
23 11

Article 24.6.8
Journal of Integer Sequences, Vol. 27 (2024),2

3

6

1

47

Elementary Functions Associated with Series Involving

Reciprocals of Central Binomial Coefficients

Rimer Zurita
Carrera de Matematicas

Universidad Mayor de San Simon
Cochabamba

Bolivia
mauriciozurita.o@umss.edu

Abstract

In this paper we study some combinatorial series involving reciprocals of generalized
central binomial coefficients multiplied by linear terms. We rewrite these series in
terms of elementary functions, such as polynomials, inverse trigonometric functions,
inverse hyperbolic functions, and radicals. These results generalize some particular
cases studied by Sprugnoli.

1 Introduction

Binomial coefficients are present in many areas, such as graph theory, number theory, combi-
natorial analysis, probability and statistics, nuclear physics, etc. Central binomial coefficients
(see sequence A000984) are defined for every integer n ≥ 0 as

(
2n

n

)

=
(2n)!

n!n!
.

The current literature [2, 3] shows many results on the inverse of such coefficients. One
of such results, due to Euler, is

∞∑

k=1

1

k2
(
2k
k

) =
π2

18
.
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Sprugnoli [5] used techniques for solving recursive equations to obtain results for series of
the forms

∞∑

k=0

4kxk

(2k + 1)
(
2k
k

) ,

∞∑

k=0

4kxk

(k + 1)
(
2k
k

) ,

∞∑

k=1

4kxk

k2
(
2k
k

) ,

where |x| ≤ 1, which he rewrote as expressions of elementary functions only.

Batir [1] derived an expression for the series
∑∞

k=1
xk

kn(2kk )
using representations in terms

of appropriately expanded integrals. Similarly, Zhao and Wang [6] derived expressions for
sums of the forms

∑∞
k=1

1

k2(2mk
mk )

and
∑∞

k=1
1

k2(k+1)(2mk
mk )

. Another well known result, in terms

of the generalized hypergeometric function, is

∞∑

k=1

1

kn
(
2k
k

) =
1

2
n+1Fn−1

(
n+1

︷ ︸︸ ︷

1, 1, 1, . . . , 1
;
1
43

2
, 2, . . . , 2
︸ ︷︷ ︸

n−1

)

.

This work aims to generalize the results by Sprugnoli, by studying series of the form

∞∑

k=0

xk

(2k + n)
(
2mk
mk

) or
∞∑

k=0

xk

k2
(
2mk
mk

) ,

for integers m ≥ 1, n ≥ 0, expressing them in terms of elementary functions, such as poly-
nomials, inverse trigonometric functions, and radicals.

2 Definitions

Throughout this paper, let the following functions be defined for x ∈ C by

F (x) :=
4

√

x(4− x)
arctan

(√
x

4− x

)

,

H(x) :=
4
√
x arcsin

(√
x
2

)

(4− x)3/2
+

4

4− x
,

L(x) :=
2
√
x arcsin

(√
x
2

)

√
4− x

,

K(x) := 2

(

arcsin
(√x

2

))2

.

2



Definition 1. Let l ≥ 1. We define the polynomial Ql(x) =
∑l

i=0 qix
i of degree l such that

its coefficients satisfy the recursive formulas

ql := −4

l
;

qk :=
(4k + 6

k

)

qk+1, for k = l − 1, l − 2, . . . , 1;

q0 := −12q1,

and we define Cl = −q0/2. Also, let Q0(x) = 8 and C0 = −4.

We show later in this work (see proof of Lemma 5) that Ql(4) = 8 · 4l, which implies that
(4− x) divides the polynomial (8xl −Ql(x)).

Definition 2. Let l ≥ 1. We define the polynomial Pl(x) =
∑l

i=1 pix
i of degree l and

without constant term by

Pl(x) :=

∫
8xl −Ql(x)

2(4− x)
dx.

Also, let P0(x) = 0.

