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Abstract

We use the convolution method for arithmetic functions of several variables to
deduce an asymptotic formula for the number of k-tuples of positive integers with
components which are pairwise non-coprime and ≤ x. More generally, we obtain
asymptotic formulas on the number of k-tuples (n1, . . . , nk) ∈ Nk such that at least r
pairs (ni, nj), respectively exactly r pairs are coprime. Our results answer the questions
raised by Moree (2005, 2014), and generalize and refine related results obtained by
Heyman (2014) and Hu (2014).

1 Introduction and motivation

Let N = {1, 2, . . .} and let k ∈ N, k ≥ 2. It is well-known that the asymptotic density of the k-
tuples (n1, . . . , nk) ∈ Nk having relatively prime (coprime) components is 1/ζ(k). This result
goes back to the work of Cesàro, Dirichlet, Mertens and others. See, e.g., [4, 6, 12, 14, 15].
More exactly, one has the asymptotic estimate

∑

n1,...,nk≤x
gcd(n1,...,nk)=1

1 =
xk

ζ(k)
+

{

O(x log x), if k = 2;

O(xk−1), if k ≥ 3.
(1)
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The asymptotic density of the k-tuples (n1, . . . , nk) ∈ Nk with pairwise coprime compo-
nents is

Ak =
∏

p

(

1−
1

p

)k−1(

1 +
k − 1

p

)

=
∏

p

(

1 +
k
∑

j=2

(−1)j−1(j − 1)

(

k

j

)

1

pj

)

, (2)

and we have the asymptotic formula
∑

n1,...,nk≤x
gcd(ni,nj)=1
1≤i<j≤k

1 = Akx
k +O(xk−1(log x)k−1), (3)

valid for every fixed k ≥ 2, proved by the author [15] using an inductive process on k. The
value of Ak was also deduced by Cai and Bach [3, Thm. 3.3] using probabilistic arguments.
Formula (3) has been reproved by the author [17], in a more general form, namely by inves-
tigating m-wise relatively prime integers (that is, every m of them are relatively prime) and
by using the convolution method for functions of several variables. Note that the asymptotic
formula for m-wise coprime integers was first proved by Hu [8] by the inductive method with
a weaker error term.

Now consider pairwise non-coprime positive integers n1, . . . , nk, satisfying gcd(ni, nj) 6= 1
for all 1 ≤ i < j ≤ k. Let β = βk : N

k → {0, 1} denote the characteristic function of k-tuples
having this property, that is,

β(n1, . . . , nk) =

{

1, if n1, . . . , nk are pairwise non-coprime;

0, otherwise.
(4)

Moree [10, 11] and Heyman [7] raised the question of finding the asymptotic density Ck of
k-tuples with pairwise non-coprime components. If k = 2, then the answer is immediate by
(1): C2 = 1−1/ζ(2). Heyman [7] obtained the value C3 and deduced an asymptotic formula
for the sum

∑

n1,n2,n3≤x β(n1, n2, n3) by using functions of one variable and the inclusion-
exclusion principle. The method in [7] cannot be applied if k ≥ 4. Using the inductive
approach of the author [15] and the inclusion-exclusion principle, Hu [9] gave a formula for
the asymptotic density Ck (k ≥ 3), with an incomplete proof.

Moree [10, 11] also formulated as an open problem to compute the density of k-tuples
(n1, . . . , nk) ∈ Nk such that at least (respectively, exactly) r pairs (ni, nj) are coprime. A
correct answer to this problem, but with some incomplete arguments has been given by Hu
[9, Cor. 3]. In fact, Hu [9, Thm. 1] also deduced a related asymptotic formula with remainder
term concerning certain arbitrary coprimality conditions. See Theorem 1. Arias de Reyna
and Heyman [2] used a different method, based on certain properties of arithmetic functions
of one variable, and improved the error term by Hu [9].

See Sections 2 and 4 for some more details on the above results.
In this paper we use a different approach to study these questions. Applying the convo-

lution method for functions of several variables we first reprove Theorem 1. To do this we
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need a careful study of the Dirichlet series of the corresponding characteristic function. See
Theorem 7. Our result concerning the related asymptotic formula, with the same error term
as obtained in [2], and with new representations of the constant AG is contained in Theorem
9. Then we deduce asymptotic formulas with remainder terms on the number of k-tuples
such that at least r pairs (ni, nj), respectively exactly r pairs are coprime. See Theorem 11.
In particular, we obtain an asymptotic formula for the function β = βk, for every k ≥ 2. See
Corollary 12. Our results generalize and refine those by Heyman [7] and Hu [9].

Basic properties of arithmetic functions of k variables are presented in Section 3.1. Some
lemmas related to the principle of inclusion-exclusion, used in the proofs are included in
Section 3.2. The proofs of our main results are similar to those in [17], and are given in
Section 5. Some numerical examples are presented in Section 6.

