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Abstract

In a variation on the pebbling game played on a simple graph, a (k + 1 : k)-
pebbling move comprises removing k + 1 pebbles from a vertex and adding k pebbles
to an adjacent vertex. We consider an impartial two-player game, where the winner
of the game is the last player to make an allowable (k + 1 : k)-pebbling move. In this
paper, we characterize the winning positions when the (k + 1 : k)-pebbling game is
played on the complete graph K3 and when the (2 : 1)-pebbling game is played on the
cycle C4.

1 Introduction

Given a simple graph G on vertices v1, v2, . . . , vn, every vertex vi is assigned with a number
of pebbles, specified by a nonnegative integer ai for each 1 ≤ i ≤ n. Fiorini et al. [2]

describe an impartial two-player (2 : 1)-pebbling game, denoted by Γ
(2:1)
G (a1, a2, . . . , an), where

players A and B take turns (player A taking the first turn) to make a (2 : 1)-pebbling move,
which consists of removing two pebbles from a vertex and adding one pebble to an adjacent
vertex. The first player having no available pebbling move loses the game. In this paper,
we generalize this concept and consider a impartial two-player (k + 1 : k)-pebbling game

Γ
(k+1:k)
G (a1, a2, . . . , an) for some positive integer k, where a (k+1 : k)-pebbling move consists

of removing k + 1 pebbles from a vertex and adding k pebbles to an adjacent vertex.
In general, a two-player impartial game refers to a game with perfect information, no

probabilistic moves, and finite number of moves before the game ends. Furthermore, at any
point of the game, both players have exactly the same set of moves. Under the normal play
condition where the first player without a legal move loses the game, the Sprague-Grundy
theorem implies that in every impartial game, either the first player has a winning strategy,
denoted as an N -game (N for the next player), or the second player has a winning strategy,
denoted as a P -game (P for the previous player). It is clear that a game is an N -game if
and only if there exists at least one available move that results in a P -game, whereas a game
is a P -game if and only if there are no available moves, i.e., a terminating game, or every
available move results in an N -game. Interested readers may refer to Berlekamp, Conway,
and Guy [1] for more information on two-player impartial games.

Let G(k+1:k)
G,m be the collection of all impartial two-player (k + 1 : k)-pebbling games with

m initial pebbles in total on the underlying graph G. Due to the observation given in the
previous paragraph, G(k+1:k)

G,m can be partitioned into P (k+1:k)
G,m and N (k+1:k)

G,m , the sets of all P -

games and N -games in G(k+1:k)
G,m , respectively. Furthermore, if there exists a positive integer

m such that G(k+1:k)
G,m = N (k+1:k)

G,m , then G(k+1:k)
G,m+2r = N (k+1:k)

G,m+2r and G(k+1:k)
G,m+2r+1 = P (k+1:k)

G,m+2r+1 for all
nonnegative integers r. When such an m exists, this suggests there is a minimum m value
where G(k+1:k)

G,m = N (k+1:k)
G,m , which we denote by m(k+1:k)(G). Fiorini et al. [2] established the

following result when k = 1 and G = Kn.
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Theorem 1.

(a) If m is even, then N (2:1)
K2,m

= {Γ(2:1)
K2

(a1, a2) : a1 + a2 = m and a1 6≡ a2 (mod 3)}; if

m is odd, then N (2:1)
K2,m

= {Γ(2:1)
K2

(a1, a2) : a1 + a2 = m and a1 ≡ a2 (mod 3)}. Hence,

m(2:1)(K2) does not exist.

(b) m(2:1)(K3) = 7.

(c) m(2:1)(K4) = 23.

(d) For all odd integers n ≥ 5, we have m(2:1)(Kn) = n+ 2.

(e) For all even integers n ≥ 6, we have m(2:1)(Kn) = n+ 7.

In this paper, we expand our investigation on m(k+1:k)(Kn) when k > 1. Through compu-
tation using Mathematica (see Appendix A for the code), we obtain the values ofm(k+1:k)(Kn)
for some small k and n, excerpted in the table below.

n
k

1 2 3 4 5 6

3 7 13 19 25 31 37
4 23 21 35 49
5 7 15 21 27 33 39
6 13 21 35 37 59 53
7 9 17 25 33 41 51
8 15 25 41 45 61 65
9 11 21 31 41 51 61
10 17 29 45 53 71 77

Table 1: Values of m(k+1:k)(Kn) for 1 ≤ k ≤ 6 and 3 ≤ n ≤ 10.

The first column of Table 1 corresponds to the result given in Theorem 1. This sequence
appears in the On-Line Encyclopedia of Integer Sequences (OEIS) as A340631 [5]. On the
other hand, the sequence given by the first row appears in the OEIS as A016921 [5]. This
sequence is a result of the following theorem, which will be proved in Section 2.

Theorem 2. For all positive integers k, we have m(k+1:k)(K3) = 6k + 1.

The empty cells in the row corresponding to n = 4 are due to the following conjecture,
suggested by our computational data.

Conjecture 3. For all odd integers k ≥ 3, the value m(k+1:k)(K4) does not exist.
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Since m(k+1:k)(K4) is conjectured to be nonexistent for odd k ≥ 3, only the data corre-
sponding to n ≥ 5 in Table 1 appears in the OEIS (see A346197 and A347637 [5]).

We also study m(k+1:k)(G) when G is not a complete graph. In particular, we prove in

Section 3 that m(2:1)(C4) does not exist. In fact, we fully determine how G(2:1)
C4,m

is partitioned

into P (2:1)
C4,m

and N (2:1)
C4,m

for all positive integers m.
Before we proceed, we give several definitions that are useful for our discussions. After

a player makes a (k + 1 : k)-pebbling move from vertex vi to vertex vj, if their opponent
immediately makes a move from vj to vi, then we call this move an echo pebbling move.

