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Abstract

For integers k ≥ 1, let Sk(n) denote the sum of the kth powers of the first n positive
integers. In this paper, we derive a new formula expressing 22k times S2k(n) as a sum
of k terms involving the numbers in the kth row of the integer sequence A304330,
which is closely related to the central factorial numbers with even indices of the second
kind. Furthermore, we provide an alternative proof of Knuth’s formula for S2k(n)
and show that it can equally be expressed in terms of A304330. Moreover, we obtain
corresponding formulas for 22k−1S2k−1(n) and determine the Faulhaber form of both
S2k(n) and S2k+1(n) in terms of A304330 and the Legendre-Stirling numbers of the
first kind.

1 Introduction and main results

For integers k ≥ 1, consider the sum of the kth powers of the first n positive integers
Sk(n) = 1k + 2k + · · ·+ nk. Recently, the author [5, Theorem 2] has shown that S2k(n) can
be expressed in the form

S2k(n) =
1

2

∑ (2k)!

b1!b2! · · · bk!

k
∏

r=1

(

1

4r(2r)!

)br

2mm!

(

2n+m+ 1

2m+ 1

)

, (1)

where the summation takes place over all k-tuples of nonnegative integers (b1, b2, . . . , bk)
satisfying the constraint b1 + 2b2 + · · ·+ kbk = k, and where m = b1 + b2 + · · ·+ bk. Since m
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runs over all the integers in the set {1, 2, . . . , k}, the above formula implies that S2k(n) can
be expressed in the polynomial form

S2k(n) =
k
∑

m=1

pk,m

(

2n+m+ 1

2m+ 1

)

,

for certain (nonzero) rational coefficients pk,1, pk,2, . . . , pk,k which are independent of n. In-
deed, as can be checked for k = 1, 2, 3, 4, formula (1) yields

S2(n) =
1

4

(

2n+ 2

3

)

,

S4(n) =
1

16

(

2n+ 2

3

)

+
3

4

(

2n+ 3

5

)

,

S6(n) =
1

64

(

2n+ 2

3

)

+
15

16

(

2n+ 3

5

)

+
45

8

(

2n+ 4

7

)

,

S8(n) =
1

256

(

2n+ 2

3

)

+
63

64

(

2n+ 3

5

)

+
315

16

(

2n+ 4

7

)

+
315

4

(

2n+ 5

9

)

.

If we now multiply these equations by the corresponding factor 22k, k = 1, 2, 3, 4, we are left
with the following all-integer formulas:

22S2(n) =

(

2n+ 2

3

)

,

24S4(n) =

(

2n+ 2

3

)

+ 12

(

2n+ 3

5

)

,

26S6(n) =

(

2n+ 2

3

)

+ 60

(

2n+ 3

5

)

+ 360

(

2n+ 4

7

)

,

28S8(n) =

(

2n+ 2

3

)

+ 252

(

2n+ 3

5

)

+ 5040

(

2n+ 4

7

)

+ 20160

(

2n+ 5

9

)

.

At this point, it is pertinent to bring up the sequence A304330 in the On-Line Encyclo-
pedia of Integer Sequences (OEIS) [19], whose general term is given by

R(k,m) =
m
∑

j=0

(−1)j
(

2m

j

)

(m− j)2k, 0 ≤ m ≤ k. (2)

Table 1 displays the first few rows of the numerical triangle for the sequence A304330. As
we will see now, there is an intimate connection between this sequence and the sequence of
central factorial numbers with even indices of the second kind T (2k, 2m), listed as A036969
in the OEIS. Following the notation introduced by Gelineau and Zeng [10], in this paper

2

https://oeis.org/A304330
https://oeis.org/A304330
https://oeis.org/A036969


k\m m = 0 m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

k = 0 1 0 0 0 0 0 0
k = 1 0 1 0 0 0 0 0
k = 2 0 1 12 0 0 0 0
k = 3 0 1 60 360 0 0 0
k = 4 0 1 252 5040 20160 0 0
k = 5 0 1 1020 52920 604800 1814400 0
k = 6 0 1 4092 506880 12640320 99792000 239500800

Table 1: Triangular array of the numbers R(k,m) up to k = 6.

we will write U(k,m) to refer to T (2k, 2m). As shown by Butzer et al. [4, Proposition 2.4
(xiii)], the numbers U(k,m) admit the explicit formula

U(k,m) =
2

(2m)!

m
∑

j=0

(−1)m+j

(

2m

m− j

)

j2k,

or, equivalently,

U(k,m) =
2

(2m)!

m
∑

j=0

(−1)j
(

2m

j

)

(m− j)2k,

where it is assumed that 0 ≤ m ≤ k. Thus, R(k,m) and U(k,m) are related by

R(k,m) =
(2m)!