2 Previous results

Heyman [7] proved the asymptotic formula

∑

n1,n2,n3≤x

β(n1, n2, n3) = C3x
3 +O(x2(log x)2),

where the constant C3 is

C3 = 1− 3
∏

p

(

1−
1

p2

)

+ 3
∏

p

(

1−
2

p2
+

1

p3

)

−
∏

p

(

1−
3

p2
+

2

p3

)

. (5)

Hu [9] gave a formula for the asymptotic density Ck of k-tuples with pairwise non-coprime
components, where k ≥ 3. See (25). It recovers (5) for k = 3, and for k = 4 it can be written
as

C4 = 1− 6
∏

p

(

1−
1

p2

)

+ 3
∏

p

(

1−
1

p2

)2

+ 12
∏

p

(

1−
2

p2
+

1

p3

)

(6)

− 4
∏

p

(

1−
3

p2
+

3

p3
−

1

p4

)

− 16
∏

p

(

1−
3

p2
+

2

p3

)

+ 15
∏

p

(

1−
4

p2
+

4

p3
−

1

p4

)

− 6
∏

p

(

1−
5

p2
+

6

p3
−

2

p4

)

+
∏

p

(

1−
6

p2
+

8

p3
−

3

p4

)

.

Related to identity (6) we note that there are two typos in [9], namely
∏

p(1− 1/p)2(1−

2/p) on pages 7 and 8 should be
∏

p(1− 1/p)2(1 + 2/p).
For a fixed k ≥ 2 let V = {1, 2, . . . , k}, let E be an arbitrary subset of the set {(i, j) :

1 ≤ i < j ≤ k}, and let take the coprimality conditions gcd(ni, nj) = 1 for (i, j) ∈ E.
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Following Hu [9] and Arias de Reyna and Heyman [2], it is convenient and suggestive to
consider the corresponding simple graph G = (V,E), we call it coprimality graph, with set
of vertices V and set of edges E. Therefore, we use the notation E ⊆ V (2) := {{i, j} : 1 ≤
i < j ≤ k}, where the edges of G are denoted by {i, j} = {j, i}, and adopt some related
graph terminology.

Let δG denote the characteristic function attached to the graph G, defined by

δG(n1, . . . , nk) =

{

1, if gcd(ni, nj) = 1 for every {i, j} ∈ E;

0, otherwise,
(7)

and note that if E = ∅, that is, the graph G has no edges, then δG(n1, . . . , nk) = 1 for every
(n1, . . . , nk) ∈ Nk.

Furthermore, let im(G) be the number of independent sets S of vertices in G (i.e., no
two vertices of S are adjacent in G) of cardinality m. Also, for F ⊆ E let v(F ) denote the
number of distinct vertices appearing in F .

Theorem 1. Let G = (V,E) be an arbitrary graph. With the above notation,

∑

n1,...,nk≤x

δG(n1, . . . , nk) = AGx
k +O(xk−1(log x)ϑG), (8)

where the constant AG is given by

AG =
∏

p

(

k
∑

m=0

im(G)

pm

(

1−
1

p

)k−m
)

(9)

=
∏

p

(

∑

F⊆E

(−1)|F |

pv(F )

)

, (10)

and ϑG = dG := maxj∈V deg(j), denoting the maximum degree of the vertices of G.

Here AG is representing the asymptotic density of k-tuples (n1, . . . , nk) ∈ Nk such that
gcd(ni, nj) = 1 for {i, j} ∈ E. Theorem 1 was first proved by Hu [9] with the weaker
exponent ϑG = k− 1 for every subset E and with identity (9) for the constant AG. Arias de
Reyna and Heyman [2] deduced Theorem 1 by a different method, with the given exponent
ϑG = dG and identity (10) for the constant AG.

Note that if we have the complete coprimality graph, namely if E = V (2), then δG is the
characteristic function of the set of k-tuples with pairwise coprime components (see (12)),
and (8) recovers formula (3).
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3 Preliminaries

3.1 Arithmetic functions of k variables

The Dirichlet convolution of the functions f, g : Nk → C is defined by

(f ∗ g)(n1, . . . , nk) =
∑

d1|n1,...,dk|nk

f(d1, . . . , dk)g(n1/d1, . . . , nk/dk). (11)

Let µ = µk : Nk → {−1, 0, 1} denote the Möbius function of k variables, defined as
the inverse of the constant 1 function under the convolution (11). We have µ(n1, . . . , nk) =
µ(n1) · · ·µ(nk) for every n1, . . . , nk ∈ N, which recovers for k = 1 the classical (one variable)
Möbius function.

The Dirichlet series of a function f : Nk → C is given by

D(f ; s1, . . . , sk) :=
∞
∑

n1,...,nk=1

f(n1, . . . , nk)

ns1
1 · · ·nsk

k

.

If D(f ; s1, . . . , sk) and D(g; s1, . . . , sk) are absolutely convergent, where s1, . . . , sk ∈ C,
then D(f ∗ g; s1, . . . , sk) is also absolutely convergent and

D(f ∗ g; s1, . . . , sk) = D(f ; s1, . . . , sk)D(g; s1, . . . , sk).

