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Abstract

The continued fractions that are the subject of this paper display a particular kind

of “self-similar” structure: that is, their partial quotients are created by manipulating

and moving the denominators of their convergents. An alternating series characterizes

the real numbers that these continued fractions represent. Using an application of

Roth’s theorem, we prove the transcendence of these numbers.

1 Introduction

Let x ∈ R. We write the continued fraction of x as

x = [a0, a1, . . .] = a0 +
1

a1 +
1

a2+
1

...

, (1)
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where the partial quotients an are integers, positive for n > 0. We have

x = lim
n→∞

[a0, a1, . . . , an],

where

[a0, a1, . . . , an] = a0 +
1

a1 +
1

a2+
1

...+ 1
an

.

Define pn and qn by
{

pn = anpn−1 + pn−2, for n ≥ 1;

qn = anqn−1 + qn−2, for n ≥ 1,
(2)

with p−1 = 1, q−1 = 0, p0 = a0 and q0 = 1. Then [a0, a1, . . . , an] = pn/qn, which is called the
nth convergent. We have the property

pnqn−1 − pn−1qn = (−1)n+1, for n ≥ 1. (3)

Using this property and induction, we obtain

pn
qn

= a0 +
1

q0q1
−

1

q1q2
+ · · ·+

(−1)n−1

qn−1qn
. (4)

Continued fractions are useful in providing the best rational approximations.
We recall that the irrationality exponent µ(x) is defined for real numbers x to be the

supremum of the set of µ such that

0 <

∣

∣

∣

∣

x−
p

q

∣

∣

∣

∣

<
1

qµ

is satisfied by an infinite number of coprime integer pairs (p, q) with q > 0. Rational numbers
have irrationality exponent 1, while (as a consequence of Dirichlet’s approximation theorem)
every irrational number has irrationality exponent at least 2.

Referring back to [9], we recall a formula for the irrationality exponent of an irrational
number in terms of its continued fraction expansion. For a real number x = [a0; a1, a2, . . .]
with convergents pi/qi, it holds:

µ(x) = 1 + lim sup
n→∞

ln qn+1

ln qn
= 2 + lim sup

n→∞

ln an+1

ln qn
. (5)

A number x ∈ R with irrationality exponent µ(x) = ∞ is called a Liouville number. In 1955,
Roth [10] published his famous theorem about the rational approximation of algebraic real
numbers.
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Theorem 1. Let x be a real algebraic number and let ǫ > 0. Then the inequality

∣

∣

∣

∣

x−
p

q

∣

∣

∣

∣

<
1

q2+ǫ

has only a finite number of rational solutions p/q.

This theorem remains a very good tool to show the transcendence of real numbers. In fact,
by this theorem, the irrationality exponent of any irrational algebraic number is exactly 2.

The results presented here are similar in spirit to those in a paper by Davison and Shallit
[4], who found some continued fractions whose partial quotients are explicitly related to
the denominators of their convergents, and used this to prove the transcendence of Cahen’s
constant:

C =
∞
∑

n=0

(−1)n

Sn − 1
=

∞
∑

n=0

(−1)n

xn

= 0.64341 . . . ,

where {Sn} is the Sylvester sequence defined by the nonlinear recurrence:

S0 = 2, Sn+1 = S2

n − Sn + 1 (n ≥ 0),

and xn = Sn − 1 satisfies the recurrence

xn+1 = xn(xn + 1) (n ≥ 0).

The partial quotients in continued fraction expansion of C appear as sequence A006280 in the
On-Line Encyclopedia of Integer Sequences (OEIS) [8]. Recently, Duverney and Shiokawa
[5] have proved that the exact value of its irrationality exponent is equal to 3.

The connections between infinite series representations for real numbers and continued
fraction expansions are the subject of numerous studies. Several papers [2, 3, 4, 5, 6, 7]
looked into this, and we’ll also present some more fascinating examples. More precisely,
in this paper, motivated by Davison and Shallit’s concepts, we will reveal other analogous
methods for displaying a real number as an infinite alternating series.