2
U(k,m). (3)

We can see that the integer coefficients that appear in the previous expressions of
22kS2k(n), k = 1, 2, 3, 4, are precisely the entries in the kth row of the triangle in Table 1.
We could then conjecture that this rule effectively applies for successive values of k and,
eventually, for every k. The following theorem (which is proven in Section 2) confirms that
this is indeed the case.

Theorem 1. For integers k ≥ 1, we have

22kS2k(n) =
k
∑

m=1

R(k,m)

(

2n+m+ 1

2m+ 1

)

. (4)

On the other hand, in his excellent paper on Johann Faulhaber and power sums, Knuth
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[15, p. 285] derived the following alternative, explicit formulas for S2k(n), k = 1, . . . , 6:

S2(n) = T1(n),

S4(n) = T1(n) + 12T2(n),

S6(n) = T1(n) + 60T2(n) + 360T3(n),

S8(n) = T1(n) + 252T2(n) + 5040T3(n) + 20160T4(n),

S10(n) = T1(n) + 1020T2(n) + 52920T3(n) + 604800T4(n) + 1814400T5(n),

S12(n) = T1(n) + 4092T2(n) + 506880T3(n) + 12640320T4(n) + 99792000T5(n)

+ 239500800T6(n),

where

Tm(n) =
2n+ 1

2m+ 1

(

n+m

2m

)

.

Knuth also found [15, pp. 285–286] the following relationship between the power sums
S2k(n) and S2k−1(n).

Proposition 2 (Knuth, 1993). The formula

S2k(n)

2n+ 1
= a1

(

n+ 1

2

)

+ a2

(

n+ 2

4

)

+ · · ·+ ak

(

n+ k

2k

)

,

holds if and only if

S2k−1(n) =
3

1
a1

(

n+ 1

2

)

+
5

2
a2

(

n+ 2

4

)

+ · · ·+
2k + 1

k
ak

(

n+ k

2k

)

.

Since the coefficients a1, a2, . . . , ak for S2k−1(n) are known (see the formula for S2k−1(n)
at the bottom of p. 284 of Knuth’s paper [15]), Proposition 2 enables one to fully determine
S2k(n) for arbitrary k. The explicit expressions of the above formulas for S2k(n) and S2k−1(n)
are then given as follows.

Proposition 3 (Knuth, 1993). For integers k ≥ 1, we have

S2k(n) =
k
∑

m=1

R(k,m)
2n+ 1

2m+ 1

(

n+m

2m

)

, (5)

and

S2k−1(n) =
k
∑

m=1

R(k,m)
1

m

(

n+m

2m

)

. (6)
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The rest of the paper is organized as follows. In Section 2, we firstly prove the above for-
mulas (4), (5), and (6). As in the case of (4), our proof of (5) and (6) relies on the respective
binomial identity as well as on a pair of properties of the central factorial numbers with even
indices. As a by-product, we obtain formulas for the power sums T2k(n) =

∑n

i=1(2i − 1)2k

and Ω2k =
∑n

i=1(−1)n−ii2k. Furthermore, we derive a couple of formulas for the product
22k−1S2k−1(n) involving the numbers R(k,m) (Theorem 10 and equation (14), respectively).
In Section 3, we deal with the so-called Faulhaber form of the power sums S2k(n) and
S2k+1(n) and provide an alternative representation of the Faulhaber coefficients in terms on
R(k,m) and the Legendre-Stirling numbers of the first kind (Proposition 12). We conclude
the paper in Section 4 with some additional remarks.

Next we summarize the main results found in this paper, highlighting the close rela-
tionship between the integer sequence A304330 (with general term given by (2)) and the
three varieties of power sums considered in this paper, namely, Sk(n) = 1k + 2k + · · · + nk,
Tk(n) = 1k + 3k + · · ·+ (2n− 1)k, and Ωk(n) = nk − (n− 1)k + · · ·+ (−1)n−11k. (Note that
the formulas for S2k(n) and S2k−1(n) were previously obtained in Knuth’s paper [15].)

For integers k ≥ 1, we have

22kS2k(n) =
k
∑

m=1

R(k,m)

(

2n+m+ 1

2m+ 1

)

,

S2k(n) =
k
∑

m=1

R(k,m)
2n+ 1

2m+ 1

(

n+m

2m

)

,

T2k(n) =
k
∑

m=1

R(k,m)

(

2n+m

2m+ 1

)

,

Ω2k(n) =
k
∑

m=1

R(k,m)

(

n+m

2m

)

,

S2k−1(n) =
k
∑

m=1

R(k,m)
1

m

(

n+m

2m

)

,

and

22k−1S2k−1(n) =
k
∑

m=1

Qk,m(n)

(

n+m

2m− 1

)

,

where

Qk,m(n) =















n2k−1, for m = 1;

2
k
∑

j=m

(

2k − 1

2j − 2

)

R(j − 1,m− 1)n2k−2j+1, for m ≥ 2.