Next, for all γ = Γ
(k+1:k)
G (a1, a2, . . . , an), we let |γ| = a1 + a2 + · · · + an denote the total

number of pebbles in this game. Furthermore, the game γi+1 is called a successor of γi =

Γ
(k+1:k)
G (a1, a2, . . . , an) if γi+1 is a resultant game by performing one (k+1 : k)-pebbling move

on γi, and γi is called a predecessor of γi+1.

2 The investigation on m(k+1:k)(K3)

In this section, since the focus is G = K3 with (k + 1 : k)-pebbling moves, we will abbre-

viate the notation G(k+1:k)
K3,m

, P (k+1:k)
K3,m

, N (k+1:k)
K3,m

, and Γ
(k+1:k)
K3

(a1, a2, a3) as Gm, Pm, Nm, and
Γ(a1, a2, a3), respectively. Furthermore, due to the symmetry of K3, the game Γ(a1, a2, a3) is
equivalent to games given by every permutation of a1, a2, and a3. We denote this equivalence
class of games as Γ{a1, a2, a3}. For convenience, we always assume a1 ≥ a2 ≥ a3.

The technique we utilize to prove Theorem 2 is to show that P3,6k−1 = Γ{4k + 1, k −
1, k− 1}. We demonstrate this via a sequence of lemmas. The first three lemmas prove that
every game in Γ{4k + 1, k − 1, k − 1} is a P -game.

Lemma 4. Every game in Γ{2k + 3, 0, 0} is a P -game.

Proof. Consider γ0 ∈ Γ{2k+3, 0, 0}. Every successor γ1 of γ0 is in Γ{k+2, k, 0}, and player
B can make one pebbling move on γ1 to obtain γ2 ∈ Γ{k, k, 1}. Clearly γ2 is a P -game, so
γ0 is also a P -game.

Lemma 5. Let 0 ≤ ℓ ≤ k − 1 and ℓ1 ≤ ℓ2 be nonnegative integers such that ℓ1 + ℓ2 = ℓ.
Then every game in Γ{2k − 1− ℓ, k − ℓ1, k − ℓ2} is a P -game.

Proof. Consider γ0 ∈ Γ{2k − 1, k, k}. Every successor of γ0 is in Γ{2k, k, k − 2}, and the
subsequent echo pebbling move by player B leads to γ2 ∈ Γ{2k − 2, k, k − 1}. If player B
repeats the strategy of echoing player A’s every move, then for every 0 ≤ ℓ ≤ k− 1, we have
γ2ℓ ∈ Γ{2k − 1 − ℓ, k − ℓ1, k − ℓ2}, where ℓ1 ≤ ℓ2 and ℓ1 + ℓ2 = ℓ. Note that all vertices in
γ2(k−1) have at most k pebbles, which implies that γ2(k−1) is a P -game. Since player B has a
strategy to bring every γ2ℓ ∈ Γ{2k − 1− ℓ, k − ℓ1, k − ℓ2} to a P -game, the game γ2ℓ is also
a P -game.

Lemma 6. Every game in Γ{4k + 1, k − 1, k − 1} is a P -game.
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Proof. Consider γ0 ∈ Γ{4k + 1, k − 1, k − 1}. Regardless of the moves by player A, player
B is going to perform the echo pebbling move every time when possible. The only scenario
where player B does not have an echo pebbling move is when player B obtains a descendant
γ2k−2+2ℓ ∈ Γ{3k+2− ℓ, k−1− ℓ, 0} for some 0 ≤ ℓ ≤ k−1 and player A makes one pebbling
move to obtain γ2k−1+2ℓ ∈ Γ{2k+1−ℓ, k, k−1−ℓ}. In this situation, player B can make one
pebbling move to obtain γ2k+2ℓ ∈ Γ{2k−1− ℓ, k, k− ℓ}, which is a P -game by Lemma 5.

The next two lemmas together show that γ ∈ Gm is a P game if m ≤ 6k is even and no
vertex contains more than m/2 pebbles.

Lemma 7. Consider γ2ℓ ∈ Γ{a1, a2, a3}, where |γ2ℓ| = a1 + a2 + a3 = 6k − 2ℓ for some

0 ≤ ℓ ≤ 2k− 1 and k+ 1 ≤ a1 ≤ 3k− ℓ. Then regardless of the move by player A, player B
can obtain γ2ℓ+2 ∈ Γ{a′′1, a

′′

2, a
′′

3}, where a′′1 ≤ 3k − ℓ− 1.

Proof. If a3 = 0, then γ2ℓ ∈ Γ{3k − ℓ, 3k − ℓ, 0}. In this case, the game γ2ℓ+1 is in Γ{4k −
ℓ, 2k − ℓ− 1, 0} or

{
Γ{3k − ℓ, 2k − ℓ− 1, k}, if 0 ≤ ℓ ≤ k − 1;

Γ{3k − ℓ, k, 2k − ℓ− 1}, if k ≤ ℓ ≤ 2k − 1,

and player B can make one pebbling move to obtain γ2ℓ+2 in

{
Γ{3k − ℓ− 1, 2k − ℓ− 1, k}, if 0 ≤ ℓ ≤ k − 1;

Γ{3k − ℓ− 1, k, 2k − ℓ− 1}, if k ≤ ℓ ≤ 2k − 1,

thus establishing our assertion.
Now suppose a3 ≥ 1. If a1 ≤ 3k − ℓ− 1, then regardless of the move by player A, player

B is going to perform an echo pebbling move to obtain γ2ℓ+2 ∈ Γ{a′′1, a
′′

2, a
′′

3}. Note that the
resultant number of pebbles at every vertex does not increase after these two moves. Hence,
we have a′′1 ≤ a1 ≤ 3k − ℓ− 1.

