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Abstract

The arithmetic derivative is a nonlinear derivation on the positive integers which

forms a natural analog of the conventional derivative. While exploring solutions to

arithmetic differential equations, we stumbled across a curious pattern in the positive

integers for which the arithmetic derivative and the Collatz map commute. Here we

report on these empirical findings, and prove several analytical results on the form of

such numbers. Among these findings is the existence of a family of semiprime numbers

which are mapped by the Collatz function to another semiprime having a sum of prime

factors which is half of the original semiprime’s. We show that this family of semiprimes

solves the commutation problem and that the sum of their reciprocals converges.

1 Introduction

The arithmetic derivative is a distinctive analogue to the conventional derivative from cal-
culus. Unlike its continuous counterpart, the arithmetic derivative is tailored specifically
for positive integers and encodes information about a number’s prime factorization, offer-
ing a novel perspective on the structural properties of numbers. It was introduced initially
by Shelly in 1911 [15] and subsequently refined by various mathematicians, including Bar-
beau [1], who extended it to the rationals, showing that the arithmetic derivative satisfies
an analog of the familiar quotient rule. Later, this operation was extended to the set of
irrational numbers which can be written as the product of primes raised to rational powers
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by Ufnarovski and Ahlander [17]. Central to the arithmetic derivative is its adherence to a
product rule akin to that of traditional calculus, facilitating computations that reveal rela-
tionships between integers. This operation has garnered attention not only for its theoretical
elegance but also for its connections to conjectures in number theory, such as the Goldbach
and twin prime conjectures [17], and these links hint at deeper insights into the distribution
and behavior of prime numbers.

Meanwhile, the Collatz conjecture has been studied at least as far back as 1937, and it
remains a surprisingly challenging open problem. It has been attacked from many angles,
including studies of the number of steps needed to reach 1 (the total stopping time) [12],
continuous extensions [4], and the determination of bounds on the size of a nontrivial cycle
[8]. In 1972, Conway showed that a natural generalization of the Collatz conjecture was
undecidable [5] and later built on this work to construct a method for universal computation
known as FRACTRAN [6]. Interestingly, the Collatz iterates were also related to Benford’s
Law [11, 13]. More recently, it was shown by Tao that almost all orbits of the Collatz
map attain almost bounded values in the sense of logarithmic density [16], and Barina has
confirmed that positive integers as high as 268 obey the conjecture [2]. Despite decades of
scrutiny and extensive computational exploration, the Collatz conjecture remains unproven,
captivating mathematicians with its deceptively simple nature.

The original motivation for this work was to investigate numbers for which the arithmetic
derivative and compositions of the Collatz map commute. It can be shown that arithmetic
functions which satisfy this property for some integer n in a cycle Ω necessarily send n
into a cycle of length dividing |Ω|. Indeed, if D(C |Ω|(n)) = C |Ω|(D(n)) and C |Ω|(n) =
n, then D(n) = C |Ω|(D(n)), so that D(n) generates a cycle. Note that the choice of D
was arbitrary here, and the arithmetic derivative was chosen merely out of curiosity while
exploring concrete examples. In the course of our exploration, we find that for |Ω| = 1, these
numbers satisfy a puzzling property. Indeed, all but one example are congruent to 9 modulo
10 and can be written as the product of two distinct primes, one which ends in 1, while the
other ends in 9. The exception is the number 606938385, which is the product of the three
distinct primes 3, 5, and 40462559.

In this work, we introduce a class of semiprime numbers which we call compatible (A376275
in the OEIS [9]), showing that they satisfy the arithmetic differential equation D

(

3n+1
2

)

=
D(n)
2

, thereby solving the commutation problem D(C(n)) = C(D(n)). Naturally, we ask
whether there are infinitely many such numbers. Just as in Brun’s work on twin primes [3],
we show that the sum of the reciprocals of the compatible semiprimes converges, so that an
easy answer to this question does not seem likely. However, we show that all known solu-
tions to the commutation problem are semiprimes of this form except for the case 606938385,
which instead solves the arithmetic differential equation D

(

3n+1
2

)

= 3D(n)+1
2

. Moreover, we
explain the observation that all solutions (again, except for 606938385) are congruent to 9
modulo 10 by showing that this is the case for all compatible semiprimes. This result does
not rule out the possibility that further solutions which break this congruence exist, but
merely explains what is seen empirically.
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The rest of this paper is organized as follows. In Section 2, we review the arithmetic
derivative, re-deriving several known results, and we define the Collatz map. In Section 3,
we present several analytical results about the numbers for which these maps commute. We
show that all such numbers are odd, and motivated by our empirical results, attempt to
characterize the distinct primes appearing in these numbers by showing that they cannot
have the forms of several classes of prime numbers. We then give a bound on the difference
between these primes, showing that it grows at least linearly with the larger prime. We also
produce a class of semiprime numbers which belong to this sequence of numbers and show
that all known elements of the sequence belong to this class, with the exception of 606938385.
In Section 4, we show that the sum of the reciprocals of the numbers in this class converges.
Finally, in Section 5, we give concluding remarks and put forth several conjectures, including
the assertion that there are infinitely many numbers for which the arithmetic derivative and
Collatz map commute.