Furthermore, S2k(n) and S2k+1(n) can be expressed in the Faulhaber form S2k(n) =

S2(n)
∑k

r=1 bk,r
(

S1(n)
)r−1

and S2k+1(n) =
(

S1(n)
)2∑k

r=1 ck,r
(

S1(n)
)r−1

, with coefficients bk,r

5

https://oeis.org/A304330


and ck,r given by

bk,r =
k
∑

m=r

3 · 2r

(2m+ 1)!
R(k,m)Ps(r)m ,

and

ck,r =
k
∑

m=r

2r+1

(2m+ 2)!(m+ 1)
R(k + 1,m+ 1)Ps

(r+1)
m+1 ,

where Ps
(r)
m are the Legendre-Stirling numbers of the first kind.

In addition, Ω2k(n) can be expressed in the form Ω2k(n) =
∑k

r=1 dk,r
(

S1(n)
)r
, with

coefficients dk,r given by

dk,r =
k
∑

m=r

2r

(2m)!
R(k,m)Ps(r)m .

2 Sums of powers of integers involving the sequence

A304330

In this section we successively prove the formulas for 22kS2k(n), S2k(n), and S2k−1(n) stated
in Theorem 1 and Proposition 3 above. Then we obtain formulas for T2k(n) and Ω2k(n), and
derive a formula for 22k−1S2k−1(n) as given in Theorem 10. Lastly, we present an alternative
formula for 22k−1S2k−1(n) in equation (14).

2.1 Proof of formula (4)

To prove (4), we need the following lemma.

Lemma 4. For integers n ≥ 1, we have

n
∑

i=1

(2i)

(

2i+ k − 1

2k − 1

)

= k

(

2n+ k + 1

2k + 1

)

,

where k is an arbitrary, fixed positive integer.

For later use we put the above binomial identity in the equivalent form

n
∑

i=1

4i(2i−k+1)(2i−k+2) · · · (2i+k−1) =
(2n− k + 1)(2n− k + 2) · · · (2n+ k + 1)

2k + 1
, (7)

and refer the reader to the Appendix for a proof of (7).
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For the proof of (4), we make use of two well-known properties of the (signed) central
factorial numbers with even indices of the first kind t(2k, 2m) (OEIS A204579). In what
follows we denote these numbers by u(k,m), in accordance with the notation of Gelineau
and Zeng [10]. The first property is the definition of u(k,m) through the generating function

k
∑

m=1

u(k,m)xm = x(x− 12)(x− 22) · · · (x− (k − 1)2), k ≥ 1, (8)

(see, e.g., [8, Equation (4.15)] and Equation (11) (with r = 0) of [18]). The second property
of interest is the central factorial inversion, which is a direct consequence of the orthogonal-
ity relations

∑k

m=i u(k,m)U(m, i) =
∑k

m=i U(k,m)u(m, i) = δk,i (δk,i being the Kronecker
delta). This property is stated in the following lemma.

Lemma 5 ([4, Proposition 2.3]). If (ak)k≥1 and (bk)k≥1 are two sequences of real numbers
(where we tacitly assume that a0 = b0 = 0), there holds the inversion formula

ak =
k
∑

m=1

u(k,m)bm ⇐⇒ bk =
k
∑

m=1

U(k,m)am, k ≥ 1.

Therefore, setting x = (2i)2 in (8) and multiplying through by 2 gives

k
∑

m=1

u(k,m)22m+1i2m = 8i2((2i)2 − 12)((2i)2 − 22) · · · ((2i)2 − (k − 1)2)

= 4i(2i− k + 1)(2i− k + 2) · · · (2i+ k − 1).

Furthermore, summing from i = 1 to n on both sides of the last equation and employing (7)
in the right-hand side, we get

k
∑

m=1

u(k,m)22m+1S2m(n) = (2k)!

(

2n+ k + 1

2k + 1

)

.

This allows us to apply Lemma 5 with ak = (2k)!
(

2n+k+1
2k+1

)

and bm = 22m+1S2m(n) to finally

obtain the following formula for 22kS2k(n):

22kS2k(n) =
1

2

k
∑

m=1

U(k,m)(2m)!

(

2n+m+ 1

2m+ 1

)

,

which, in view of (3), is just the formula (4).
As a result we find the following representation of R(k,m), which follows straightfor-

wardly by comparing the formulas (1) and (4).
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Corollary 6. For positive integers k and m, with 1 ≤ m ≤ k, we have

R(k,m) = 22k+m−1m!
∑ (2k)!

b1!b2! · · · bk!

k
∏

r=1

(

1

4r(2r)!

)br

, (9)

where the summation extends over all k-tuples of nonnegative integers (b1, b2, . . . , bk) fulfilling
the conditions b1 + 2b2 + · · ·+ kbk = k and b1 + b2 + · · ·+ bk = m.