It remains to consider the case where a1 = 3k − ℓ and a2 ≤ 3k − ℓ − 1. If player
A makes one pebbling move that involves the vertex with 3k − ℓ pebbles, then player B
is going to perform an echo pebbling move to obtain γ2ℓ+2. Otherwise, player A obtains
γ2ℓ+1 ∈ Γ{3k − ℓ, a′2, a

′

3} with a′2 + a′3 = 3k − ℓ − 1. Since one of the vertices with a2 and
a3 pebbles receives k pebbles in this pebbling move by player A, we have a′2 ≥ k. This
implies that a′3 ≤ 2k − ℓ − 1. Hence, player B can make one pebbling move to obtain
γ2ℓ+2 ∈ Γ{a′′1, a

′′

2, a
′′

3} such that {a′′1, a
′′

2, a
′′

3} = {2k − ℓ− 1, a′2, a
′

3 + k}. In both scenarios, the
resultant γ2ℓ+2 satisfies the desired condition.

Lemma 8. Consider γ2ℓ ∈ Γ{a1, a2, a3}, where |γ2ℓ| = 6k − 2ℓ for some 0 ≤ ℓ ≤ 2k − 1 and

a1 ≤ 3k − ℓ. Then γ2ℓ is a P -game.

Proof. Suppose player B inductively applies the strategy described in Lemma 7. Under this
strategy, if player A obtains γ2ℓ+1 for some 0 ≤ ℓ ≤ 2k − 1, then player B always has an
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available pebbling move to obtain γ2ℓ+2. Hence, player B can ensure that the game either
terminates at γ2ℓ for some 0 ≤ ℓ ≤ 2k − 1 or does not terminate at γ4k−2. If γ4k−2 is not a
terminating game, then according to Lemma 7, player B can obtain γ4k ∈ Γ{a∗1, a

∗

2, a
∗

3} with
a∗1 ≤ 3k − (2k − 1)− 1 = k. This implies that γ4k is a terminating game. Therefore, player
B has a winning strategy, meaning that γ2ℓ is a P -game.

The remaining preliminary results before the proof of Theorem 2 show that every γ ∈
G6k−1 \ Γ{4k + 1, k − 1, k − 1} is an N -game.

Lemma 9. Consider γ2ℓ−1 ∈ Γ{a1, a2, a3}, where |γ2ℓ−1| = 6k−2ℓ+1 for some 1 ≤ ℓ ≤ 2k−1,
a1 ≤ 4k − ℓ+ 1, and a3 ≤ 2k − ℓ. Then γ2ℓ−1 is an N -game.

Proof. Note that a2 ≤ ⌊(6k − 2ℓ+ 1)/2⌋ = 3k − ℓ. If player A makes a pebbling move from
the vertex with a1 pebbles to the vertex with a3 pebbles, then γ2ℓ is in Γ{a′1, a

′

2, a
′

3} such
that {a′1, a

′

2, a
′

3} = {a1 − k − 1, a2, a3 + k}, where a1 − k − 1 ≤ 4k − ℓ+ 1− (k + 1) = 3k − ℓ
and a3 + k ≤ 2k − ℓ + k = 3k − ℓ. By Lemma 8, the game γ2ℓ is a P -game, so γ2ℓ−1 is an
N -game.

Corollary 10. Consider γ1 ∈ Γ{a1, a2, a3}, where |γ1| = 6k− 1 and a1 ≤ 4k. Then γ1 is an

N -game.

Proof. Note that a3 ≤ ⌊(6k−1)/3⌋ = 2k−1. Hence, the conditions in Lemma 9 are satisfied
with ℓ = 1.

Lemma 11. Consider γ2ℓ−1 ∈ Γ{a1, a2, 0}, where |γ2ℓ−1| = 6k−2ℓ+1 for some 1 ≤ ℓ ≤ k−1
and a2 ≤ k. Then γ2ℓ−1 is an N -game.

Proof. Player A can make a pebbling move to obtain γ2ℓ ∈ Γ{a1 − k − 1, k, a2}, and player
B can only obtain γ2ℓ+1 in Γ{a1 − 2k − 2, 2k, a2} or Γ{a1 − 2k − 2, a2 + k, k}. Since

a1 − 2k − 2 ≤ (6k − 2ℓ+ 1)− 2k − 2 = 4k − 2ℓ− 1 ≤ 4k − (ℓ+ 1) + 1

and a2 ≤ k ≤ 2k − (ℓ + 1), Lemma 9 applies and γ2ℓ+1 is an N -game, which implies our
assertion.

Lemma 12. Consider γ1 ∈ Γ{a1, a2, a3}, where |γ1| = 6k − 1 and a1 ≥ 4k + 1. If γ1 6∈
Γ{4k + 1, k − 1, k − 1}, then γ1 is an N -game.

Proof. Without loss of generality, let γ1 = Γ(a1, a2, a3). Note that

a3 ≤ ((6k − 1)− (4k + 1))/2 = k − 1.

However, if a3 = k − 1, then (a1, a2, a3) = (4k + 1, k − 1, k − 1), which is a contradiction.
Hence, we have a3 ≤ k − 2.