2 Main results

2.1 A first predictable pattern

There are many numbers in the literature with a repeating pattern with a period of 2. For
example

tan(1/n) = [0, n− 1, 1, 3n− 2, 1, 5n− 2, 1, 7n− 2, . . .],

where n is a positive integer (OEIS A019426). We will see that there exist many other real
numbers with a similar pattern which are transcendental numbers.
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Let x = [a0, a1, . . .] and (pn/qn)n be the sequence of its convergents. Let β ∈ Z>0. Let
ω0, ω1, ω2, . . . be a sequence of positive integers. Assume that



















a0 = 0,

a1 = ω0,

a2n+2 = 1, for n ≥ 0;

a2n+3 = ωn+1q
β
2n+1, for n ≥ 0.

(6)

Then q0 = 1, q1 = ω0, and for n ≥ 0

{

q2n+3 = ωn+1q
β
2n+1q2n+2 + q2n+1,

q2n+2 = q2n+1 + q2n.
(7)

Using the equation (4), we see

p2n+1

q2n+1

=
∑

0≤i≤2n

(−1)i

qiqi+1

= [0, ω0, 1, ω1q
β
1 , 1, ω2q

β
3 , 1, . . . , 1, ωnq

β
2n−1].

Hence, letting n → ∞, we find the following way to express the continued fraction as an
alternating series:

Proposition 2.

x =
∞
∑

i=0

(−1)i

qiqi+1

= [0, ω0, 1, ω1q
β
1 , 1, ω2q

β
3 , 1, . . . , 1, ωnq

β
2n−1, . . .]. (8)

Theorem 3. The irrationality exponent of the number x in Proposition 2 satisfies

µ(x) ≥ 2 + β + lim sup
n→∞

lnωn

ln q2n
≥ 2 + β ≥ 3. (9)

Hence x is transcendental by Roth’s theorem.

Proof. Let x be the number in equation (8), with continued fraction expansion x = [a0, a1, . . .].
Let ε > 0 be arbitrary. From the equation (7) we have q2n ≤ 2q2n−1 for large n. So

q2n ≤ qε2nq2n−1,
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which yields (1− ε) ln q2n ≤ ln q2n−1. Then by (5)

µ(x) = 2 + lim sup
n→∞

ln an+1

ln qn

= 2 + lim sup
n→∞

ln a2n+1

ln q2n

= 2 + lim sup
n→∞

ln(ωnq
β
2n−1)

ln q2n

= 2 + lim sup
n→∞

lnωn

ln q2n
+ β

ln q2n−1

ln q2n

≥ 2 + (1− ε)β + lim sup
n→∞

lnωn

ln q2n
,

which yields (9) since ε is arbitrarily small.

We now prove the converse to Proposition 2.

Theorem 4. Let (xi) be a sequence of positive integers such that x0 = 1, and x =
∑

i≥0
(−1)i/xi

be an irrational number with continued fraction expansion

x = [0, a1, a2, . . .].

Let (pn/qn) be the sequence of convergents of x. Assume that

n
∑

i=0

(−1)i

xi

=
pn+1

qn+1

for all n ≥ 0, and that x2n+1 | x2n+2 and x2n+3 =

(

x2n+2

x2n+1

x2n

x2n−1

x2n−2

x2n−3

· · ·
x2

x1

)2

+ x2n+2 for

all n ≥ 0. Then for n ≥ 0

(i) xn = qnqn+1.

(ii) q2n+1 | a2n+3.

(iii) a2n+2 = 1.

Proof.

(i) Clearly verified for n = 0. For n ≥ 1 we have

pn+1

qn+1

=
n

∑

i=0

(−1)i

xi

=
pn
qn

+
(−1)n

xn

.
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Hence
pn+1

qn+1

−
pn
qn

=
(−1)n

xn

.

By (3), we have
pn+1

qn+1

−
pn
qn

=
(−1)n

qn+1qn
,

and hence xn = qn+1qn.

(ii) Note that x2n+1 | x2n+2 implies that q2n+1q2n+2 | q2n+2q2n+3, and hence q2n+1 | q2n+3.
Since q2n+3 = a2n+3q2n+2 + q2n+1, so q2n+1 | a2n+3q2n+2. As gcd(q2n+1, q2n+2) = 1, so
q2n+1 | a2n+3.