Tables 1 and 2 show the first few polynomials Pl(x) and Ql(x), respectively.

l Cl Ql(x)
0 −4 8
1 −24 −4x+ 48
2 −120 −2x2 − 20x+ 240
3 −560 −4

3
x3 − 28

3
x2 − 280

3
x+ 1120

4 −2520 −x4 − 6x3 − 42x2 − 420x+ 5040
5 −11088 −4

5
x5 − 22

5
x4 − 132

5
x3 − 924

5
x2 − 1848x+ 22176

Table 1: The first five polynomials Ql(x).

Definition 3. Let l ≥ 0. We define the polynomial Sl(x) =
∑l

i=0 six
i of degree l by

sl :=
8

1− 2l
;

sk :=
8(k + 1)

(2k − 1)
sk+1, for k = l − 1, l − 2, . . . , 0.

We show later in this work (see proof of Lemma 6) that Sl(4) = 8 · 4l, which implies that
(4− x) divides the polynomial (8xl − Sl(x)).
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l Pl(x)
0 0
1 −6x
2 −5

2
x(x+ 12)

3 −7
9
x(2x2 + 15x+ 180)

4 −1
8
x(9x3 + 56x2 + 420x+ 5040)

5 − 11
100

x(8x4 + 45x3 + 280x2 + 2100x+ 25200)

Table 2: The first five polynomials Pl(x).

Definition 4. Let l ≥ 0. We define the polynomial Tl−1(x) of degree l − 1 by

T−1(x) := 0;

Tl−1(x) :=
x−1/2

2

∫
8xl − Sl(x)√
x(4− x)

dx, if l ≥ 1.

Table 3 shows the first few polynomials Sl(x) and Tl−1(x).

l Sl(x) Tl−1(x)
0 8 0
1 −8x+ 64 −16
2 −8

3
x2 − 128

3
x+ 1024

3
−32

9
(x+ 24)

3 −8
5
x3 − 64

5
x2 − 1024

5
x+ 8192

5
−16

75
(9x2 + 80x+ 1920)

4 −8
7
x4 − 256

35
x3 − 2048

35
x2 − 32768

35
x+ 262144

35
− 64

3675
(75x3 + 504x2 + 4480x+ 107520)

Table 3: The first five polynomials Sl(x) and Tl−1(x).

3 Auxiliary results

Lemma 5. For every integer l ≥ 1, we have

∫

xlH(x) dx = Pl(x) + Cl

(

arcsin
(√x

2

))2

+
arcsin

(√
x
2

)√
x

√
4− x

Ql(x), (1)

where the constant Cl and the polynomials Ql(x) are as in Definition 1, and Pl(x) as in
Definition 2.

Proof. For l = 0, the proof is straightforward. For l ≥ 1 fixed, let us prove the derivative of
the right-hand side of Eq. (1) is equal to xlH(x). Indeed, we have that this equality is true
if
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P ′
l (x) + Cl arcsin

(√
x

2

)

· 1
√

x(4− x)
+

(
1

2(4− x)
+

2 arcsin(
√
x/2)√

x(4− x)3/2

)

·Ql(x)

+
arcsin

(√
x
2

)√
x

√
4− x

·Q′
l(x) = xl

(
4
√
x arcsin (

√
x/2)

(4− x)3/2
+

4

4− x

)

,

which in turn is true if

P ′
l (x) +

Ql(x)

2(4− x)
=

4xl

4− x
(2)

and

Cl(4− x)

x
+

2Ql(x)

x
+ (4− x)Q′

l(x) = 4xl. (3)

Let us first solve Eq. (3). Letting Ql(x) = q0 + q1x+ q2x
2 + · · ·+ qlx

l, we have

Cl

(4

x
− 1
)

+
2

x

(
q0 + q1x+ q2x

2 + · · ·+ qlx
l
)
+ (4− x)

(
q1 + 2q2x+ · · ·+ lqlx

l−1
)
= 4xl.

Comparing the coefficients, we can see that

Cl = −q0/2;

ql = −4

l
;

2qk+1 + 4(k + 1)qk+1 − kqk = 0 ⇒ qk =
(4k + 6

k

)

qk+1, for k = l − 1, l − 2, . . . , 1;

Cl = 6q1.

