius eigenvalue of Mσk,l,m

,
as mentioned above, is τk+l,m where

τj,m :=
j +

√

j2 + 4m

2
,

and the right Perron–Frobenius eigenvector is [τk+l,m 1]T . The characteristic polynomial of
Mσk,l,m

is X2 − (k + l)X −m, so

τ 2k+l,m = (k + l)τk+l,m +m.

In particular,
1

τk+l,m

=
τk+l,m − (k + l)

m
.

A direct application of Lemma 32 and (6) gives

Freq(a) =
τk+l,m

τk+l,m + 1
=

τj,m −m

k + l + 1−m
, Freq(b) =

1

τk+l,m + 1
=

k + l + 1− τk+l,m

k + l + 1−m
,

lim
n→∞

pa(n)

n
= 1 +

τk+l,m − (k + l)

m
, lim

n→∞

pb(n)

n
= τk+l,m ,

and

lim
n→∞

r(n)

n
=

(m− 1)τk+l,m + k + l

m
= (m− 1) · lim

n→∞

pa(n)

n
+ (k + l + 1−m) .

Analogous to the proofs of Theorem 67 and Lemma 41, we establish the following.
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Proposition 62. Let j and m be two positive integers and let µ be a primitive binary
substitution with incidence matrix Mµ. Let w be a fixed point of the substitution. Then, the
following are equivalent.

(i) Freq(a) =
τj,m−m

j+1−m
.

(ii) Freq(b) =
j+1−τj,m
j+1−m

.

(iii) lim
n→∞

pa(n)

n
= 1 +

τj,m − j

m
.

(iv) lim
n→∞

pb(n)

n
= τj,m + 1.

(v) lim
n→∞

r(n)

n
=

(m− 1)τj,m + j

m
.

(vi) lim
n→∞

r(n)

n
= (m− 1) lim

n→∞

pa(n)

n
+ (j + 1−m).

(vii) [τj,m 1]T is a right eigenvector for Mµ.

Proof. Let [u 1]T be the right Perron–Frobenius eigenvector for Mµ. Then, u > 0. The
discussion above shows that u = τj,m is the unique solution to each of the linear equations

u

u+ 1
=

τj,m
τj,m + 1

=
τj,m −m

j + 1−m
,

1

u+ 1
=

1

τj,m + 1
=

j + 1− τj,m
j + 1−m

,

1 +
1

u
= 1 +

τj,m − j

m
, and u+ 1 = τj,m + 1.

Applying Lemma 32 proves the equivalence of (i), (ii), (iii), (iv) and (vii).
Next, the quadratic equation

u2 − 1

u
=

(m− 1)τj,m + j

m

has u = τj,m as one of the solutions. Since the product of the solutions is −1, it follows that
u = τj,m is the only positive solution. So, Lemma 32 gives the equivalence of (v) and (vii).

Also by Lemma 32, we have

lim
n→∞

r(n)

n
= (m− 1) lim

n→∞

pa(n)

n
+ (j + 1−m),

if and only if
u2 − 1

u
= (m− 1)(1 +

1

u
) + (j + 1−m),
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if and only if
u2 − 1

u
=

m− 1

u
+ j,

if and only if u2 − ju−m = 0, which, again, has the unique positive solution u = τj,m. This
finishes the proof.

Finally, we have the following result.

Theorem 63. Let j and m be two positive integers and let M ∈ M2(Z).

(a) If j2 + 4m is not a perfect square, then [τj,m 1]T is a right eigenvector for M if and
only if there exist integers s and t such that

M =

[
t+ sj ms

s t

]

.

(b) If j2 + 4m = r2 for some r ∈ Z, then [τj,m 1]T is a right eigenvector for M if and only
if there exist integers s, t, u, and v such that u(j + r)2 + 2(v − s)(j + r)− 4t = 0 and

M =

[
s t
u v

]

.

Proof. (a) (⇐). A short calculation yields

[
t+ sj ms

s t

] [
τj,m
1

]

=

[
(t+ sj)τj,m + sm

sτj,m + t

]

=

[
(s(jτj,m +m) + tτj,m)

sτj,m + t

]

=

[
(sτ 2j,m + tτj,m)

sτj,m + t

]

=

[
τj,m(sτj,m + t)

sτj,m + t

]

= (sτj,m + t)

[
τj,m
1

]

,

so [τj,m 1]T is a right eigenvector for M .
(⇒). Since τj,m /∈ Q, Q(τj,m) is a degree two extension of Q, both (distinct) eigenvalues

lie in this field, and [τ ′j,m 1]T is another (linearly independent) eigenvector of M . Thus, for
some integers s and t, we have

M =

[
τj,m τ ′j,m
1 1

] [
t+ sτj,m 0

0 t+ sτ ′j,m

] [
τj,m τ ′j,m
1 1

]−1

=
1

(τj,m − τ ′j,m)