(iii) We have

(

x2n+2

x2n+1

x2n

x2n−1

x2n−2

x2n−3

· · ·
x2

x1

)2

=

(

q2n+2q2n+3

q2n+1q2n+2

q2nq2n+1

q2n−1q2n
· · ·

q2q3
q1q2

)2

= q22n+3

= x2n+3 − x2n+2 = q2n+3q2n+4 − q2n+2q2n+3.

This gives that q2n+4 = q2n+3 + q2n+2.

Example 5. We put ωn = 1 for n ≥ 0 and β = 1. Then q0 = 1, q1 = 1, and q2n+3 =
q2n+1(q2n+2 + 1). Here are the first few values of the sequences qn and xn:

n 0 1 2 3 4 5 6 7 . . .
qn 1 1 2 3 5 18 23 432 . . .
xn 1 2 6 15 90 414 9936 196560 . . .

So we have

x =
∞
∑

i=0

(−1)i

qiqi+1

= 1−
1

2
+

1

6
−

1

15
+

1

90
−

1

414
+ · · ·

= [0, 1, 1, q1, 1, q3, 1, . . . , 1, q2n−1, . . .]

= [0, 1, 1, 1, 1, 3, 1, 18, 1, 432, . . .],

is a transcendental number. The continued fraction expansion of this series is referenced as
A380013 in the OEIS [8].
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Example 6. We put β = 1, ω0 = 1, and ωn+1 = q2n+1 for n ≥ 0. Then q0 = 1, q1 = 1, and
q2n+3 = q22n+1q2n+2 + q2n+1. So we have

x =
∞
∑

i=0

(−1)i

qiqi+1

= 1−
1

2
+

1

6
−

1

15
+

1

240
+ · · ·

= [0, 1, 1, 1, 1, q23, 1, q
2

5, 1, . . . , 1, q
2

2n−1, . . .]

= [0, 1, 1, 1, 1, 9, 1, 2304, 1, 14923065600, . . .],

is a transcendental number.

Example 7. We put β = 1, ω0 = 1, and ωn = qn2n for n ≥ 1. Then q0 = 1, q1 = 1, and
q2n+3 = qn+2

2n+2q2n+1 + q2n+1 = q2n+1(q
n+2

2n+2 + 1). So we have

x =
∞
∑

i=0

(−1)i

qiqi+1

= 1−
1

2
+

1

10
−

1

35
+

1

12040
− · · ·

= [0, 1, 1, q2q1, 1, q
2

4q3, 1, q
3

6q5, . . . , 1, q
n+1

2n+2q2n+1, . . .]

= [0, 1, 1, 2, 1, 245, 1, 8859423442760, 1, . . .].

Since µ(x) ≥ 2 + β + lim sup
n→∞

lnωn

ln q2n
= +∞, then x is a Liouville number.

2.2 A second predictable pattern

In this part, we construct many real numbers with a repeated pattern with a period 3
analogous to those of e

1

n :

e
1

n = [1, n− 1, 1, 1, 3n− 1, 1, 1, 5n− 1, 1, 1, . . .],

where n is a positive integer (OEIS A003417). We prove that these numbers are transcen-
dental.

Let x = [a0, a1, . . .] and (pn/qn)n be the sequence of its convergents. As above, we let
β ∈ Z>0 and ω0, ω1, ω2, . . . be a sequence of positive integers. Assume that































a0 = 0,

a1 = ω0,

a3n+2 = 1 for n ≥ 0;

a3n+3 = 1 for n ≥ 0;

a3n+4 = ωn+1q
β
3n+2, for n ≥ 0.

(10)

Then q0 = 1, q1 = ω0, and for n ≥ 0










q3n+2 = q3n+1 + q3n,

q3n+3 = q3n+2 + q3n+1,

q3n+4 = ωn+1q3n+3q
β
3n+2 + q3n+2.

(11)
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Using the equation (4), we see

p3n+1

q3n+1

=
∑

0≤i≤3n

(−1)i

qiqi+1

= [0, ω0, 1, 1, ω1q
β
2 , 1, 1, ω2q

β
5 , 1, 1 . . . , 1, ωnq

β
3n−1].