2 Background

The arithmetic derivative is a natural analog of the conventional derivative from calculus,
at least algebraically. We define the arithmetic derivative to be a non-linear derivation
D : N → N on the set of natural numbers with the property that D(1) = D(0) = 0 and
D(p) = 1 for all primes p. Explicitly, we define D so that

D(mn) = D(m)n+mD(n) (1)

for everym,n ∈ N. This requirement already demandsD(1) = D(1)+D(1), so thatD(1) = 0
by construction. Moreover, if n = pm for some m ∈ N and some prime p, it follows from (1)
that D(n) = D(p)m+ pD(m). If m is composite, we may proceed inductively until the only
derivatives appearing on the right side of the equality are derivatives of primes. Thus, the
arithmetic derivative (and indeed every arithmetic function that satisfies (1)) is completely
determined by its action on prime numbers. The choice of D(p) = 1 serves to treat all prime
numbers with equal weighting. Another consequence of (1) is that the arithmetic derivative
satisfies a power rule. Indeed, we have

D(nk) = knk−1D(n),

and so it follows that if n = pν11 · · · pνkk is the prime factorization of n, then

D(n) = n

k
∑

j=1

νj
pj
D(pj) = n

k
∑

j=1

νj
pj
. (2)

Notice the logarithmic derivative flavor of (2). If we divide by n and define the logarithmic
arithmetic derivative ld(n) := D(n)/n, then (2) becomes

ld(n) =
k

∑

j=1

νj
pj
.
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Interestingly, the arithmetic derivative can be linked to both the Goldbach and twin
primes conjectures rather easily. Indeed, if p, p + 2 are twin primes, then D(2p) = D(2)p +
2D(p) = p + 2. Now applying the arithmetic derivative again, we find that D2(2p) = 1.
Thus, if the twin prime conjecture holds, then there are infinitely many n for which D2(n) =
1. As for the Goldbach conjecture, observe that if 2n = p + q for some p, q prime, then
D(pq) = p+ q = 2n. Thus, if the Goldbach conjecture holds, then for every even integer 2n,
there is another integer k such that D(k) = 2n.

We make use of inequalities for the arithmetic derivative derived by Barbeau [1] and then
strengthened by Dahl, Olsson, and Loiko [7]. In particular, we make use of the following
lemma featuring the prime omega function (the number of prime factors in n).

Lemma 1. Let Ω denote the prime omega function and let p be the least prime in n. Then

Ω(n)n
Ω(n)−1
Ω(n) ≤ D(n) ≤

n logp(n)

p
.

Moreover, equality holds if and only if n is a prime power.

Proof. Let n = pν11 · · · pνkk . Then

D(n) = n
k

∑

j=1

νj
pj
.

Let p be the least prime of p1, . . . , pk. Then

D(n) ≤ n

k
∑

j=1

νj
p

≤ n

k
∑

j=1

νj logp(pj)

p
=

n logp(n)

p

and equality holds whenever p1 = · · · = pk = p. For the lower bound, note that 1
Ω(n)

D(n) =
n

Ω(n)

∑k
j=1

νj
pj

is an arithmetic mean and apply the AM-GM inequality. This produces

D(n)

Ω(n)
≥ n

( k
∏

j=1

1

p
νj
j

)1/Ω(n)

= n
Ω(n)−1
Ω(n) ,

and equality holds in the AM-GM inequality whenever p1 = · · · = pk.

The Collatz mapping is the arithmetic function defined by

C(n) =

{

3n+ 1, if n odd;
n
2
, if n even.

A longstanding open problem in mathematics is the so-called Collatz conjecture, which states
that the discrete dynamical system with trajectories defined by C always converges to the
{4, 2, 1} cycle. Equivalently, it says that for all n ∈ N, there exists a k ∈ N such that
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Ck(n) = 1. This seemingly simple problem has gone unproven for more than eighty years,
and those who study it deeply often comment that the problem is completely intractable
and outside the scope of the mathematical tools available today. While this may be the case,
it can be interesting to explore certain aspects of this problem in an attempt to gain even
the smallest insight. We forgo a study of what is known about the Collatz conjecture and
instead refer the reader to the excellent survey by Lagarias [12]. We, however, point out
that when n is odd, the next iterate in the trajectory of n is even. It is therefore common
to redefine the Collatz map as

C(n) =

{

3n+1
2

, if n odd;
n
2
, if n even,

and we take this as our definition throughout the rest of our work.

3 The commutation problem and compatible semiprimes

We let (an)
∞
n=1 denote the sequence of numbers for which the arithmetic derivative and

Collatz map commute. In our empirical investigation, we have found the first 30 numbers of
this sequence and they are listed along with their prime factorization in Table 1. We note
that all but one of these numbers are congruent to 9 mod 10 and can be written as a product
of two distinct primes, one of which is congruent to 1 while the other is congruent to 9. All
numbers with the exclusion of the exceptional case n = 12 are also congruent to 2 modulo
3. For n = 12, we see that an is divisible by 3. We note also that in the case of n = 12, the
largest prime is at least an order of magnitude larger than all of the remaining primes in the
table.

Our empirical results seem to indicate several constraints on the form of an, some of
which can be proven by elementary methods. Take, for example, the fact that all numbers
in the table are odd. We can easily show that this is always the case.

Proposition 2. Let an be the sequence of positive integers for which D(C(an)) = C(D(an)).
Then an is odd for all n.

Proof. Suppose an were even for some n. Then there exists an m ∈ N such that an = 2m,
and we must have D(C(an)) = D(m) while C(D(an)) = C(m + 2D(m)). If m + 2D(m) is
even, it follows that 2D(m) = m + 2D(m), so that m = 0, a contradiction (since an > 0
by assumption). On the other hand, if m + 2D(m) is odd, it follows that D(m) = (3m +
6D(m) + 1)/2, so that 4D(m) = −3m − 1, which is again a contradiction. Thus, an is odd
for all n.