[
(t+ sτj,m)τj,m (t+ sτ ′j,m)τ

′
j,m

t+ sτj,m t+ sτ ′j,m

] [
1 −τ ′j,m
−1 τj,m

]

=
1

τj,m − τ ′j,m

[
(t+ sτj,m)τj,m − (t+ sτ ′j,m)τ

′
j,m m(t+ sτj,m)−m(t+ sτ ′j,m)(

(t+ sτj,m)− (t+ sτ ′j,m)
)

−(t+ sτj,m)τ
′
j,m + (t+ sτ ′j,m)τj,m

]

=
1

τj,m − τ ′j,m

[
(t+ sj)(τj,m − τ ′j,m) ms(τj,m − τ ′j,m)

s(τj,m − τ ′j,m) t(τj,m − τ ′j,m)

]

=

[
t+ sj ms

s t

]

,
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which finishes the proof of (a).
(b) We have τj,m = (j + r)/2. A straightforward calculation shows that [(j + r)/2, 1]T

is a right eigenvector for

M =

[
s t
u v

]

if and only if u(j + r)2 + 2(v − s)(j + r)− 4t = 0, which is the desired result.

5 Substitutions with exactly, or asymptotically,

linear relative position function

In this section, we first consider words w such that r(n) is a linear function, then consider
the asymptotically linear case. We start with the following result, which follows immediately
from results of the previous sections.

Theorem 64. The following hold.

(a) For all j ≥ 1, the periodic word w = (ajbj)ω satisfies r(n) = j.

(b) Let k and j be integers satisfying 0 ≤ j ≤ k − 1, and let w be the one-sided fixed point
of the Pisa substitution σk−j,j,1. Then r(n) = kn− j.

(c) Let k ≥ 0 be an integer, and let w be the one-sided fixed point of the Pisa substitution
σ1,k−1,1. Then, rD(w)(n) = kn+ 1.

The above result covers all the arithmetic progressions kn+ j for −1 ≤ j ≤ k − 1. Note
that kn+ j cannot occur for j = −k, since this arithmetic progression contains the value 0.
In this case, the best we can hope is for r(n) to eventually equal kn+ j. This can always be
achieved.

Proposition 65. Let k ≥ 0 and j be integers. Let j = qk − r with 0 ≤ r ≤ k − 1, and let w
be the one-sided fixed point of the Pisa substitution σ1,k−1,1.

(a) If q ≥ 0, then rDq(w)(n) = kn+ j for all large enough n.

(b) If q < 0, then for each equilibrious word s of length −2q, we have rPres(w)(n) = kn+ j
for all large enough n. In particular, this holds when s = (ab)−q.

We now turn to binary substitutions such that the relative position is asymptotically
linear. In particular, analogous to the calculations in Section 4, we can find all binary
substitutions whose one-sided fixed points satisfy

lim
n→∞

r(n)

n
= k ∈ Z .
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As in the previous section, for each k ∈ N, set τk :=
k+

√
k2+4
2

. These numbers arise naturally
as the eigenvalues of the substitution matrices of the Pisa substitutions σk−j,j,1. Of course,
τ1 = τ is the golden mean. Recall that τk is a root of X2 − kX − 1 = 0 and so, τ 2k = kτk +1.

We obtain the following, more general, version of Lemma 39.

Lemma 66. Let k ∈ N and M ∈ M2(Z). Then, [τk 1]T is a right eigenvector for M if and
only if there exist m,n ∈ Z such that

M =

[
km+ n m

m n

]

.

Here, the eigenvalues are n+mτk and n+mτ ′k, where τ ′k is the algebraic conjugate of τk.

Proof. (⇐). Note that

[
km+ n m

m n

] [
τk
1

]

=

[
kmτk + nτk +m

mτk + n

]

=

[
mτ 2k + nτk
mτk + n

]

= (mτk + n)

[
τk
1

]

,

so [τk 1]T is a right eigenvector for M .
(⇒). Since k > 0, the polynomial X2 − kX − 1 is irreducible over Q by the rational

root test. In particular, Q(τk) is a degree-two extension of Q. We now mimic the proof of
Theorem 63(a) to get

M =

[
τk τ ′k
1 1

] [
n+mτk 0

0 n+mτ ′k

] [
τk τ ′k
1 1

]−1

=
1

τk − τ ′k

[
(n+mτk)τk (n+mτ ′k)τ

′
k

n+mτk n+mτ ′k

] [
1 −τ ′k
−1 τk

]

=
1

τk − τ ′k

[
(n+ km)(τk − τ ′k) m(τk − τ ′k)

m(τk − τ ′k) n(τk − τ ′k)

]

=

[
km+ n m

m n

]

,

which proves the result.

We finish this section with the classification of all asymptotically linear relative position
functions arising from primitive binary substitutions.

Theorem 67. Let µ be a primitive binary substitution with incidence matrix Mµ and having
one-sided fixed point w ∈ W. Let k ∈ N.