Using the above representation, we get the following diagonals R(k, k − s) for s =
0, 1, 2, 3, 4:

R(k, k) =
1

2
(2k)!, k ≥ 1,

R(k, k − 1) =
k − 1

24
(2k)!, k ≥ 2,

R(k, k − 2) =
(k − 2)(5k − 11)

2880
(2k)!, k ≥ 3,

R(k, k − 3) =
(k − 3)(35k2 − 231k + 382)

725760
(2k)!, k ≥ 4,

R(k, k − 4) =
(k − 4)(175k3 − 2310k2 + 10181k − 14982)

174182400
(2k)!, k ≥ 5.

From the above particular cases, we can guess the general pattern

R(k, k − s) = (2k)!(k − s)Ps(k), for k ≥ s+ 1 and s ≥ 1,

where Ps(k) is a polynomial in k of degree s− 1 with coefficients having alternating signs.

2.2 Proof of formulas (5) and (6)

Next we prove (5). For this, we need the following lemma.

Lemma 7. For integers n ≥ 1, we have

n
∑

i=1

i

(

i+ k − 1

2k − 1

)

=
k(2n+ 1)

2k + 1

(

n+ k

2k

)

,

where k is an arbitrary, fixed positive integer.

Likewise, for later use we put the above binomial identity in the equivalent form

n
∑

i=1

2i(i− k+1)(i− k+2) · · · (i+ k− 1) =
(2n+ 1)(n− k + 1)(n− k + 2) · · · (n+ k)

2k + 1
, (10)

and refer the reader to the Appendix for a proof of (10).
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Now, setting x = i2 in (8) and summing from i = 1 to n on both sides gives

k
∑

m=1

u(k,m)S2m(n) =
1

2

n
∑

i=1

2i(i− k + 1)(i− k + 2) · · · (i+ k − 1).

By virtue of (10), this can be expressed as

k
∑

m=1

u(k,m)S2m(n) =
(2k)!

2

2n+ 1

2k + 1

(

n+ k

2k

)

.

Thus, taking ak = (2k)!
2

2n+1
2k+1

(

n+k

2k

)

and bm = S2m(n) in Lemma 5, we obtain the following
formula for S2k(n):

S2k(n) =
k
∑

m=1

U(k,m)
(2m)!

2

2n+ 1

2m+ 1

(

n+m

2m

)

,

which, by relation (3), is the same as formula (5).
On the other hand, to show (6), set x = i2 in (8) and divide both sides by i. This gives

k
∑

m=1

u(k,m)i2m−1 = (i− k + 1)(i− k + 2) · · · (i+ k − 1).

Thus, summing over i on both sides of the above equation and making use of the well-known
binomial identity

∑n

i=1

(

i+k−1
2k−1

)

=
(

n+k

2k

)

(see [20, Identity 58]), we get

k
∑

m=1

u(k,m)S2m−1(n) = (2k − 1)!

(

n+ k

2k

)

.

Finally, by inverting the equation above, we recover the known formula [15, p. 284]

S2k−1(n) =
k
∑

m=1

(2m− 1)!U(k,m)

(

n+m

2m

)

,

which can be put in the form (6) upon using (3).

Remark 8. Formula (5) can be derived directly from (6) and the well-known recursive formula
(see, e.g., [21, Proposition 1])

Sk(n) = (n+ 1)Sk−1(n)−
n
∑

i=1

Sk−1(i).
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Indeed, putting 2k instead of k in the above equation and substituting S2k−1(n) and S2k−1(i)
from (6) gives

S2k(n) = (n+ 1)
k
∑

m=1

R(k,m)
1

m

(

n+m

2m

)

−

k
∑

m=1

R(k,m)
1

m

n
∑

i=1

(

i+m

2m

)

=
k
∑

m=1

R(k,m)
1

m

(

(n+ 1)

(

n+m

2m

)

−
n+m+ 1

2m+ 1

(

n+m

2m

))

=
k
∑

m=1

R(k,m)
2n+ 1

2m+ 1

(

n+m

2m

)

.

2.3 Formulas for T2k(n) and Ω2k(n)

For integers k ≥ 1, the sum of the kth powers of the first n odd integers Tk(n) = 1k + 3k +
· · ·+ (2n− 1)k can be expressed as Tk(n) = Sk(2n)− 2kSk(n). Consequently, for the case of
even powers, from (4) and (5) we have

T2k(n) =
k
∑

m=1

R(k,m)
4n+ 1

2m+ 1

(

2n+m

2m

)

−

k
∑

m=1

R(k,m)

(

2n+m+ 1

2m+ 1

)

.