Our data suggests that an must be a product of distinct primes (an almost-prime), and
we notice that no single prime appears in the table. This latter fact is indeed the case in
general, as the next proposition shows.
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n an Prime Factorization D(an) C(an) Prime Factorization

1 114239 71× 1609 1680 171359 349× 491
2 144059 71× 2029 2100 216089 281× 769
3 933899 131× 7129 7260 1400849 439× 3191
4 1918199 79× 24281 24360 2877299 241× 11939
5 25054499 149× 168151 168300 37581749 449× 83701
6 30495419 1129× 27011 28140 45743129 5099× 8971
7 33065159 569× 58111 58680 49597739 1801× 27539
8 72602039 1511× 48049 49560 108903059 5711× 19069
9 255442559 809× 315751 316560 383163839 2459× 155821
10 353104079 1511× 233689 235200 529656119 4691× 112909
11 575473559 3631× 158489 162120 863210339 12611× 68449
12 606938385 3× 5× 40462559 323700487 910407578 2× 47× 83× 116689
13 808589879 2801× 288679 291480 1212884819 8861× 136879
14 846509819 2861× 295879 298740 1269764729 9049× 140321
15 1042804799 6871× 151769 158640 1564207199 36709× 42611
16 1055710979 2999× 352021 355020 1583566469 9421× 168089
17 1059728279 4079× 259801 263880 1589592419 13411× 118529
18 1184657879 2281× 519359 521640 1776986819 7001× 253819
19 1247085239 4751× 262489 267240 1870627859 15889× 117731
20 1791627599 8609× 208111 216720 2687441399 38431× 69929
21 2196997739 9059× 242521 251580 3295496609 37199× 88591
22 2323221179 7741× 300119 307860 3484831769 27581× 126349
23 2372469179 9091× 260969 270060 3558703769 35899× 99131
24 2591327159 10369× 249911 260280 3886990739 46439× 83701
25 3063507719 8191× 374009 382200 4595261579 28211× 162889
26 3276652079 5881× 557159 563040 4914978119 18701× 262819
27 4021840859 2909× 1382551 1385460 6032761289 8821× 683909
28 5489857619 2309× 2377591 2379900 8234786429 6961× 1182989
29 5716553879 3881× 1472959 1476840 8574830819 11801× 726619
30 6022735799 929× 6483031 6483960 9034103699 2789× 3239191

Table 1: First 30 elements of an.
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Proposition 3. Let an be the sequence of positive integers for which D(C(an)) = C(D(an)).
Then an is a composite number for all n.

Proof. Suppose an = p were prime for some n and note that p 6= 2 by Proposition 2.
Then D(C(an)) = D

(

3p+1
2

)

, while C(D(an)) = C(1) = 2. It follows that D
(

3p+1
2

)

= 2. If

Ω(3p+1
2

) = 1, then 3p+1
2

is prime and so D
(

3p+1
2

)

= 1, a contradiction. Then by Lemma 1,
we have

2 = D

(

3p+ 1

2

)

≥ 2

√

3p+ 1

2
,

which produces a contradiction. Thus, an is composite for all n.

It is worth noting that a weak connection between the arithmetic derivative and the
Collatz conjecture can be constructed. Indeed, a tetration of a prime belongs to the sequence
an if and only if its image under the Collatz map is a tetration of a prime.

Proposition 4. Let pp be a tetration of a prime. Then an = pp for some n if and only if

C(pp) = qq for some prime q.

Proof. If C(pp) = qq for some prime q, then

D(C(pp)) = D(qq) = qq = C(pp) = C(D(pp)),

and we are done. Conversely, suppose pp belongs to the sequence an. From Proposition 2,
we know that p 6= 2. Then we have

D

(

3pp + 1

2

)

= D(C(pp)) = C(D(pp)) =
3pp + 1

2
. (3)

We claim that the only positive fixed points of the arithmetic derivative are tetrations of
primes. To see this, assume that m = pν11 · · · pνkk and let D(m) = m. It follows from (2) that

k
∑

j=1

νj
pj

= 1,

and since all terms are non-negative, this tells us that νj ≤ pj for all j. Multiplying both
sides by p1 · · · pk then produces

k
∑

j=1

νj
∏

i 6=j

pi = p1 · · · pk,

from which it follows that pj divides νj. But since νj ≤ pj, it follows that νj = 0 or νj = pj.
Of course, the latter cannot be true for more than one choice of j. Thus, the only positive
fixed points are of the form qq for some prime q, and it now follows from (3) that C(pp) = qq

for some prime q.
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Note that it is not known whether a prime tetration of the form in Proposition 4 exists,
only that if it does exist, the connection outlined therein holds. Let us now dive deeper into
our empirical results. By examining Table 1, we are led to believe that most values of an are
squarefree semiprimes. It is therefore natural to wonder how the primes making up an are
related to each other. In the next proposition, we give a bound for the difference between
these two primes.

Proposition 5. Let an be the sequence of positive integers for which D(C(an)) = C(D(an)).
If an = pq for some primes q < p, then

p− q ≥ 2
√

30p2 + 2− 10p,

that is, the difference between the two primes grows at least linearly with the larger prime.

Proof. The proof is a simple calculation using Lemma 1. Note that neither p nor q is equal
to 2, as n would then be even, contradicting Proposition 2. We can therefore assume that
m := p− q is even. Observe that

D(C(p(p−m))) = D

(

3p(p−m) + 1

2

)

and that

C(D(p(p−m))) = C(2p−m) = p−
m

2
,

where we have used the fact that m is even in the last equality. If 3p(p−m)+1
2

is prime, it
follows that m = 2(p− 1). But this implies that an = p(2− p), a contradiction. It therefore
follows from Lemma 1 that

p−
m

2
≥ 2

√

3p(p−m) + 1

2
.

Squaring and rearranging the terms produces the inequality 20pm+m2−8 ≥ 20p2, and now
factoring the left side gives

(m+ 10p)2 ≥ 120p2 + 8,

from which it follows that
m ≥ 2

√

30p2 + 2− 10p.

Proposition 5 eliminates several commonly paired primes. As every prime is obviously a
distance zero from itself, squares of primes (A001248) cannot belong to (an)

∞
n=1. The twin

primes (A001359) differ from each other by two, and so their products are also eliminated, as
are the products of the so-called cousin primes (A046132) which differ by four. Similarly, we
are able to rule out products of Sophie Germain primes (A005384) with their corresponding
safe prime; that is, products of the form p(2p+ 1) with both p and 2p+ 1 prime.
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Corollary 6. There does not exist an n such that an is a square of a prime, a product of

twin primes, a product of cousin primes, or a product of a Sophie Germain prime and its

corresponding safe prime.