From Eq. (3) we conclude that Ql(4) = 8 · 4l, which implies that (4 − x)|
(
8xl − Ql(x)

)
,

and from Eq. (2) we conclude

Pl(x) =

∫
8xl −Ql(x)

2(4− x)
dx.

Lemma 6. For every integer l ≥ 0, we have that

∫

xl−1/2H(x) dx = Tl−1(x)
√
x+

arcsin (
√
x/2)√

4− x
Sl(x) (4)

where the polynomials Tl−1(x) are as in Definition 4 and Sl(x) as in Definition 3.
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Proof. Let us prove that the derivative of the right-hand side of Eq. (4) is equal to xl−1/2H(x).
This is true if

T ′
l−1(x)

√
x+

Tl−1(x)

2
√
x

+

(
arcsin

(√
x/2
)

2(4− x)3/2
+

1

2
√
x(4− x)

)

Sl(x)

+
arcsin

(√
x/2
)

√
4− x

S ′
l(x) = xl−1/2

(
4
√
x arcsin

(√
x/2
)

(4− x)3/2
+

4

4− x

)

.

In turn, this is true if

T ′
l−1(x)

√
x+

Tl−1(x)

2
√
x

+
Sl(x)

2
√
x(4− x)

=
4xl−1/2

4− x
(5)

and

Sl(x)

2(4− x)3/2
+

S ′
l(x)√
4− x

=
4xl

(4− x)3/2
. (6)

Let us first solve Eq. (6), which is equivalent to solving

Sl(x) + (8− 2x)S ′
l(x) = 8xl. (7)

Letting Sl(x) = so + s1x+ · · ·+ slx
l and comparing coefficients of Eq. (7), we have

sl − 2lsl = 8 ⇒ sl = 8/(1− 2l)

sk + 8(k + 1)sk+1 − 2ksk = 0 ⇒ sk =
8(k + 1)sk+1

(2k − 1)
, for k = l − 1, l − 2, . . . , 0.

Also, from Eq. (7) we conclude that Sl(4) = 8 ·4l, which implies that (4−x)|
(
8xl−Sl(x)

)
.

Let us now solve the first-order linear differential equation Eq. (5). We can rewrite it as

T ′
l−1 = − 1

2x
Tl−1 +

( 4xl

x(4− x)
− Sl(x)

2x(4− x)

)

,

which leads to

Tl−1(x) =
x−1/2

2

∫
8xl − Sl(x)√
x(4− x)

dx.

4 Main results

Theorem 7. For m ∈ N and |x| < 4m, we have

Hm(x) :=
∞∑

k=0

xk

(
2mk
mk

) =
1

m

m−1∑

j=0

H
(
wjx1/m

)
, (8)

where w = e2πi/m is the m-th root of unity.
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Proof. We know that Γ(n) = (n − 1)! for n ∈ N, where Γ is the Gamma function defined
as Γ(s) =

∫∞
0

ts−1e−t dt for R(s) > 0. On the other hand, the Beta function, defined as

B(z1, z2) =
∫ 1

0
tz1−1(1− t)z2−1 dt for R(z1) > 0 and R(z2) > 0, satisfies B(z1, z2) =

Γ(z1)Γ(z2)
Γ(z1+z2)

.
Let

Fm(x) : =
∞∑

k=0

xk

(2mk + 1)
(
2mk
mk

) =
∞∑

k=0

xkΓ(mk + 1)Γ(mk + 1)

Γ(2mk + 2)
=

∞∑

k=0

xkB(mk + 1,mk + 1)

=
∞∑

k=0

xk

∫ 1

0

tmk(1− t)mk dt =

∫ 1

0

∞∑

k=0

(x1/mt(1− t))mk dt.