(a) The following are equivalent.

(i) limn→∞ r(n)/n = k.

(ii) [τk 1]T is a right Perron–Frobenius eigenvector for Mµ.

(iii) There exist m ∈ N and n ∈ Z≥0 such that Mµ =

[
km+ n m

m n

]

.
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(b) The following are equivalent.

(i) limn→∞ r(n)/n = −k.

(ii) [1 τk]
T is a right Perron–Frobenius eigenvector for Mµ.

(iii) There exist m ∈ N and n ∈ Z≥0 such that Mµ =

[
n m
m km+ n

]

.

(c) The following are equivalent.

(i) limn→∞ r(n)/n = 0.

(ii) [1 1]T is a right Perron–Frobenius eigenvector for Mµ.

(iii) There exist a, b, c, d ∈ Z≥0 with a+ b = c+ d such that Mµ =

[
a b
c d

]

.

Proof. The proof of (a) is analogous to that of Lemma 41, so we omit it.
(b) We have limn→∞ rw(n)/n = −k if and only if limn→∞ rw(n)/n = k. Now, w is the

one-sided fixed point of the substitution µ. Let Mµ be the incidence matrix of µ. Then,

Mµ =

[
a b
c d

]

if and only if Mµ =

[
d c
b a

]

.

Part (b) now follows now from part (a) applied to the situation of w.
(c) Let [u 1] be the left Perron–Frobenius eigenvector of Mµ. Then, by Corollary 31,

limn→∞
r(n)
n

= u2−1
u

. The equivalence between (i) and (ii) is now clear, and (ii) ⇔ (iii) is a
trivial exercise.

6 The Thue-Morse substitution and related words

We now arrive at our final curiosity of the relative position function—the Thue-Morse word
t is the only word w ∈ aW on the letters a = 1 and b = −1 with the property that the word

r(1)r(2) · · · r(n) · · ·

is, again, equal to w.
To this end, recall that the Thue-Morse substitution µTM is defined by

µTM :

{

a → ab

b → ba ,

which has one-sided fixed point t satisfying Freq(a) = Freq(b) = 1
2
and lim

n→∞
r(n)/n = 0.
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Definition 68. Let w = ℓ0ℓ1 · · · ℓn · · · ∈ W . We define the dimers

Xn := ℓ2nℓ2n+1 .

Note that w = X0X1 · · ·Xn · · · , where Xn ∈ {aa, ab, ba, bb}.

In the particular case where each dimer contains distinct letters, we can give an explicit
formula for r(n) in terms of the dimers Xn. Taking into account that the first dimer has
index 0 while r starts at r(1), the following result follows from an easy induction on n.

Proposition 69. Let w ∈ W be some word. If all the dimers Xn satisfy Xn ∈ {ab, ba}, then

r(n) =

{

1, if Xn−1 = ab;

−1, if Xn−1 = ba.

In the case of the Thue-Morse word, the dimers are exactly the level-1 supertiles A = ab

and B = ba of the substitution µTM. This immediately gives the following result.

Theorem 70. The Thue-Morse word t is the only binary word on a = 1 and b = −1 starting
with a = 1, having the property that w = r(1)r(2) · · · r(n) · · · .

Proof. If t is the Thue-Morse word, then by the above, rt(n + 1) = 1 if and only if Xn = A

if and only if ℓ2n = a = 1. This shows that Thue-Morse word satisfies this property.
Next, let w be any word on a = 1 and b = −1 starting with a = 1 with this property.

Since rw(n) ∈ {1,−1} for all n, a simple induction shows the dimers satisfy

X ′
n =

{

ab, if rw(n+ 1) = 1;

ba, if rw(n+ 1) = −1.

Now, let w = ℓ′0ℓ
′
1 · · · ℓ′n · · · and let t = ℓ0ℓ1 · · · ℓn · · · . We know that ℓ0 = 1 = ℓ′0. Now, for

each n ≥ 0, we have that ℓn = ℓ′n implies that rt(n + 1) = rw(n + 1), which implies that
Xn = X ′

n, so that ℓ2n = ℓ′2n and ℓ2n+1 = ℓ′2n+1. This proves the claim.

Let us note next that for a word w ∈ W , the equalities rw(1) = 1 and rw(2) = −1 are
equivalent to w ∈ abbaW . Therefore, we have

Corollary 71. The Thue-Morse word t is the only binary word in abbaW that is isomorphic
to r(1)r(2) · · · r(n) · · · .

In exactly the same way, we can show that the double–double of bits of the Thue-Morse
word creates the only word on a = 2 and b = −2 with this property. More generally, we
have the following result. Since the proof is identical to the one above, we omit it.

Theorem 72. Let k > 1 be a positive integer, let t be the Thue-Morse word, and let w =
φk(t). Then, w is the only binary word on a = k and b = −k, starting with a = k, with the
property that w = r(1)r(2) · · · r(n) · · · .
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