From Table 1, we see that when D(an) is even, the known an are a product of two
distinct primes, as are the corresponding C(an). Moreover, when this is the case, we have
p+q
2

= C(D(an)) = D(C(an)) = r + s. The entries in the table are exhaustive in the sense
that there are no additional elements of (an)

∞
n=1 less than a30 = 6022735799. Using the

observations just outlined, we can extend this list in a non-exhaustive manner with the
following proposition.

Proposition 7. Let p, q be primes such that both

r± =
p+ q ±

√

p2 − 22pq + q2 − 8

4

are also prime. Then C(pq) = r+r− and pq is an element of (an)
∞
n=1.

Proof. Observe that

3pq + 1

2
=

(

p+ q +
√

p2 − 22pq + q2 − 8

4

)(

p+ q −
√

p2 − 22pq + q2 − 8

4

)

so that C(pq) = r+r−. Moreover, r+ + r− = p+q
2
, and it follows that D(C(pq)) = D(r+r−) =

r+ + r− = p+q
2

= C(D(pq)).

We call such semiprimes pq and r+r− compatible. Equivalently, pq and rs are compatible
if r and s are the roots of the quadratic equation 2x2 − (p + q)x + 3pq + 1 = 0. In a
computer search for compatible semiprimes, we uncovered the elements of (an)

∞
n=1 listed in

Table 2, which is so long that we have banished it to the appendix. Note that the position
in the sequence n is not labeled since this search is non-exhaustive. To facilitate a better
understanding of the solutions to the arithmetic differential equation D

(

3n+1
2

)

= D(n)
2

for n
odd, let us now derive several modular restrictions on compatible semiprimes.

Proposition 8. Suppose pq and rs are compatible semiprimes. Then pq ≡ 2 ≡ rs (mod 3).
It follows that either p ≡ 1 and q ≡ 2 or p ≡ 2 and q ≡ 1 (mod 3), and likewise for r, s.

Proof. Observe that rs = 3pq+1
2

≡ 2 (mod 3), independent of p, q. Without loss of generality,
take r ≡ 1 and s ≡ 2. Then p+ q = 2(r + s) ≡ 0. Since p, q are prime, this congruence can
only be satisfied by p ≡ 1 and q ≡ 2 or the reverse.

We make use of the following lemma.

Lemma 9. Suppose pq and rs are compatible semiprimes. Then p, q, r, s are all odd.
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Proof. That p and q are odd follows from Proposition 2. Without loss of generality, suppose
s = 2. Then p+q

2
= 2 + r = 2 + 3pq+1

4
, from which it follows that 2p + 2q = 3pq + 9 > 3pq.

Without loss of generality, we may assume p ≥ q > 2. Then we have 2p + 2q > 3pq > 6p >
2p+ 2p ≥ 2p+ 2q, a contradiction.

Proposition 10. Suppose pq is compatible to another semiprime. Then pq ≡ 3 (mod 4). It
follows that either p ≡ 1 and q ≡ 3 or p ≡ 3 and q ≡ 1 (mod 4).

Proof. Since p, q are prime, they can only be congruent to 1 or 3 mod 4. Otherwise, they
are divisible by 2, which is ruled out by Proposition 2. If p ≡ 1 ≡ q, then rs ≡ 0 or 2. But
then rs is divisible by 2, which contradicts Lemma 9. The case of p ≡ 3 ≡ q produces a
contradiction similarly.

Using Proposition 10 and quadratic reciprocity, we see that either p and q are both
quadratic residues modulo each other or neither of them is a quadratic residue modulo the
other. Before addressing the residues modulo 10 in an attempt to explain the consistent
pattern in our data, recall the following method for solving Diophantine equations of the
form ax+by+cxy = d. Observe that this equation is equivalent to (cx+b)(cy+a) = ab+cd.
Thus, if a, b, c, d are known, we can look for solutions by factoring ab + cd in all possible
ways and setting the factors equal to cx + b and cy + a. Using this method, we obtain the
following lemma.

Lemma 11. Let pq and rs be compatible semiprimes with p > q. Then r, s ≥ 241 and we

have 3q < r, s < 3p.

Proof. From the definition of compatible semiprimes, we have

p+ q

2
= r + s =

3pq + 1

2s
+ s,

so that we come to a Diophantine equation of the form

sp+ sq − 3pq = 2s2 + 1.

Now applying the method mentioned above with a = b = s, c = −3, and d = 2s2 + 1, we
have

(s− 3p)(s− 3q) = −5s2 − 3.

By factoring the right hand side for each choice of s, it can now be verified computationally
that the first prime s satisfying this equality so that p, q, r are also prime is s = 241.
Moreover, since −5s2− 3 < 0, we have that 3q < s < 3p. By symmetry, this argument holds
also for r.

Let us now determine the possible congruences modulo 5, so that the congruences modulo
10 can be determined, thereby explaining the pattern we observe in our data.

10



Proposition 12. Let pq and rs be compatible semiprimes. Then p ≡ 1 and q ≡ 4 or q ≡ 1
and p ≡ 4 (mod 5). Similarly, r ≡ 1 and s ≡ 4 or s ≡ 1 and r ≡ 4 (mod 5).