Furthermore, since

4n+ 1

2m+ 1

(

2n+m

2m

)

−
2n+m+ 1

2m+ 1

(

2n+m

2m

)

=
2n−m

2m+ 1

(

2n+m

2m

)

=

(

2n+m

2m+ 1

)

,

this becomes

T2k(n) =
k
∑

m=1

R(k,m)

(

2n+m

2m+ 1

)

. (11)

Remark 9. Merca [17, Equation (3.1)] proved that T2k(n) =
22k

2k+1
B2k+1

(

n+ 1
2

)

, where Bk(n)

is the kth Bernoulli polynomial evaluated at n. Thus, letting n → n − 1
2
in Merca’s result,

and using (11), gives the identity

B2k+1(n) =
2k + 1

22k

k
∑

m=1

R(k,m)

(

2n+m− 1

2m+ 1

)

, k ≥ 1.

Note that this identity can also be obtained directly from (4) and the well-known relationship
S2k(n) =

1
2k+1

(B2k+1(n+ 1)−B2k+1), once one realizes that B2k+1 = 0 for all k ≥ 1.

On the other hand, for integers k ≥ 1, define the alternating sum of the kth powers of
the first n integers as

Ωk(n) = nk − (n− 1)k + · · ·+ (−1)n−11k.
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It is easily seen that Ωk(2n) = Sk(2n)−2Tk(n) and Ωk(2n−1) = 2Tk(n)−Sk(2n−1). Hence,
for the case of even powers, from (5) and (11) we find that Ω2k(2n) =

∑k

m=1 R(k,m)
(

2n+m

2m

)

and Ω2k(2n− 1) =
∑k

m=1 R(k,m)
(

2n+m−1
2m

)

. This means that

Ω2k(n) =
k
∑

m=1

R(k,m)

(

n+m

2m

)

, (12)

holds for all k, n ≥ 1. In particular, Ω2(n) =
(

n+1
2

)

. See equation (22) below for an alternative
representation of Ω2k(n) as a polynomial in S1(n) of degree k.

2.4 Corresponding formulas for 22k−1S2k−1(n)

An explicit formula for 22k−1S2k−1(n) involving the numbers R(k,m) is given by the following
theorem.

Theorem 10. For integers k ≥ 1, we have

22k−1S2k−1(n) =
k
∑

m=1

Qk,m(n)

(

n+m

2m− 1

)

, (13)

where Qk,m(n) is an odd polynomial in n of degree 2k − 2m+ 1 given by

Qk,m(n) =















n2k−1, for m = 1;

2
k
∑

j=m

(

2k − 1

2j − 2

)

R(j − 1,m− 1)n2k−2j+1, for m ≥ 2.

Proof. Formula (13) follows readily by combining the representation of R(k,m) in (9) and
the following formula for 22k−1S2k−1(n) given in [5, Theorem 3], namely

22k−1S2k−1(n) = (n+ 1)n2k−1 +
k−1
∑

j=1

4jn2k−2j−1

(

2k − 1

2j

)

∑ (2j)!

b1!b2! · · · bj!

×

j
∏

r=1

(

1

4r(2r)!

)br

2mm!

(

n+m+ 1

2m+ 1

)

,

where, for each j = 1, 2, . . . , k − 1, the rightmost summation is taken over all j-tuples of
nonnegative integers (b1, b2, . . . , bj) satisfying the constraint b1 + 2b2 + · · · + jbj = j, and
where m = b1 + b2 + · · ·+ bj.

It is to be noted that formula (13) above actually involves a double summation, which
makes it more complicated than its counterpart (4). We believe, however, that the structure

11



of such a formula is interesting in its own right. In this respect, it is worth to emphasize the
striking odd-parity property of the polynomials Qk,m(n). As an example, for k = 5, we have

Q5,1(n) = n9, Q5,2(n) = 72n7 + 252n5 + 168n3 + 18n,

Q5,3(n) = 3024n5 + 10080n3 + 4536n, Q5,4(n) = 60480n3 + 90720n, Q5,5(n) = 362880n,

from which it follows that

29S9(n) = n9

(

n+ 1

1

)

+ (72n7 + 252n5 + 168n3 + 18n)

(

n+ 2

3

)

+ (3024n5 + 10080n3 + 4536n)

(

n+ 3

5

)

+ (60480n3 + 90720n)

(

n+ 4

7

)

+ 362880n

(

n+ 5

9

)

.