Hence, letting n → ∞, we also find the following way to express the real x as an alternating
series:

Proposition 8.

x =
∞
∑

i=0

(−1)i

qiqi+1

= [0, ω0, 1, 1, ω1q
β
2 , 1, 1, ω2q

β
5 , 1, 1 . . . , 1, 1, ωnq

β
3n−1, . . .]. (12)

Theorem 9. The irrationality exponent of the number x in Proposition 8 satisfies

µ(x) ≥ 2 + β + lim sup
n→∞

lnωn

ln q3n
≥ 2 + β ≥ 3. (13)

Hence x is transcendental by Roth’s theorem.

Proof. Let x be the number in equation (12), with continued fraction expansion x = [a0, a1, . . .].
Let ε > 0 be arbitrary. From (11), we have q3n ≤ 2q3n−1 for large n. So

q3n ≤ qε3nq3n−1,

which yields (1− ε) ln q3n ≤ ln q3n−1. Then by (5)

µ(x) = 2 + lim sup
n→∞

ln an+1

ln qn

= 2 + lim sup
n→∞

ln a3n+1

ln q3n

= 2 + lim sup
n→∞

ln(ωnq
β
3n−1)

ln q3n

= 2 + lim sup
n→∞

lnωn

ln q3n
+ β

ln q3n−1

ln q3n

≥ 2 + (1− ε)β + lim sup
n→∞

lnωn

ln q3n
,

which yields (13) since ε is arbitrarily small.

The proof of the converse to Proposition 8 is similar to the proof of Theorem 4, so we
omit it.
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Theorem 10. Let (xi) be a sequence of positive integers such that x0 = 1, and x =
∑

i≥0
(−1)i/xi be an irrational number with continued fraction expansion

x = [0, a1, a2, . . .].

Let (pn/qn) be the sequence of convergents of x. Assume that

n
∑

i=0

(−1)i

xi

=
pn+1

qn+1

for all n ≥ 0, and that x3n+2 | x3n+3,

x3n+2 − x3n+1 =

(

x3n+1

x3n

x3n−1

x3n−2

x3n−3

x3n−4

· · ·
x2

x1

)2

,

x3n+4 − x3n+3 =

(

x3n+3

x3n+2

)2

(x3n+2 − x3n+1)

for all n ≥ 0. Then for n ≥ 0 we have

(i) xn = qnqn+1.

(ii) q3n+2 | a3n+4.

(iii) a3n+2 = a3n+3 = 1.

Example 11. We put β = 1, ω0 = 1, and ωn+1 = q3n+2 for n ≥ 0. Then



















a0 = 0,

a1 = 1,

a3n+2 = a3n+3 = 1, for n ≥ 0;

a3n+4 = q23n+2, for n ≥ 0.

We have

x =
∞
∑

i=0

(−1)i

qiqi+1

= 1−
1

2
+

1

6
−

1

42
+

1

238
− · · ·

= [0, 1, 1, 1, q22, 1, 1, q
2

5, . . . , 1, 1, q
2

3n−1, . . .]

= [0, 1, 1, 1, 4, 1, 1, 289, 1, 1, 81126049, . . .],

and this number is transcendental. The continued fraction expansion of this series is refer-
enced as A380194 in the OEIS [8].
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Example 12. We put β = 1, ω0 = 1, and ωn = qn3n for n ≥ 1. Then



















a0 = 0,

a1 = 1,

a3n+2 = a3n+3 = 1, for n ≥ 0;

a3n+4 = qn+1

3n+3q3n+2, for n ≥ 0.

We have

x =
∞
∑

i=0

(−1)i

qiqi+1

= 1−
1

2
+

1

6
−

1

60
+

1

460
− · · ·

= [0, 1, 1, 1, q2q3, 1, 1, q
2

6q5, . . . , 1, 1, q
n
3nq3n−1, . . .]

= [0, 1, 1, 1, 6, 1, 1, 42527, 1, 1, 89468504340857877754313037, . . .],

is a Liouville number.
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