Suppose that a2 ≤ k. If a3 = 0, then γ1 is an N -game by Lemma 11, so we may
assume that a3 ≥ 1. To start the game, player A can make a pebbling move to obtain
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γ2 = Γ(a1 − k − 1, a2, a3 + k). Then player B can only make a pebbling move from either
v1 or v3. Let ℓ be the maximum nonnegative integer such that for each positive integer
ℓ̃ ≤ ℓ, player B makes a pebbling move from v3 at the game γ2ℓ̃ to obtain γ2ℓ̃+1. Note that if
ℓ = 0, then player B must have made a pebbling move from v1 at the game γ2 to obtain γ3.
After each pebbling move by player B to obtain γ2ℓ̃+1, player A can always perform an echo
pebbling move to obtain γ2ℓ̃+2 since a1 − k − 1 > a2 ≥ a3. With this strategy, player A can
obtain γ2ℓ+2 = Γ(a1 − k− 1− ℓ1, a2 − ℓ2, a3 + k− ℓ) for some nonnegative integers ℓ1 and ℓ2
such that ℓ1+ℓ2 = ℓ. Note that a3+k−ℓ ≥ k, so ℓ ≤ a3. Now by the definition of ℓ, the next
pebbling move by player B is from v1, so γ2ℓ+3 is either Γ(a1−2k−2−ℓ1, a2+k−ℓ2, a3+k−ℓ)
or Γ(a1 − 2k − 2− ℓ1, a2 − ℓ2, a3 + 2k − ℓ). Since

• a1−2k−2−ℓ1 = (6k−1−a2−a3)−2k−2−ℓ1 ≤ 4k−a3−3 ≤ 4k−ℓ−3 < 4k−(ℓ+2)+1,

• a3 + k − ℓ ≤ k − 2 + k − ℓ = 2k − (ℓ+ 2), and

• a2 − ℓ2 = (6k − 1− a1 − a3)− ℓ2 ≤ (6k − 1− (4k + 1)− ℓ)− ℓ2 ≤ 2k − (ℓ+ 2),

Lemma 9 implies that γ2ℓ+3 = γ2(ℓ+2)−1 is an N -game. Therefore, player A has a winning
strategy and γ1 is an N -game.

Next, suppose that a2 ≥ k+1. To start the game, player A can make a pebbling move to
obtain γ2 = Γ(a1+k, a2−k−1, a3). Since (a2−k−1)+a3 ≤ (6k−1)−(4k+1)−k−1 = k−3,
player B can only make a pebbling move from v1 to obtain γ3. From here, we can inductively
define γ2t̃+1 for each positive integer t̃ as follows. Let γi = Γ(a

(i)
1 , a

(i)
2 , a

(i)
3 ) for positive

integers i. If either a
(2t̃+1)
2 or a

(2t̃+1)
3 is at least k + 1, then player A can perform an echo

pebbling move to obtain γ2t̃+2. After that, player B can only make a pebbling move from

v1 to obtain γ2t̃+3. Let t be the smallest positive integer such that both a
(2t+1)
2 and a

(2t+1)
3

are at most k. Let i ∈ {2, 3} be such that a
(2t+1)
i ≤ a

(2t+1)
5−i . Note that a

(2t+1)
5−i = k and

a
(2t+1)
i ≤ (6k − 1) − (4k + 1) − k − t = k − 2 − t, thus t ≤ k − 2. At this stage, player A

can make a pebbling move from v1 to vi to obtain γ2t+2, where a
(2t+2)
1 = a1 − t − (k + 1),

a
(2t+2)
i ≤ 2k − 2− t, and a

(2t+2)
5−i = k.

Now we can inductively define γ2t+2τ̃ for each positive integer τ̃ as follows. At the game
γ2t+2τ̃ , if player B makes a pebbling move from vi to obtain γ2t+2τ̃+1, then player A can always
perform an echo pebbling move to obtain γ2t+2τ̃+2 since a1− t− (k+1) > k > k− 2− t. Let
τ be the smallest positive integer such that at γ2t+2τ , player B makes a pebbling move from

v1 to obtain γ2t+2τ+1. Note that a
(2t+2τ−1)
i = a

(2t+1)
i − (τ − 1) ≤ k− 2− t− (τ − 1), and thus

t+ τ + 1 ≤ k. Then

a
(2t+2τ+1)
1 ≤ a

(2t+2)
1 − (k + 1)

= (6k − 1)− a2 − a3 − t− 2(k + 1)

≤ (6k − 1)− (k + 1)− t− 2(k + 1)

= 3k − 4− t < 4k − (t+ τ + 1)− 1,

7



and
min

(
a
(2t+2τ+1)
2 , a

(2t+2τ+1)
3

)
≤ max(2k − 1− t− τ, k) = 2k − (t+ τ + 1).

As a result, γ2t+2τ+1 is an N -game by Lemma 9.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Note that P6k−1 = Γ{4k + 1, k − 1, k − 1} by Lemma 6, Corollary 10,
and Lemma 12. Hence, N6k = Γ{3k + 1, 2k, k − 1} since they are the only predecessors of
the games in Γ{4k + 1, k − 1, k − 1}. The predecessors of the games in Γ{3k + 1, 2k, k − 1}
are given by

Γ{4k + 2, k, k − 1} ∪ Γ{3k + 1, 2k + 1, k − 1} ∪ Γ{2k + 1, 2k, 2k} ∪ Γ{3k + 1, 2k, k}. (1)

The set of games in (1) contains the only candidates for inclusion in P6k+1. However,

• the games in Γ{4k+2, k, k−1}∪Γ{3k+1, 2k+1, k−1} are predecessors of the games
in Γ{3k + 1, 2k − 1, k}, which are P -games since they are not in N6k;

• the games in Γ{2k + 1, 2k, 2k} ∪ Γ{3k + 1, 2k, k} are predecessors of the games in
Γ{3k, 2k, k}, which are also P -games.