Proof. Let us begin by noting that if a product of two primes is congruent to 5, then one
of the primes is necessarily equivalent to 5. Thus, eliminating all such cases can be done by
showing that neither prime is 5. Suppose for the sake of a contradiction that q = 5. Then
we have

2(r + s) = p+ 5 =
2rs− 1

15
+ 5,

and so it follows that 15(r+s) = rs+37 > rs. Thus, 1
r
+ 1

s
> 1

15
. But by Lemma 11, we have

1
r
+ 1

s
≤ 2

241
, a contradiction. Thus, by symmetry, p, q 6= 5. We now proceed by eliminating

the remaining cases one by one.
If pq ≡ 1, then rs ≡ 2 and the possible congruences are therefore (p, q) ≡ (1, 1), (2, 3), (4, 4)

and (r, s) ≡ (1, 2), (3, 4), none of which satisfy p+q = 2(r+s). If pq ≡ 2, then rs ≡ 1 and the
possible congruences are therefore (p, q) ≡ (1, 2), (3, 4) and (r, s) ≡ (1, 1), (2, 3), (4, 4), none
of which satisfy p+ q = 2(r + s). If pq ≡ 3, then rs ≡ 0, which violates Lemma 11. Finally,
if pq ≡ 4, then rs ≡ 4 and the possible congruences are therefore (p, q) ≡ (1, 4), (2, 2), (3, 3)
and (r, s) ≡ (1, 4), (2, 2), (3, 3). The only ones satisfying p + q = 2(r + s) are (p, q) ≡ (1, 4)
and (r, s) ≡ (1, 4).

We are now ready to give some justification for why all of the entries in Tables 1 and 2
are congruent to 9 modulo 10. The next proposition shows that this is always the case for
compatible semiprimes, and so if all elements of (an)

∞
n=1 are given by semiprimes compatible

with another semiprime, then every entry is congruent to 9 modulo 10. Of course, not all
elements of an are compatible semiprimes, given the exceptional case n = 12, but even if
we restrict our attention to the case that D(n) is even, it is not known that all remaining
elements of (an)

∞
n=1 are semiprimes compatible with another semiprime.

Proposition 13. Let pq and rs be compatible semiprimes. Then p ≡ 1 and q ≡ 9 or p ≡ 9
and q ≡ 1 (mod 10). Similarly, r ≡ 1 and s ≡ 9 or r ≡ 9 and s ≡ 1 (mod 10).

Proof. By Lemma 9, pq is odd, so there exists an n such that pq = 1+2n. On the other hand,
pq ≡ 4 (mod 5) by Proposition 12, so there exists an m such that pq = 4 + 5m. It follows
that 2n = 3+ 5m and m is therefore odd. Thus, there is an integer k such that m = 2k+1,
and we have pq = 4 + 5m = 9 + 10k ≡ 9 (mod 10). Similarly, we have rs ≡ 9 (mod 10).
The possible congruences are therefore (p, q), (r, s) ≡ (1, 9), (3, 3), (7, 7). The only choice
satisfying p+ q = 2(r + s) is (p, q) ≡ (1, 9) ≡ (r, s).

4 Sum of reciprocals of compatible semiprimes

It is not clear if there are infinitely many compatible semiprimes and therefore infinitely
many solutions to our commutation problem. One method of proving that a given set has
infinite cardinality is to show that a sum over that set diverges. For example, the sum
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of the reciprocals of the prime numbers diverges, showing that there are infinitely many
prime numbers. Brun showed that the sum of the reciprocals of the twin primes actually
converges, so that a similar argument cannot be made and the twin prime conjecture still
remains unsolved. Let us prove a similar result related to our compatible semiprimes.

Theorem 14. Let S denote the set of semiprimes compatible with another semiprime. Then

the sum
∑

s∈S
1
s
converges.

Proof. We bound the number of semiprimes which are mapped to a semiprime by the Collatz
map and use Abel’s summation formula to show that the sum of the reciprocals of these
numbers converges. It then follows that the sum over S converges, as S forms a subset of
this set. Let x be large and fix a y ≤ x. For every semiprime pq ≤ y, define the set

Spq :=

{

n ≤ x : pq | n or pq |
3n+ 1

2

}

.

Observe that if n > y belongs to Spq for some pq ≤ y, then at least one of n and 3n+1
2

is not
a semiprime. Indeed, since pq ≤ y and n > y by assumption, there must be a third prime
factor in either case. It follows that the number of semiprimes rs ≤ x such that 3rs+1

2
is also

semiprime is bounded above by the quantity

y + x− |∪pq≤ySpq|.

Here the subtraction of the union of the sets Spq removes those points n > y that belong to
Spq since we have shown that they do not produce semiprimes under the Collatz mapping.
However, it also removes points n ≤ y which may satisfy this hypothesis, and so we make
up for this with the addition of a factor of y. Now let ℓ be an even number. By the
inclusion-exclusion principle, we have

|∪pq≤ySpq| ≥
∑

pq≤y

|Spq| −
∑

p1q1<p2q2≤y

|Sp1q1 ∩ Sp2q2 |+ · · · −
∑

p1q1<···<pℓqℓ≤y

|Sp1q1 ∩ · · · ∩ Spℓqℓ |. (4)

We must therefore endeavor to estimate |Sp1q1∩· · ·∩Spjqj | for arbitrary j = 1, . . . , ℓ. Observe
that n ∈ Sp1q1 ∩ · · · ∩ Spjqj if and only if n ≡ 0 or 3n+1

2
≡ 0 (mod piqi) for every i = 1, . . . , j.

By Proposition 2, we may assume that pi, qi 6= 2 so that the latter case is equivalent to
3n+ 1 ≡ 0 (mod piqi), and rearranging produces 3n ≡ −1 (mod piqi). By Proposition 8, we
may assume pi, qi 6= 3 so that gcd(3, piqi) = 1. It follows that this congruence has a unique
solution which can be obtained from Euler’s theorem. Thus, for each i there are exactly
two possible residues modulo piqi. Now, if n satisfies one of the two possible congruences for
every i, then so does n+mp1q1 · · · pjqj for every m ∈ Z. There are at most ⌊ x

p1q1···pjqj ⌋+1 and

at least ⌊ x
p1q1···pjqj ⌋ values of m such that n+mp1q1 · · · pjqj ≤ x (⌊x⌋ denotes the integer part

of x). Moreover, since the two congruences are chosen independently for each i, there are 2j

possible choices. Putting these observations together, it follows that there is a λj ∈ [−1, 1]
such that

|Sp1q1 ∩ · · · ∩ Spjqj | =
2jx

p1q1 · · · pjqj
+ 2jλj.