Using the geometric series and decomposing into partial fractions, we can see that, for every
integer m ≥ 1,

∞∑

k=0

zmk =
1

1− zm
=

1

m

m−1∑

l=0

wl

wl − z
, for |z| < 1,

where w = e2πi/m is the m-th root of unity. Expanding Fm(x), we have that, for |x| < 4m,

Fm(x) =

∫ 1

0

1

m

m−1∑

j=0

(
wj

wj − x1/mt(1− t)

)

dt =
1

m

m−1∑

j=0

∫ 1

0

1

1− x1/m

wj t(1− t)
dt

=
1

m

m−1∑

j=0

1
x1/m

wj

∫ 1

0

1

(t− 1/2)2 +
(

wj

x1/m − 1
4

) dt =
1

m

m−1∑

j=0

1
x1/m

wj

∫ 1/2

−1/2

1

s2 +
(

wj

x1/m − 1
4

) ds

=
2

m

m−1∑

j=0

1
x1/m

wj

∫ 1/2

0

1

s2 +
(

wj

x1/m − 1
4

) ds

=
2

m

m−1∑

j=0

1
x1/m

wj

· 1
√

wj

x1/m − 1
4

arctan

(

1

2
√

wj

x1/m − 1
4

)

=
1

m

m−1∑

j=0

4
√

x1/m

wj (4− x1/m

wj )
arctan

(√
x1/m

wj

4− x1/m/wj

)

=
1

m

m−1∑

j=0

F

(

x1/m

wj

)

.

Therefore,

Fm(x) =
1

m

m−1∑

j=0

F (wjx1/m), for |x| < 4m.

By replacing x with x2m and multiplying Fm(x) by x, we have

∞∑

k=0

x2mk+1

(2mk + 1)
(
2mk
mk

) =
x

m

m−1∑

j=0

F (wjx2), for |x| < 2.
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Taking the derivative,

∞∑

k=0

x2mk

(
2mk
mk

) =
1

m

m−1∑

j=0

(
xF (wjx2)

)′
=

1

m

m−1∑

j=0

(

(wj/2x)F
(
(wj/2x)2

))′

wj/2
.

Since zF (z2) = 4√
4−z2

arctan
(

z√
4−z2

)

= 4 arcsin (z/2)√
4−z2

, by the chain rule we conclude that

∞∑

k=0

x2mk

(
2mk
mk

) =
1

m

m−1∑

j=0

H(wjx2).

Finally, replacing x with x1/(2m), we get

Hm(x) =
∞∑

k=0

xk

(
2mk
mk

) =
1

m

m−1∑

j=0

H(wjx1/m).

Theorem 8. For m ∈ N and |x| < 4m, we have

Lm(x) :=
∞∑

k=1

xk

k
(
2mk
mk

) =
m−1∑

j=0

L(wjx1/m), (9)

where w = e2πi/m is the m-th root of unity.

Proof. From Eq. (8), for |x| < 2 we have

∞∑

k=1

xk

(
2mk
mk

) =
1

m

m−1∑

j=0

(
H(wjx1/m)− 1

)
,

which implies

∞∑

k=1

xk−1

(
2mk
mk

) =
1

m

m−1∑

j=0

(
H(wjx1/m)− 1

x

)

, for |x| < 2 and x 6= 0.

Integrating with respect to x,

Lm(x) =
1

m

m−1∑

j=0

∫
H(wjx1/m)− 1

x
dx+ C1.

Making the change of variable u = wjx1/m we have

Lm(x) =
m−1∑

j=0

∫
H(u)− 1

u
du+ C1 =

m−1∑

j=0

L(wjx1/m) + C1.
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Since Lm(0) = 0, we must have C1 = 0, and therefore

Lm(x) =
m−1∑

j=0

L(wjx1/m).

Remark 9. If we replace x with 4x2 and let m = 1 in Eq. (9), we have

∞∑

k=1

(2x)2k

k
(
2k
k

) =
2x arcsin (x)√

1− x2
, for |x| < 1,

which is a well-known result by Lehmer [4].

Theorem 10. For m ∈ N and |x| < 4m, we have

Km(x) :=
∞∑

k=1

xk

k2
(
2mk
mk

) = m
m−1∑

j=0

K(wjx1/m), (10)

where w = e2πi/m is the m-th root of unity.

Proof. From Eq. (9) we have

∞∑

k=1

xk

k2
(
2mk
mk

) =
m−1∑

j=0

∫
L(wjx1/m)

x
dx+ C2.