Therefore, all the games in (1) are not in P6k+1. This implies that P6k+1 = ∅, and m = 6k+1
is the minimum integer such that Gm = Nm.

3 Classifying the (2 : 1)-pebbling games on C4

The focus of this section is G = C4 with (2 : 1)-pebbling moves, so we will abbreviate the

notation G(2:1)
C4,m

, P (2:1)
C4,m

, N (2:1)
C4,m

, and Γ
(2:1)
C4

(a0, a1, a2, a3) as Gm, Pm, Nm, and Γ(a0, a1, a2, a3),

respectively. We will fully determine the sets Pm and Nm, thus proving that m(2:1)(C4) does
not exist.

Let the vertices of C4 be v0, v1, v2, v3, where vi is adjacent to vi+1 for all i ∈ {0, 1, 2, 3}.
Note that in this section, the addition in the indices is always performed modulo 4. Ad-
ditionally, we define some specialty moves to facilitate the discussions. Suppose that one
player makes a pebbling move from vj to vj+ǫ for some j ∈ {0, 1, 2, 3} and ǫ ∈ {−1, 1}.
Then several response moves by their opponent are as follows. A reverse rotational move is
a pebbling move by the opponent from vj to vj−ǫ (Figure 1), a rotational symmetric move

is from vj+2 to vj−ǫ (Figure 2), and a reflectional move is from vj−ǫ to vj+2 (Figure 3).
Next, we define five subsets of

⋃
m∈Z+ Gm based on the number pebbles modulo 3 on each

vertex.

• Xaaab = {Γ(a0, a1, a2, a3) : ai ≡ ai+1 ≡ ai+2 6≡ ai−1 (mod 3) for some i ∈ {0, 1, 2, 3}},

• Xabab = {Γ(a0, a1, a2, a3) : (a0 ≡ a2) 6≡ (a1 ≡ a3) (mod 3)},
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vj vj+ǫ

vj+2vj−ǫ

Initial move

R
es
p
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e

Figure 1: Reverse rotational
move.

vj vj+ǫ
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Figure 2: Rotational
symmetric move.

vj vj+ǫ
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Response move

Figure 3: Reflectional
move.

• Xaabc = {Γ(a0, a1, a2, a3) : ai ≡ ai+1 (mod 3) and ai, ai+2, ai−1 are distinct modulo 3
for some i ∈ {0, 1, 2, 3}},

• Xabac = {Γ(a0, a1, a2, a3) : ai ≡ ai+2 (mod 3) and ai, ai+1, ai−1 are distinct modulo 3
for some i ∈ {0, 1}}, and

• X̂aabb = {Γ(a0, a1, a2, a3) : ai ≡ ai+1 (mod 3) and ai+2 ≡ ai−1 (mod 3) for some
i ∈ {0, 1}}. The hat notation indicates X̂aabb includes games with ai ≡ ai+2 (mod 3)
and those with ai 6≡ ai+2 (mod 3).

We further define four subsets of
⋃

m∈Z+ Gm based on the number pebbles modulo 4 on each
vertex.

• Yaabc = {Γ(a0, a1, a2, a3) : ai+2 ≡ ai +2 (mod 4) and ai+1 ≡ ai−1 +1 (mod 4) for some
i ∈ {0, 1, 2, 3}}.

• Ŷabac = {Γ(a0, a1, a2, a3) : ai ≡ ai+2 (mod 4) and ai+1 ≡ ai−1 + 1 (mod 4) for some
i ∈ {0, 1, 2, 3}}. The hat indicates Ŷabac includes games with ai ≡ ai+1 (mod 4), those
with ai ≡ ai−1 (mod 4), and those with distinct ai, ai+1, ai−1 modulo 4.

• Ŷabab = {Γ(a0, a1, a2, a3) : a0 ≡ a2 (mod 4) and a1 ≡ a3 (mod 4)}. The hat indicates
Ŷabab includes games with a0 ≡ a1 (mod 4) and those with a0 6≡ a1 (mod 4).

• (Ŷabab)
c = {Γ(a0, a1, a2, a3) : a0 + a1 + a2 + a3 is even and Γ(a0, a1, a2, a3) /∈ Ŷabab}.

Remark 13. Here are some quick observations on the sets defined above.

(a) The sets Xaaab, Xabab, Xaabc, Xabac, X̂aabb form a partition of
⋃

m∈Z+ Gm.

(b) The sets Yaabc and Ŷabac form a partition of
⋃

m∈Z+ G2m−1, while Ŷabab and (Ŷabab)
c form

a partition of
⋃

m∈Z+ G2m.
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The next two lemmas together show that X̂aabb ∪ Xabac and Xaaab ∪ Xabab ∪ Xaabc are
closed under pebbling moves.

Lemma 14. Each of Xaaab, Xabab, Xaabc, Xabac, and X̂aabb is invariant after a pebbling move

by one player followed by a rotational symmetric or reflectional move by their opponent.

Proof. Suppose one player makes a pebbling move on Γ(a0, a1, a2, a3) to obtain aj − 2 and
aj+ǫ+1 pebbles on vertices vj and vj+ǫ, respectively, for some j ∈ {0, 1, 2, 3} and ǫ ∈ {−1, 1}.
A subsequent rotational symmetric move by their opponent results in aj+2 − 2 and aj−ǫ + 1
pebbles on vertices vj+2 and vj−ǫ, respectively, and a reflectional move results in aj+2+1 and
aj−ǫ − 2 pebbles on vertices vj+2 and vj−ǫ, respectively. After either move by the opponent,
the number of pebbles on vj is congruent to aj + 1 modulo 3 for all 0 ≤ j ≤ 3. Therefore,

each of Xaaab, Xabab, Xaabc, Xabac, and X̂aabb is invariant after the specified response move by
the opponent.