12



Thus, we have

x− |∪pq≤ySpq| ≤ x−
∑

pq≤y

(

2x

pq
+ 2λ1

)

+ · · ·+
∑

p1q1<···<pℓqℓ≤y

(

2ℓx

p1q1 · · · pℓqℓ
+ 2ℓλℓ

)

.

Letting σk denote that k-th symmetric sum over the set { 2
pq

: pq ≤ y}, we have

x− |∪pq≤ySpq| ≤ x(1− σ1 + σ2 − · · ·+ σℓ) + yℓ,

where we have used the fact that there are at most (y/2)ℓ terms in (4), as well as the estimate
|2jλj| ≤ 2ℓ. We need the following estimate on the alternating sum of the symmetric sums:

1− σ1 + σ2 − · · · − σk ≤

n
∏

j=1

(1− aj) ≤ 1− σ1 + σ2 − · · ·+ σℓ

for all k odd and ℓ even (the k-th symmetric sum is over the set {a1, . . . , an} here). To see
this, observe that the inequalities are trivially true for n = 1 and proceed by induction on
n. Since ℓ is even, we have in our case that

x− |∪pq≤ySpq| ≤ x

(

∏

pq≤y

(

1−
2

pq

)

+ σℓ

)

+ yℓ.

Now, the product is easily bounded above. We have

∏

pq≤y

(

1−
2

pq

)

=
∏

pq≤y

((

1−
1

pq

)2

−
1

(pq)2

)

≤

(

∏

pq≤y

(

1−
1

pq

))2

=

(

exp

(

log

(

∏

pq≤y

(

1−
1

pq

))))2

,

and now we proceed by estimating the logarithm. Using the complete additivity property,
we have

log

(

∏

pq≤y

(

1−
1

pq

))

=
∑

pq≤y

log

(

1−
1

pq

)

≤ −
∑

pq≤y

1

pq
.

Let π2(x) denote the number of semiprimes no greater than x. Using Abel’s summation
formula, we can write the partial sum of the reciprocal semiprimes as

−
∑

pq≤y

1

pq
= −

π2(x)

x

∣

∣

∣

∣

y

2

−

∫ y

2

π2(x)

x2
dx.
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Ishmukhametov and Sharifullina showed that π2(x) =
∑

√
x

k=1⌊π
(

x
pk

)

− k + 1⌋ [10], but all we

really need is the result of Landau that π2(y) ∼
x log(log(x))

log(x)
[14], from which it follows that

−
∑

pq≤y

1

pq
∼ −

log(log(y))

log(y)
+

log(log(2))

log(2)
−

∫ y

2

log(log(x))

x log(x)
dx

= −
log(log(y))

log(y)
+

log(log(2))

log(2)
−

1

2
(log(log(y)))2 +

1

2
(log(log(2)))2

= −
1

2
(log(log(y)))2 +O(1).

(5)

Thus, we have

exp

(

log

(

∏

pq≤y

(

1−
1

pq

)))

≤ A exp
(

−
1

2
(log(log(y)))2

)

for some constant A and it follows that

∏

pq≤y

(

1−
2

pq

)

≤ Ce−(log(log(y)))2 ≤
C

logm(y)

for some constant C and for every integer m > 0. All that remains in our estimate is to
bound the symmetric sum σℓ. Observe that
(

∑

pq≤y

2

pq

)ℓ

=
∑

p1q1,p2q2,...,pℓqℓ≤y

2ℓ

p1q1 · · · pℓqℓ
= ℓ!

∑

p1q1<p2q2<···<pℓqℓ≤y

2ℓ

p1q1 · · · pℓqℓ
+

∑

pq≤y

2ℓ

(pq)ℓ
,

where the factor of ℓ! is the number of ways to order the ℓ semiprimes. It follows that

σℓ ≤
1

ℓ!

(

∑

pq≤y

2

pq

)ℓ

,

and from (5), we have

σℓ ≤
1

ℓ!

(

D(log(log(y))
)2

+B)ℓ

for some constants D and B. Thus, using ℓℓ ≥ ℓ! and y ≤ x, it follows that

σℓ ≤
(1

ℓ

(

D(log(log(y)))2 +B
))ℓ

≤
(1

ℓ

(

D(log(log(x)))2 + B
))ℓ

Let πs denote the number of semiprimes which are mapped to a semiprime under the Collatz
map. Putting these bounds together, we see that

πs(x) ≤ y + x− |∪pq≤ySpq| < y + x

(

C

logm(y)
+

(

1

ℓ

(

D(log(log(x)))2 + B
)

)ℓ)

+ yℓ.
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But y, m, and ℓ are free to be chosen except for the restriction y ≤ x. We tame the behavior
of the term containing B and D by choosing ℓ ≈ 2

(

D(log(log(x)))2 + B
)

. Now choosing

y = x
1

D(log(log(x)))2+B , we see that

πs(x) ≤
Mx

(

D(log(log(x))
)2

+ B)m

(log(x))m
. (6)

for a constant M . Let us now show that the sum
∑

s∈Cs

1
s
over the set Cs of all semiprimes

which are mapped to a semiprime under the Collatz map converges. By the Abel summation
formula, we have

∑

s∈Cs

1

s
=

πs(x)

x

∣

∣

∣

∣

∞

2

+

∫ ∞

2

πs(x)

x2
dx.

Using (6), the boundary term vanishes at infinity and the integral converges for large enough
m. Thus, the sum converges. Since the compatible semiprimes form a subset, we finally have
that

∑

s∈S
1
s
converges, and this completes the proof.