Making the change of variable u = wjx1/m, this becomes

Km(x) = m
m−1∑

j=0

∫
L(u)

u
du+ C2 = m

m−1∑

j=0

K(wjw1/m) + C2.

Since Km(0) = 0, we must have C2 = 0, which implies

Km(x) = m

m−1∑

j=0

K(wjx1/m).

The following theorem is the main result of this work.

Theorem 11. For every integer m,n ≥ 1 and for |x| < 4m, the polynomial

Pm,n(x) :=
∞∑

k=0

xk

(2k + n)
(
2mk
mk

) (11)

can be rewritten in one of the following ways.
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(a) If mn is even, then

Pm,n(x) =
1

2xn/2

m−1∑

j=0

(−1)jn

(

Pmn/2−1(w
jx1/m) + Cmn/2−1 arcsin

2

(
wj/2x1/(2m)

2

)2

+
arcsin

(
wj/2x1/(2m)

2

)
wj/2x1/(2m)

√
4− wjx1/m

·Qmn/2−1(w
jx1/m)

)

,

where the constant C and the polynomials Q are as in Definition 1, and P as in
Definition 2.

(b) If mn is odd, then

Pm,n(x) =
1

2xn/2
·
m−1∑

j=0

(−1)jn

(

T(mn−3)/2(w
jx1/m)wj/2x1/(2m)

+
arcsin

(
wj/2x1/(2m)

2

)

√
4− wjx1/m

· S(mn−1)/2(w
jx1/m)

)

,

where the polynomials S are as in Definition 3 and T as in Definition 4.

Proof. From Eq. (8) we know that, for |x| < 2, we have

∞∑

k=1

xk

(
2mk
mk

) =

(
1

m

m−1∑

j=0

H(wjx1/m)

)

− 1.

Then
∞∑

k=1

x2k+n−1

(
2mk
mk

) =
1

m

m−1∑

j=0

H(wjx2/m)xn−1 − xn−1.

Integrating with respect to x,

∞∑

k=1

x2k+n

(2k + n)
(
2mk
mk

) =
1

m

m−1∑

j=0

∫

H(wjx2/m)xn−1 dx+ C − xn

n
,

which can be rewritten as

∞∑

k=0

x2k

(2k + n)
(
2mk
mk

) =
1

mxn

m−1∑

j=0

∫

H(wjx2/m)xn−1 dx+
C

xn
.

Let us apply the change of variable u = wjx2/m in the integral:

∞∑

k=0

x2k

(2k + n)
(
2mk
mk

) =
1

2xn

m−1∑

j=0

(−1)jn
∫

umn/2−1H(u) du+
C

xn
. (12)

10



Case 1: Suppose mn = 2l is even. Then

∞∑

k=0

x2k

(2k + n)
(
2mk
mk

) =
1

2xn

m−1∑

j=0

(−1)jn
∫

ul−1H(u) du+
C

xn
.

By Eq. (1) we have

∞∑

k=0

x2k

(2k + n)
(
2mk
mk

) =
1

2xn

m−1∑

j=0

(−1)jn

(

Pl−1(u) + Cl−1

(

arcsin (
√
u/2)

)2

+
arcsin (

√
u/2)

√
u√

4− u
Ql−1(u)

)

+
C

xn
.

Reverting the change of variable,

∞∑

k=0

x2k

(2k + n)
(
2mk
mk

) =
1

2xn

m−1∑

j=0

(−1)jn

(

Pl−1(w
jx2/m) + Cl−1

(

arcsin (wj/2x1/m/2)
)2

+
arcsin

(
(wj/2x1/m)/2

)
wj/2x1/m

√
4− wjx2/m

Ql−1(w
jx2/m)

)

+
C

xn
.

Multiplying by xn and evaluating on x = 0, we can see that C = 0. Finally, replacing x with
x1/2, we get the desired result.

Case 2: Suppose mn = 2l + 1 is odd. From Eq. (12),

∞∑

k=0

x2k

(2k + n)
(
2mk
mk

) =
1

2xn

m−1∑

j=0

(−1)jn
∫

ul−1/2H(u) du+
C

xn
.