Lemma 15. Both sets X̂aabb ∪ Xabac and Xaaab ∪ Xabab ∪ Xaabc are closed under pebbling

moves.

Proof. We first show that X̂aabb∪Xabac is closed under pebbling moves. Consider a pebbling
game Γ(a0, a1, a2, a3) ∈ X̂aabb ∪ Xabac with one pebbling move from vj to vj+ǫ for some
j ∈ {0, 1, 2, 3} and ǫ ∈ {−1, 1}, and let the resultant pebbling game be Γ(a′0, a

′

1, a
′

2, a
′

3).
Suppose that Γ(a0, a1, a2, a3) ∈ X̂aabb with ai ≡ ai+1 (mod 3) and ai+2 ≡ ai−1 (mod 3) for
some i ∈ {0, 1}. If aj ≡ aj+ǫ (mod 3), then a′j ≡ aj + 1 ≡ aj+ǫ + 1 ≡ a′j+ǫ (mod 3) and

a′j+2 ≡ aj+2 ≡ aj−ǫ ≡ a′j−ǫ (mod 3), thus Γ(a′0, a
′

1, a
′

2, a
′

3) ∈ X̂aabb. If aj 6≡ aj+ǫ (mod 3), then
Table 2 gives the remaining possible outcomes of Γ(a′0, a

′

1, a
′

2, a
′

3) after one pebbling move.

{ai, ai+2} (mod 3) (aj, aj+ǫ) (mod 3) (a′j, a
′

j+ǫ, a
′

j+2, a
′

j−ǫ) (mod 3) Γ(a′0, a
′

1, a
′

2, a
′

3)

{0, 1}
(0, 1) (1, 2, 1, 0)

Xabac

(1, 0) (2, 1, 0, 1)

{0, 2}
(0, 2) (1, 0, 2, 0)
(2, 0) (0, 1, 0, 2)

{1, 2}
(1, 2) (2, 0, 2, 1)
(2, 1) (0, 2, 1, 2)

Table 2: Resultant games after one pebbling move from X̂aabb if aj 6≡ aj+ǫ (mod 3).

Next, suppose that Γ(a0, a1, a2, a3) ∈ Xabac with ai ≡ ai+2 (mod 3) and ai, ai+1, ai−1 being
distinct modulo 3 for some i ∈ {0, 1}. Table 3 gives all possible outcomes of Γ(a′0, a

′

1, a
′

2, a
′

3)
after one pebbling move. By exhausting all possible resultant games Γ(a′0, a

′

1, a
′

2, a
′

3), we see
that X̂aabb ∪Xabac is closed under pebbling moves.
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ai (mod 3) (aj, aj+ǫ) (mod 3) (a′j, a
′

j+ǫ, a
′

j+2, a
′

j−ǫ) (mod 3) Γ(a′0, a
′

1, a
′

2, a
′

3)

0

(0, 1) (1, 2, 0, 2)
Xabac(1, 0) (2, 1, 2, 0)

(0, 2) (1, 0, 0, 1)
X̂aabb(2, 0) (0, 1, 1, 0)

1

(1, 0) (2, 1, 1, 2)
X̂aabb(0, 1) (1, 2, 2, 1)

(1, 2) (2, 0, 1, 0)
Xabac(2, 1) (0, 2, 0, 1)

2

(2, 0) (0, 1, 2, 1)
Xabac(0, 2) (1, 0, 1, 2)

(2, 1) (0, 2, 2, 0)
X̂aabb(1, 2) (2, 0, 0, 2)

Table 3: Resultant games after one pebbling move from Xabac.

To show that Xaaab ∪Xabab ∪Xaabc is closed under pebbling moves, we suppose by way
of contradiction that there exists a pebbling game Γ(a0, a1, a2, a3) in Xaaab ∪ Xabab ∪ Xaabc

and a pebbling move from vj to vj+ǫ for some j ∈ {0, 1, 2, 3} and ǫ ∈ {−1, 1} such that the
resultant game Γ(a′0, a

′

1, a
′

2, a
′

3) is not in Xaaab ∪ Xabab ∪ Xaabc. By Remark 13(a), we have
Γ(a′0, a

′

1, a
′

2, a
′

3) in X̂aabb ∪Xabac. Now we consider the game Γ(a0+2, a1+2, a2+2, a3+2) in
Xaaab∪Xabab∪Xaabc. After the pebbling move from vj to vj+ǫ, a rotational symmetric response
move from vj+2 to vj−ǫ yields a resultant game in Xaaab ∪Xabab ∪Xaabc by Lemma 14. This

contradicts that X̂aabb∪Xabac is closed under pebbling moves since Γ(a′0+2, a′1+2, a′2+2, a′3+2)
is in X̂aabb ∪Xabac.

We now begin classifying all (2 : 1)-pebbling games on C4 as P -games and N -games.

Theorem 16. A game Γ(a0, a1, a2, a3) ∈ X̂aabb ∪Xabac is a P -game if and only if a0 + a1 +
a2 + a3 is even.