On the other hand, by setting x = (2i)2 in (8), dividing through by 2i, summing over n,
and inverting the resulting equation, one arrives at the following formula for 22k−1S2k−1(n):

22k−1S2k−1(n) =
k
∑

m=1

R(k,m)
Fm(n)

m
, (14)

where

Fm(n) =
n
∑

i=1

(

2i+m− 1

2m− 1

)

,

is a polynomial in n of degree 2m. The first few of these polynomials are F1(n) = 2
(

n+1
2

)

and

F2(n) =
1

3
(2n2 + 2n− 1)

(

n+ 1

2

)

,

F3(n) =
2

15
(8n2 + 8n− 3)

(

n+ 2

4

)

,

F4(n) =
1

105
(8n4 + 16n3 − 24n2 − 32n+ 9)

(

n+ 2

4

)

,

F5(n) =
2

315
(16n4 + 32n3 − 46n2 − 62n+ 15)

(

n+ 3

6

)

,

F6(n) =
1

10395
(32n6 + 96n5 − 304n4 − 768n3 + 677n2 + 1077n− 225)

(

n+ 3

6

)

,

F7(n) =
2

135135
(256n6 + 768n5 − 2400n4 − 6080n3 + 5168n2 + 8336n− 1575)

(

n+ 4

8

)

,

12



from which it can be inferred that Fm(n) factorizes as

Fm(n) = Gm(n)

(

n+ ⌊m+1
2

⌋

2⌊m+1
2

⌋

)

, m ≥ 1,

where ⌊·⌋ denotes the floor function and Gm(n) is a polynomial in n of degree 2m− 2⌊m+1
2

⌋.
Unfortunately, there appears to be no recognizable closed-form expression for Gm(n).

For comparison, we write down the expression of 29S9(n) that is obtained from (14)

29S9(n) = (340n2 + 340n− 168)

(

n+ 1

2

)

+ (11520n4 + 23040n3 − 15744n2 − 27264n+ 5904)

(

n+ 2

4

)

+ (36864n4 + 73728n3 − 105984n2 − 142848n+ 34560)

(

n+ 3

6

)

.

3 Faulhaber form of S2k(n) and S2k+1(n)

Edwards’ seminal work [9] triggered an intensive research on the so-called Faulhaber poly-
nomials, named after the German mathematician Johann Faulhaber (1580–1635); see, e.g.,
[2], [3, Section 3], [7, 8], [11, Section 12], and [13, 15, 16, 21]). As is well-known, the power
sums S2k(n) and S2k+1(n) (with k ≥ 1) can be expressed in the Faulhaber form as

S2k(n) = S2(n)
[

bk,1 + bk,2S1(n) + bk,3
(

S1(n)
)2

+ · · ·+ bk,k
(

S1(n)
)k−1]

, (15)

and

S2k+1(n) =
(

S1(n)
)2[

ck,1 + ck,2S1(n) + ck,3
(

S1(n)
)2

+ · · ·+ ck,k
(

S1(n)
)k−1]

, (16)

where the Faulhaber coefficients bk,r and ck,r, r = 1, 2, . . . , k, are (nonzero) rational numbers
satisfying the relation

bk,r =
3r + 3

4k + 2
ck,r. (17)

Remark 11. An explicit formula for ck,r in terms of the Bernoulli numbers was first obtained
by Gessel and Viennot [11, Equation (12.10)]. In our notation, this last formula can be
rewritten in the form (cf. [6, Equation (3.5)] and [13, Equation (5-3)])

ck,r = (−1)r−1 2
r+1

r + 1

⌊ r−1

2
⌋

∑

m=0

(

2r − 1− 2m

r

)(

2k + 1

2m+ 1

)

B2k−2m.

In the next proposition we show how Knuth’s formulas (5) and (6) for, respectively,
S2k(n) and S2k+1(n), can be converted into the corresponding Faulhaber form by exploiting
the relationship between

(

n+m

2m

)

and the Legendre-Stirling numbers of the first kind.
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Proposition 12. For integers k ≥ 1, the power sum polynomials S2k(n) and S2k+1(n) can
be expressed in the Faulhaber form (15) and (16), respectively, with coefficients bk,r and ck,r
given by

bk,r =
k
∑

m=r

3 · 2r

(2m+ 1)!
R(k,m)Ps(r)m , (18)

ck,r =
k
∑

m=r

2r+1

(2m+ 2)!(m+ 1)
R(k + 1,m+ 1)Ps

(r+1)
m+1 , (19)

for r = 1, 2, . . . , k, and where Ps
(r)
m are the Legendre-Stirling numbers of the first kind.

Proof. Let us first recall that, according to [1, Theorem 5.5], the (signed) Legendre-Stirling

numbers of the first kind Ps
(r)
m (OEIS A129467) satisfy the horizontal generating function

(for integers r and m fulfilling 1 ≤ r ≤ m)

〈x〉m =
m
∑

r=1

Ps(r)m xr,

where 〈x〉m is the generalized falling factorial defined by

〈x〉m =
m−1
∏

j=0

(x− j(j + 1)).