5 Conclusion

We have studied a curious class of pairs of semiprime numbers which we call compatible.
These numbers form solutions to the arithmetic differential equation

D

(

3n+ 1

2

)

=
D(n)

2
, (7)

which is a special case of the problem of searching for numbers for which the arithmetic
derivative and Collatz map commute. In this latter problem, we have found an exhaustive
list of the first 30 numbers providing a solution, and all but one of them is a solution to the
special case (7). The compatible semiprimes form additional solutions to (7) which therefore
solve the commutation problem as well, although the list we provide in Table 2 is likely not
exhaustive.

To close out this work, we provide the following conjectures worth studying in future
work. Note that Conjecture 15 implies Conjecture 16 which implies Conjecture 17. The
latter logical implication holds because there are no even n for which (7) holds. Indeed, such
an n can be written n = 2m so that (7) reduces to 2D(6m + 1) = 4D(m) + 8m + 1. Since
the left hand side is even while the right hand side is odd, such an n cannot exist. Note also
that Conjecture 18 implies Conjecture 19.

Conjecture 15. There are infinitely many compatible semiprimes.

Conjecture 16. There are infinitely many solutions to the arithmetic differential equation
(7).
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Conjecture 17. There are infinitely many solutions to the commutation problemD(C(n)) =
C(D(n)).

Conjecture 18. With the exception of 606938385, the only solutions to the commutation
problem D(C(n)) = C(D(n)) are given by compatible semiprimes.

Conjecture 19. Every solution to the commutation problem D(C(n)) = C(D(n)) is square-
free.

It should also be noted that similar problems can be formulated for the generalized Collatz
functions

Ca,b(n) :=

{

an+b
2

, if n odd;
n
2
, if n even,

with a ≡ b (mod 2). An exhaustive brute force search for numbers n ≤ 107 solving
the analogous commutation problem produced no solutions for a = 5, b = 1, while the
slight variant a = 5, b = 3 has the eleven solutions n = 12419, 20171, 37727, 134579,
199259, 301799, 574319, 866891, 1580291, 1625411, 8014031, each of which is a squarefree
semiprime. On the other hand, the case a = 7, b = 1 has only the solution n = 429
in this range, and 429 is a product of three distinct prime factors. The slight variant
a = 7, b = 3 produced no solutions and the variant a = 7, b = 5 has the seven solutions
n = 29831, 38051, 76331, 568031, 888971, 1855871, 3095711, each of which is a squarefree
semiprime consisting of the product of a prime congruent to 3 and a prime congruent to
7 modulo 10. In each of these examples, the solutions are squarefree almost-primes, and for
this reason we make the following conjecture.

Conjecture 20. The solutions to the commutation problem D(Ca,b(n)) = Ca,b(D(n)) are
squarefree for every a ≡ b (mod 2).
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Appendix