Proof. If a0 + a1 + a2 + a3 = 0, then Γ(0, 0, 0, 0) is the only possibility and is a P -game.
There is no game in X̂aabb ∪ Xabac with a0 + a1 + a2 + a3 = 1. If a0 + a1 + a2 + a3 = 2,
then (ai, ai+1, ai+2, ai−1) = (1, 1, 0, 0) for some i ∈ {0, 1, 2, 3}, and Γ(a0, a1, a2, a3) is a P -
game. If a0 + a1 + a2 + a3 = 3, then (ai, ai+1, ai+2, ai−1) ∈ {(3, 0, 0, 0), (0, 1, 0, 2)} for
some i ∈ {0, 1, 2, 3}, and Γ(a0, a1, a2, a3) is an N -game. If a0 + a1 + a2 + a3 = 4, then
(ai, ai+1, ai+2, ai−1) ∈ {(2, 2, 0, 0), (1, 1, 1, 1), (1, 0, 1, 2)} for some i ∈ {0, 1, 2, 3}, and it is not
difficult to verify that Γ(a0, a1, a2, a3) is a P -game. Now assume that for some integer k ≥ 4,
Γ(a0, a1, a2, a3) is a P -game if and only if a0+a1+a2+a3 = k is even. If a0+a1+a2+a3 = k+1,
then since k + 1 ≥ 5, there exists j ∈ {0, 1, 2, 3} such that aj ≥ 2. Hence, there is at least
one pebbling move on Γ(a0, a1, a2, a3), and the resultant pebbling game Γ(a′0, a

′

1, a
′

2, a
′

3) is in
X̂aabb∪Xabac by Lemma 15. By the induction hypothesis, Γ(a′0, a

′

1, a
′

2, a
′

3) is a P -game if and
only if a′0 + a′1 + a′2 + a′3 = k is even, which shows that Γ(a0, a1, a2, a3) is an N -game if and
only if k + 1 is odd. This completes our proof by induction.
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Theorem 17. Every game Γ(a0, a1, a2, a3) ∈ Ŷabab is a P -game.

Proof. For Γ(a0, a1, a2, a3) ∈ Ŷabab, if there does not exist j ∈ {0, 1, 2, 3} such that aj ≥ 2,
then player A does not have a move and thus Γ(a0, a1, a2, a3) is a P -game. Otherwise,
assume that player A made a pebbling move from vj to vj+ǫ for some j ∈ {0, 1, 2, 3} and
ǫ ∈ {−1, 1}, where aj ≥ 2. Since aj+2 ≡ aj (mod 4), we have max(aj − 2, aj+2) ≥ 2. As a
result, if aj − 2 ≥ 2, then player B can apply a reverse rotational move from vj to vj−ǫ; if
aj+2 ≥ 2, then player B can apply a rotational symmetric move from vj+2 to vj−ǫ. In both

cases, player B has a strategy to ensure that the resultant game returns to Ŷabab. Therefore,
Γ(a0, a1, a2, a3) can be proved to be a P -game inductively.

Theorem 18. Every game Γ(a0, a1, a2, a3) ∈ (Xabab ∪Xaabc ∪Xaaab) ∩ Ŷabac is a P -game.

Proof. For Γ(a0, a1, a2, a3) ∈ (Xabab ∪ Xaabc ∪ Xaaab) ∩ Ŷabac, if there does not exist
j ∈ {0, 1, 2, 3} such that aj ≥ 2, then player A does not have a move and thus Γ(a0, a1, a2, a3)
is a P -game. Otherwise, assume that player A made a pebbling move from vj to vj+ǫ for
some j ∈ {0, 1, 2, 3} and ǫ ∈ {−1, 1}, where aj ≥ 2.

First, consider the case when aj+2 ≡ aj (mod 4). In this case, max(aj − 2, aj+2) ≥ 2. If
aj−2 ≥ 2, then player B can apply the strategy of a reverse rotational move from vj to vj−ǫ;
if aj+2 ≥ 2, then player B can apply the strategy of a rotational symmetric move from vj+2

to vj−ǫ. In both cases, player B has a strategy to ensure that the resultant game returns to

Ŷabac.
Next, consider the case when aj+2 ≡ aj ± 1 (mod 4). If max(aj − 2, aj+2) ≥ 2, then

player B has the same strategy as above to obtain a resultant game in Ŷabac. Otherwise,
(aj, aj+2) ∈ {(2, 1), (3, 0)} and aj+1 ≡ aj−1 (mod 4). Note that Γ(2, 0, 1, 0) and Γ(3, 0, 0, 0)
are not in Xabab ∪ Xaabc ∪ Xaaab, so (aj+1, aj−1) 6= (0, 0). If aj+ǫ ≥ 1, then when
(aj, aj+2) = (2, 1), player B can apply an echo pebbling move from vj+ǫ to vj, and when
(aj, aj+2) = (3, 0), player B can make a pebbling move from vj+ǫ to vj+2. Otherwise, if
aj+ǫ = 0, then aj−ǫ ≥ 4, so when (aj, aj+2) = (2, 1), player B can make a pebbling move
from vj−ǫ to vj, and when (aj, aj+2) = (3, 0), player B can apply a reflectional move from
vj−ǫ to vj+2. In all cases, player B has a strategy to ensure that the resultant game returns

to Ŷabac. By Lemma 15, this resultant game is in (Xabab ∪Xaabc ∪Xaaab) ∩ Ŷabac. Therefore,
the game Γ(a0, a1, a2, a3) can be proved to be a P -game inductively.

Theorems 16, 17, and 18 are summarized in Table 4. Recall from Remark 13(b) that
|γ| = a0 + a1 + a2 + a3 is even if γ ∈ Ŷabab ∪ (Ŷabab)

c and |γ| is odd if γ ∈ Ŷabac ∪ Yaabc.