(For the sake of illustration, the first values of Ps
(r)
m are listed in Table 2.) Now, invoking

the binomial expansion (see [8, Equation (5.1)])
(

n+m

2m

)

=
1

(2m)!

m
∑

r=1

Ps(r)m

(

n(n+ 1)
)r
, (20)

and combining (20) with (5), we obtain

S2k(n) = (2n+ 1)
k
∑

m=1

m
∑

r=1

2r

(2m+ 1)!
R(k,m)Ps(r)m

(

S1(n)
)r

= S2(n)
k
∑

r=1

(

k
∑

m=r

3 · 2r

(2m+ 1)!
R(k,m)Ps(r)m

)

(

S1(n)
)r−1

,

which is of the form (15) with the coefficients bk,r given by (18).
Likewise, by using (20) in (6), we obtain

S2k+1(n) =
k+1
∑

m=1

m
∑

r=1

2r

(2m)!m
R(k + 1,m)Ps(r)m

(

S1(n)
)r

=
k+1
∑

r=1

(

k+1
∑

m=r

2r

(2m)!m
R(k + 1,m)Ps(r)m

)

(

S1(n)
)r
.
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m\r r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6

m = 0 1 0 0 0 0 0 0
m = 1 0 1 0 0 0 0 0
m = 2 0 −2 1 0 0 0 0
m = 3 0 12 −8 1 0 0 0
m = 4 0 −144 108 −20 1 0 0
m = 5 0 2880 −2304 508 −40 1 0
m = 6 0 −86400 72000 −17544 1708 −70 1

Table 2: The Legendre-Stirling numbers of the first kind Ps
(r)
m up to m = 6.

The key point to observe here is that the term in S1(n) in the above expansion of S2k+1(n)
does vanish because the derivative of S2k+1(n) with respect to n (considering n as a contin-
uous variable) evaluated at n = 0, namely, S ′

2k+1(0) = (−1)2k+1B2k+1, is equal to zero for all
k ≥ 1. This means that

k+1
∑

m=1

1

(2m)!m
R(k + 1,m)Ps(1)m = 0, (21)

and then

S2k+1(n) =
k+1
∑

r=2

(

k+1
∑

m=r

2r

(2m)!m
R(k + 1,m)Ps(r)m

)

(

S1(n)
)r

=
(

S1(n)
)2

k
∑

r=1

(

k
∑

m=r

2r+1

(2m+ 2)!(m+ 1)
R(k + 1,m+ 1)Ps

(r+1)
m+1

)

(

S1(n)
)r−1

,

which is of the form (16) with the coefficients ck,r given by (19).

Remark 13. Thanks to relation (17), the coefficients ck,r can also be expressed as

ck,r =
2k + 1

r + 1

k
∑

m=r

2r+1

(2m+ 1)!
R(k,m)Ps(r)m .

On the other hand, substituting the expression in (20) for
(

n+m

2m

)

into (12), we obtain the
following Faulhaber-like formula for the alternating sum of even powers Ω2k(n):

Ω2k(n) =
k
∑

r=1

dk,r
(

S1(n)
)r
, k ≥ 1, (22)

where the coefficients dk,r are given by

dk,r =
k
∑

m=r

2r

(2m)!
R(k,m)Ps(r)m .
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Remark 14. Gessel and Viennot [11, Theorem 28] established the following formula for
Ω2k(n):

Ω2k(n) =
1

2

k
∑

r=1

s(k, r)
(

n(n+ 1)
)r
, k ≥ 1, (23)

where s(n, r) denotes the so-called Salié numbers (OEIS A065547). By comparing (22) and
(23), and recalling (3), we get the following representation of the (signed) Salié numbers in

terms of U(k,m) and Ps
(r)
m :

s(k, r) =
k
∑

m=r

U(k,m)Ps(r)m .

4 Concluding remarks

We conclude this paper with the following remarks:
From (21) one can deduce the following horizontal recurrence relation for the numbers

R(k,m).

Proposition 15. For integers k ≥ 2, we have

k
∑

m=1

(−1)m
((m− 1)!)2

(2m)!
R(k,m) = 0.

Proof. This follows immediately by setting k → k − 1 in (21) and using the fact that

Ps
(1)
m = (−1)m−1m!(m− 1)! [12, Theorem 2].

Let us further note that the above recurrence relation can be written in terms of U(k,m)
as

k
∑

m=1

(−1)m((m− 1)!)2U(k,m) = 0, k ≥ 2.

Moreover, since bk,1 = 6B2k, it follows from (18) that

B2k =
k
∑

m=1

(−1)m−1m!(m− 1)!

(2m+ 1)!
R(k,m), k ≥ 1, (24)

in accordance with the formula for B2k given by Coffey et al. [8, p. 29]. Hence, com-
bining (24) with the classical Bernoulli’s formula [14, p. 48], Sk(n) = 1

k+1
nk+1 + 1

2
nk +

1
k+1

∑k

j=2

(

k+1
j

)

Bjn
k+1−j, we obtain that

Sk(n) =
nk+1

k + 1
+

1

2
nk −

1

k + 1

⌊ k

2
⌋

∑

j=1

j
∑

m=1

(−1)m
m!(m− 1)!