pq Prime Factorization p+ q rs Prime Factorization
6371331359 16561× 384719 401280 9556997039 77801× 122839
8975589239 9241× 971279 980520 13463383859 29201× 461059
10657078799 20071× 530969 551040 15985618199 83059× 192461
12860887439 6089× 2112151 2118240 19291331159 18539× 1040581
13170630899 8681× 1517179 1525860 19755946349 26839× 736091
15512319959 4111× 3773369 3777480 23268479939 12401× 1876339
20713686659 27179× 762121 789300 31070529989 108631× 286019
23664471179 11369× 2081491 2092860 35496706769 35099× 1011331
24180093239 26959× 896921 923880 36270139859 100291× 361649
27169948919 29209× 930191 959400 40754923379 110339× 369361
30617640719 9721× 3149639 3159360 45926461079 29629× 1550051
41203174319 39929× 1031911 1071840 61804761479 167971× 367949
44444955899 37831× 1174829 1212660 66667433849 144289× 462041
45265630259 34949× 1295191 1330140 67898445389 125941× 539129
59663684459 50839× 1173581 1224420 89495526689 241261× 370949
60235146119 51329× 1173511 1224840 90352719179 364621× 247799
71047305239 38231× 1858369 1896600 106570957859 130279× 818021
72269351939 56681× 1275019 1331700 108404027909 382271× 283579
74550954899 43291× 1722089 1765380 111826432349 153319× 729371
74797926239 56239× 1330001 1386240 112196889359 435481× 257639
90923314259 59141× 1537399 1596540 136384971389 247729× 550541
91551073739 28909× 3166871 3195780 137326610609 91141× 1506749
92153208659 34949× 2636791 2671740 138229812989 113041× 1222829
100918727099 44119× 2287421 2331540 151378090649 148861× 1016909
105138878699 63079× 1666781 1729860 157708318049 603689× 261241
105567827399 22441× 4704239 4726680 158351741099 69019× 2294321
108216566279 49201× 2199479 2248680 162324849419 170111× 954229
108868846199 67511× 1612609 1680120 163303269299 534581× 305479
129264961559 60271× 2144729 2205000 193897442339 219619× 882881
131559702959 47881× 2747639 2795520 197339554439 159349× 1238411
138217769399 48991× 2821289 2870280 207326654099 162971× 1272169
138868264319 78079× 1778561 1856640 208302396479 379649× 548671
150260888399 75209× 1997911 2073120 225391332599 310379× 726181
152376066599 38561× 3951559 3990120 228564099899 122029× 1873031
178661152559 39929× 4474471 4514400 267991728839 125731× 2131469
182554595819 72739× 2509721 2582460 273831893729 1023751× 267479
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pq Prime Factorization p+ q rs Prime Factorization
185904249719 85889× 2164471 2250360 278856374579 368551× 756629
192709329959 71471× 2696329 2767800 289063994939 256369× 1127531
203788963199 84551× 2410249 2494800 305683444799 912349× 335051
218613696239 51151× 4273889 4325040 327920544359 164089× 1998431
233568190619 67741× 3447959 3515700 350352285929 229189× 1528661
240001727519 102911× 2332129 2435040 360002591279 711649× 505871
260131119179 103699× 2508521 2612220 390196678769 462571× 843539
262091228279 85889× 3051511 3137400 393136842419 313109× 1255591
262593906359 37649× 6974791 7012440 393890859539 116191× 3390029
288964258199 36871× 7837169 7874040 433446387299 113359× 3823661
296122234379 41341× 7162919 7204260 444183351569 127849× 3474281
296955821639 104119× 2852081 2956200 445433732459 1056479× 421621
306450940139 79411× 3859049 3938460 459676410209 270619× 1698611
322643081699 88169× 3659371 3747540 483964622549 309359× 1564411
341144024159 60919× 5599961 5660880 511716036239 194101× 2636339
343031424959 124991× 2744449 2869440 514547137439 724991× 709729
364522651739 125219× 2911081 3036300 546783977609 587579× 930571
368068728719 116689× 3154271 3270960 552103093079 1159201× 476279
395384049899 115891× 3411689 3527580 593076074849 1311619× 452171
400481245739 85619× 4677481 4763100 600721868609 286771× 2094779
405113920919 135119× 2998201 3133320 607670881379 706291× 860369
412288472879 136351× 3023729 3160080 618432709319 714529× 865511
436306401359 55529× 7857271 7912800 654459602039 172981× 3783419
473023514939 143981× 3285319 3429300 709535272409 697729× 1016921
481853046599 132529× 3635831 3768360 722779569899 536191× 1347989
484957912139 123239× 3935101 4058340 727436868209 1564081× 465089
523044914519 131111× 3989329 4120440 784567371779 1555999× 504221
526841686199 138511× 3803609 3942120 790262529299 560081× 1410979
560607218879 136519× 4106441 4242960 840910828319 527581× 1593899
561826681079 154351× 3639929 3794280 842740021619 709729× 1187411
579247503719 157831× 3670049 3827880 868871255579 740359× 1173581
651630487619 102059× 6384841 6486900 977445731429 336211× 2907239
656472916739 143159× 4585621 4728780 984709375109 539641× 1824749
736241831879 129119× 5702041 5831160 1104362747819 2468131× 447449
750468526739 97381× 7706519 7803900 1125702790109 3588229× 313721
844661031299 196139× 4306441 4502580 1266991546949 1134871× 1116419
852127113419 142231× 5991149 6133380 1278190670129 497509× 2569181
852545495159 141601× 6020759 6162360 1278818242739 494359× 2586821
883609516259 171529× 5151371 5322900 1325414274389 663331× 1998119
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pq Prime Factorization p+ q rs Prime Factorization
1067201903519 210359× 5073241 5283600 1600802855279 941461× 1700339
1069842593219 107509× 9951191 10058700 1604763889829 4686961× 342389
1086684073439 220009× 4939271 5159280 1630026110159 1106491× 1473149
1125176937359 175391× 6415249 6590640 1687765406039 634241× 2661079
1179415384139 226199× 5214061 5440260 1769123076209 1644061× 1076069
1205649411119 227569× 5297951 5525520 1808474116679 1697191× 1065569
1248830314859 221021× 5650279 5871300 1873245472289 937481× 1998169
1255569121199 135119× 9292321 9427440 1883353681799 4272959× 440761
1255865342579 233509× 5378231 5611740 1883798013869 1693501× 1112369
1267060830239 184351× 6873089 7057440 1900591245359 663281× 2865439
1353561815339 225821× 5993959 6219780 2030342723009 2177449× 932441
1409845008239 244561× 5764799 6009360 2114767512359 1125169× 1879511
1424445760319 248071× 5742089 5990160 2136668640479 1823051× 1172029
1428658219199 209249× 6827551 7036800 2142987328799 783599× 2734801
1459820224439 256489× 5691551 5948040 2189730336659 1633531× 1340489
1477666902419 161641× 9141659 9303300 2216500353629 538939× 4112711
1539898047899 166919× 9225421 9392340 2309847071849 558209× 4137961
1618340838659 179369× 9022411 9201780 2427511257989 607951× 3992939
1815603367859 204311× 8886469 9090780 2723405051789 710089× 3835301
2180605168559 275521× 7914479 8190000 3270907752839 1087631× 3007369
2271244344419 285161× 7964779 8249940 3406866516629 2982799× 1142171
2283132057839 319321× 7149959 7469280 3424698086759 1617949× 2116691
2312261656139 299539× 7719401 8018940 3468392484209 1262731× 2746739
2515975240439 253769× 9914431 10168200 3773962860659 902521× 4181579
2525623096319 339161× 7446679 7785840 3788434644479 1929971× 1962949
2759705814599 339289× 8133791 8473080 4139558721899 1528771× 2707769
2798487028499 354469× 7894871 8249340 4197730542749 1826761× 2297909
2914249202819 355339× 8201321 8556660 4371373804229 2591551× 1686779
3015166657439 355361× 8484799 8840160 4522749986159 1608769× 2811311
3029547727979 371299× 8159321 8530620 4544321591969 2195071× 2070239
3142431670799 376631× 8343529 8720160 4713647506199 1982741× 2377339
3207163248719 355609× 9018791 9374400 4810744873079 1517939× 3169261
3342365758439 338609× 9870871 10209480 5013548637659 3777541× 1327199
3388989990119 363119× 9333001 9696120 5083484985179 3314219× 1533841
3434499230039 376679× 9117841 9494520 5151748845059 3068159× 1679101
3727388517539 374729× 9946891 10321620 5591082776309 3613559× 1547251
3894649427759 421009× 9250751 9671760 5841974141639 2484721× 2351159
4196759425979 430739× 9743161 10173900 6295139138969 2126191× 2960759

Table 2: Additional solutions to the commutation problem D(C(n)) = C(D(n)) given by
compatible semiprimes.
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