Theorem 19. Every game Γ(a0, a1, a2, a3) ∈ Yaabc is an N -game.

Proof. For Γ(a0, a1, a2, a3) ∈ Yaabc, let i ∈ {0, 1, 2, 3} and ǫ ∈ {−1, 1} such that

ai ≡ ai+ǫ (mod 4) and ai+2 ≡ ai + 2 (mod 4).
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X̂aabb Xabac Xabab Xaabc Xaaab

Ŷabab P P P P P

(Ŷabab)
c P P

Ŷabac N N P P P
Yaabc N N

Table 4: Classification of C4 (2 : 1)-pebbling games on C4 due to Theorems 16, 17, and 18.

By the definition of Yaabc, we have ai−ǫ ≡ ai+ǫ ± 1 (mod 4). Note that max(ai, ai+2) ≥ 2. If
ai−ǫ ≡ ai+ǫ + 1 (mod 4), then player A can make a pebbling move from vi or vi+2 to vi+ǫ;
otherwise, if ai−ǫ ≡ ai+ǫ − 1 (mod 4), then player A can make a pebbling move from vi or
vi+2 to vi−ǫ. In both cases, player A has a strategy to obtain a resultant game in Ŷabab, which
is a P -game by Theorem 17. Therefore, the game Γ(a0, a1, a2, a3) is an N -game.

Theorem 20. Every game Γ(a0, a1, a2, a3) ∈ (Xabab∪Xaabc∪Xaaab)∩ (Ŷabab)
c is an N -game.

Proof. Let Γ(a0, a1, a2, a3) ∈ (Xabab ∪Xaabc ∪Xaaab) ∩ (Ŷabab)
c. By the definition of (Ŷabab)

c,
there exists i ∈ {0, 1} such that ai 6≡ ai+2 (mod 4). If ai+2 ≡ ai + 2 (mod 4), then
max(ai, ai+2) ≥ 2, and player A can make a pebbling move from vi to vi+ǫ or from vi+2 to vi+ǫ.
Otherwise, we have ai+2 ≡ ai±1 (mod 4). This implies that ai−ǫ ≡ ai+ǫ+1 (mod 4) for some
ǫ ∈ {−1, 1} since a0+a1+a2+a3 is even. If max(a0, a1, a2, a3) ≤ 1, then (ai, ai+ǫ, ai+2, ai−ǫ) is
in {(0, 0, 1, 1), (1, 0, 0, 1)}, contradicting that Γ(a0, a1, a2, a3) ∈ Xabab ∪Xaabc ∪Xaaab. Hence,
either max(ai, ai+2) ≥ 2 or max(ai+ǫ, ai−ǫ) ≥ 2. Without loss of generality, assume that
max(ai, ai+2) ≥ 2. Then player A can make a pebbling move from vi to vi+ǫ or from vi+2

to vi+ǫ. In both cases, player A has a strategy to obtain a resultant game in Ŷabac. By
Lemma 15, this resultant game is in (Xabab ∪ Xaabc ∪ Xaaab) ∩ Ŷabac, which is a P -game by
Theorem 18. Therefore, the game Γ(a0, a1, a2, a3) is an N -game.

Theorems 16 through 20 completely classify all (2 : 1)-pebbling games on C4 into P -games
and N -games. To conclude, we summarize the results in Table 5.

X̂aabb Xabac Xabab Xaabc Xaaab

Ŷabab P P P P P

(Ŷabab)
c P P N N N

Ŷabac N N P P P
Yaabc N N N N N

Table 5: Complete classification of (2 : 1)-pebbling games on C4.
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4 Future directions

As mentioned in Section 1, among the computational results given in Table 1, the data in
the first column and the first row are now fully justified by mathematical proofs. It should
be noted that different strategies were used for these proofs. It will be interesting if one can
develop a unified technique to prove the patterns in additional rows or columns in the table.

A Appendix: Computer code

(*n represents the number of vertices in the complete graph. Each

pebbling move removes k+1 pebbles from a vertex and adds k pebbles to

an adjacent vertex.*)

Do[(*Given n and m, list all possible assignments with m pebbles.*)

alltuples[n_, m_] := IntegerPartitions[m + n, {n}] - 1;

(*Given an assignment, list all resultant assignments after one

pebbling move; only works for n>=3.*)

pebblemoves[config_] :=

Block[{n, temp}, n = Length[config];

temp = Table[config, {i, n (n - 1)}] +

Permutations[Join[{-(k + 1), k}, Table[0, {i, n - 2}]]];

temp = Select[temp, Min[#] >= 0 &];

temp = ReverseSort[DeleteDuplicates[ReverseSort /@ temp]]];

(*Given n and m, list all assignments that are P-games.*)

Plist = {};

plist[n_, m_] :=

Block[{index, tuples},

While[Length[Plist] < n, index = Length[Plist];

AppendTo[Plist, {{Join[{1}, Table[0, {i, index}]]}}]];

Do[AppendTo[Plist[[n]], {}]; tuples = alltuples[n, i];

Do[If[

Not[IntersectingQ[pebblemoves[tuples[[j]]], Plist[[n, i - 1]]]],

AppendTo[Plist[[n, i]], tuples[[j]]]], {j, Length[tuples]}],

{i, Length[Plist[[n]]] + 1, m}];

Plist[[n, m]]];

(*Given n, print out the minimum m such that there are no P-games

with m pebbles*)

Do[m = 1; While[plist[n, m] != {}, m++];
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Print["k=", k, " n=", n, " m=", m], {n, 5, 10}], {k, 1, 6}]
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