(2m+ 1)!

(

k + 1

2j

)

R(j,m)nk+1−2j ,
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which holds for all k ≥ 1. Note that setting n = 1 and k = 2r+1 in the above formula gives
the identity

r
∑

j=1

j
∑

m=1

(−1)m−1m!(m− 1)!

(2m+ 1)!

(

2r + 2

2j

)

R(j,m) = r, r ≥ 1.
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A Appendix

In this section we prove the relations (7) and (10), which are equivalent to the binomial
identities appearing in Lemma 4 and Lemma 7, respectively.

A.1 Proof of relation (7)

We prove (7) by induction on n. To this end, we distinguish the cases of even and odd k.

• Even k. It is evident that both sides of (7) are identically zero when n < k
2
. Therefore, it

is enough to show that

n
∑

i= k

2

4i(2i− k + 1)(2i− k + 2) · · · (2i+ k − 1) =
(2n− k + 1)(2n− k + 2) · · · (2n+ k + 1)

2k + 1
,

(25)
for n ≥ k

2
. Relation (25) holds trivially for n = k

2
. Assume the statement is true for

17



n = k
2
+m, wherem is an arbitrary, fixed nonnegative integer. We prove it for n = k

2
+m+1

k

2
+m+1
∑

i= k

2

4i(2i− k + 1)(2i− k + 2) · · · (2i+ k − 1)

=

k

2
+m
∑

i= k

2

4i(2i− k + 1)(2i− k + 2) · · · (2i+ k − 1)

+ (2k + 4m+ 4)(2m+ 3)(2m+ 4) · · · (2m+ 2k + 1)

=
(2m+ 1)(2m+ 2) · · · (2m+ 2k + 1)

2k + 1

+ (2k + 4m+ 4)(2m+ 3)(2m+ 4) · · · (2m+ 2k + 1)

=
(2m+ 3)(2m+ 4) · · · (2m+ 2k + 3)

2k + 1
.

Thus (25) holds for all n ≥ k
2
by induction.

• Odd k. Likewise, for odd k it is enough to show that

n
∑

i= k+1

2

4i(2i− k+1)(2i− k+2) · · · (2i+ k− 1) =
(2n− k + 1)(2n− k + 2) · · · (2n+ k + 1)

2k + 1
,

(26)
for n ≥ k+1

2
. Clearly, relation (26) is satisfied for n = k+1

2
. Assuming that (26) is true for

n = k+1
2

+m (for any given nonnegative integer m), we prove it for n = k+1
2

+m+ 1

k+1

2
+m+1
∑

i= k+1

2

4i(2i− k + 1)(2i− k + 2) · · · (2i+ k − 1)

=

k+1

2
+m
∑

i= k+1

2

4i(2i− k + 1)(2i− k + 2) · · · (2i+ k − 1)

+ (2k + 4m+ 6)(2m+ 4)(2m+ 5) · · · (2m+ 2k + 2)

=
(2m+ 2)(2m+ 3) · · · (2m+ 2k + 2)

2k + 1

+ (2k + 4m+ 6)(2m+ 4)(2m+ 5) · · · (2m+ 2k + 2)

=
(2m+ 4)(2m+ 5) · · · (2m+ 2k + 4)

2k + 1
,

which means that (26) holds for all n ≥ k+1
2

by induction. This completes the proof of
(7).
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A.2 Proof of relation (10)

Similarly, we prove (10) by induction on n. Note that both sides of (10) are identically zero
whenever n < k. Therefore, it suffices to show that

n
∑

i=k

2i(i− k+1)(i− k+2) · · · (i+ k− 1) =
(2n+ 1)(n− k + 1)(n− k + 2) · · · (n+ k)

2k + 1
, (27)

for n ≥ k. Clearly, (27) is correct for n = k. Assume (27) holds for n = k+m, with m being
any given nonnegative integer. Then

k+m+1
∑

i=k

2i(i− k + 1)(i− k + 2) · · · (i+ k − 1)

=
k+m
∑

i=k

2i(i− k + 1)(i− k + 2) · · · (i+ k − 1)

+ (2k + 2m+ 2)(m+ 2)(m+ 3) · · · (m+ 2k)

=
(2k + 2m+ 1)(m+ 1)(m+ 2) · · · (m+ 2k)

2k + 1

+ (2k + 2m+ 2)(m+ 2)(m+ 3) · · · (m+ 2k)

=
(2k + 2m+ 3)(m+ 2)(m+ 3) · · · (m+ 2k + 1)

2k + 1
.

Thus (27) holds for all n ≥ k by induction, and (10) is proven.
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