By Eq. (4) we have

∞∑

k=0

x2k

(2k + n)
(
2mk
mk

) =
1

2xn

m−1∑

j=0

(−1)jn
(

Tl−1(u)
√
u+

arcsin (
√
u/2)√

4− u
Sl(u)

)

+
C

xn
.

Reverting the change of variable,

∞∑

k=0

x2k

(2k + n)
(
2mk
mk

) =
1

2xn

m−1∑

j=0

(−1)jn

(

Tl−1(w
jx2/m)wj/2x1/m

+
arcsin

(
(wj/2x1/m)/2

)

√
4− wjx2/m

Sl(w
jx2/m)

)

+
C

xn
.

As in the previous case, we can see that C = 0, and by replacing x with x1/2 we get the
desired result.
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5 Applications

1. Let m = 1 or m = 2, and x = ±1 in Eq. (8). Then

∞∑

k=0

1
(
2k
k

) =
4

3
+

2π
√
3

27
,

∞∑

k=0

(−1)k
(
2k
k

) =
4

5
− 4

√
5 arcsinh(1/2)

25
,

∞∑

k=0

1
(
4k
2k

) =
16

15
+

√
3

27
π − 2

√
5

25
arcsinh(1/2),

∞∑

k=0

(−1)k
(
4k
2k

)

=
−2

√
17

289

((

3

√√
17 + 4− 5

√√
17− 4

)

arcsin

(√

5− 2
√
2−

√

2
√
2 + 5

4

)

+

(

5

√√
17 + 4 + 3

√√
17− 4

)

log

(√

2(
√
17− 3) +

√

5− 2
√
2 +

√

2
√
2 + 5

)

− 2 log(2)

(

5

√√
17 + 4 + 3

√√
17− 4

))

+
16

17

≈ 0.84660943050448617317.

Sprugnoli [5] already showed these results in his paper.

2. Let m = 1 or m = 2, and x = ±1 in Eq. (10). Then

∞∑

k=1

1

k2
(
2k
k

) =
π2

18
,

∞∑

k=1

(−1)k

k2
(
2k
k

) = −2 arcsinh2(1/2),

∞∑

k=1

1

k2
(
4k
2k

) =
π2

9
− 4 arcsinh2(1/2),

∞∑

k=1

(−1)k

k2
(
4k
2k

) = 8arcsin2

(√

5− 2
√
2−

√

2
√
2 + 5

4

)

− 8

(

2 log(2)− log

(√

2(
√
17− 3) +

√

5− 2
√
2 +

√

2
√
2 + 5

))2

≈ −0.16321083867416013360.

Sprugnoli [5] already showed the first two previous identities in his paper. The two
other results are new.
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3. Let m = 3, n = 1 in Eq. (11). Then

∞∑

k=0

1

(2k + 1)
(
6k
3k

)

=
−2

√
7

21

((

3

√

2
√
21 + 9− 17

√

3(2
√
21− 9)

)

log

(√

2(
√
21− 3) +

√
7 +

√
3

)

+ arcsin

(√
7−

√
3

4

)(

17

√

3(2
√
21 + 9) + 3

√

2
√
21− 9

)

− 2 log(2)

(

3

√

2
√
21 + 9− 17

√

3(2
√
21− 9)

))

+
14
√
3

9
π

≈ 1.0168860968050338303.

This is a new identity.

4. Let m = 2, n = 3 in Eq. (11). Then

∞∑

k=0

(−1)k

(2k + 3)
(
4k
2k

)

= − 1

17

((

4080 arcsin
(
√

5− 2
√
2−

√

2
√
2 + 5

4

)

+
√
17
(

131

√√
17 + 4− 111

√√
17− 4

)
)

· log
(√

2(
√
17− 3) +

√

5− 2
√
2 +

√

2
√
2 + 5

)

−
(

8160 log(2) +
√
17
(

111

√√
17 + 4 + 131

√√
17− 4

))

arcsin

(√

5− 2
√
2−

√

2
√
2 + 5

4

)

− 2 log(2)
√
17

(

131

√√
17 + 4− 111

√√
17− 4

))

+ 30

≈ 0.30192723676986869546.

This is a new identity.
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