We recall that a nonzero arithmetic function of k variables f : Nk → C is said to be
multiplicative if

f(m1n1, . . . ,mknk) = f(m1, . . . ,mk)f(n1, . . . , nk)

holds for all m1, n1 . . . ,mk, nk ∈ N such that gcd(m1 · · ·mk, n1 · · ·nk) = 1. If f is multiplica-
tive, then it is determined by the values f(pν1 , . . . , pνk), where p is prime and ν1, . . . , νk ∈
N ∪ {0}. More exactly, f(1, . . . , 1) = 1 and for all n1, . . . , nk ∈ N,

f(n1, . . . , nk) =
∏

p

f(pνp(n1), . . . , pνp(nk)),

where we use the notation n =
∏

p p
νp(n) for the prime power factorization of n ∈ N, the

product being over the primes p and all but a finite number of the exponents νp(n) are
zero. Examples of multiplicative functions of k variables are the GCD and LCM functions
gcd(n1, . . . , nk), lcm(n1, . . . , nk) and the characteristic functions

̺(n1, . . . , nk) =

{

1, if gcd(n1, . . . , nk) = 1;

0, otherwise,

ϑ(n1, . . . , nk) =

{

1, if gcd(ni, nj) = 1 for every 1 ≤ i < j ≤ k;

0, otherwise.
(12)
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If the function f is multiplicative, then its Dirichlet series can be expanded into a (formal)
Euler product, that is,

D(f ; s1, . . . , sk) =
∏

p

∞
∑

ν1,...,νk=0

f(pν1 , . . . , pνk)

pν1s1+···+νksk
, (13)

the product being over the primes p. More exactly, for f multiplicative, the seriesD(f ; s1, . . .,
sk) with s1, . . . , sk ∈ C is absolutely convergent if and only if

∑

p

∞
∑

ν1,...,νk=0
ν1+···+νk≥1

|f(pν1 , . . . , pνk)|

pν1ℜs1+···+νkℜsk
< ∞

and in this case equality (13) holds.
The mean value of a function f : Nk → C is

M(f) := lim
x1,...,xk→∞

1

x1 · · · xk

∑

n1≤x1,...,nk≤xk

f(n1, . . . , nk),

provided that this limit exists. As a generalization of Wintner’s theorem (valid in the one
variable case), Ushiroya [18, Thm. 1] proved the next result.

Theorem 2. If f is a function of k variables, not necessary multiplicative, such that

∞
∑

n1,...,nk=1

|(µ ∗ f)(n1, . . . , nk)|

n1 · · ·nk

< ∞,

then the mean value M(f) exists, and

M(f) =
∞
∑

n1,...,nk=1

(µ ∗ f)(n1, . . . , nk)

n1 · · ·nk

.

For multiplicative functions the above result can be formulated as follows. See [16, Prop.
19], [18, Thm. 4].

Theorem 3. Let f : Nk → C be a multiplicative function. Assume that

∑

p

∞
∑

ν1,...,νk=0
ν1+···+νk≥1

|(µ ∗ f)(pν1 , . . . , pνk)|

pν1+···+νk
< ∞.

Then the mean value M(f) exists, and

M(f) =
∏

p

(

1−
1

p

)k ∞
∑

ν1,...,νk=0

f(pν1 , . . . , pνk)

pν1+···+νk
.

See, e.g., Delange [5] and the survey by the author [16] for these and some other related
results on arithmetic functions of several variables. If k = 1, i.e., in the case of functions of
a single variable we recover some familiar properties.
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3.2 The functions δG and β

Consider the function δG defined by (7).

Lemma 4. For every subset E, the function δG is multiplicative.

Proof. This is a consequence of the fact that the gcd function gcd(m,n) is multiplicative,
viewed as a function of two variables. To give a direct proof, let m1, n1, . . . ,mk, nk ∈ N such
that gcd(m1 · · ·mk, n1 · · ·nk) = 1. Then we have

δG(m1n1, . . . ,mknk) =

{

1, if gcd(mini,mjnj) = 1 for all {i, j} ∈ E;

0, otherwise;

=

{

1, if gcd(mi,mj) gcd(ni, nj) = 1 for all {i, j} ∈ E;

0, otherwise;

=

{

1, if gcd(mi,mj) = 1 for all {i, j} ∈ E;

0, otherwise;

×

{

1, if gcd(ni, nj) = 1 for all {i, j} ∈ E;

0, otherwise;

= δG(m1, . . . ,mk)δG(n1, . . . , nk),

finishing the proof.

The function β given by (4) is not multiplicative. However, by the inclusion-exclusion
principle it can be written as an alternating sum of certain multiplicative functions δG.

More generally, for r ≥ 0 we define the functions βr = βk,r and β′
r = β′

k,r by

βr(n1, . . . , nk) =

{

1, if exactly r pairs (ni, nj) with 1 ≤ i < j ≤ k are coprime;

0, otherwise,
(14)

β′
r(n1, . . . , nk) =

{

1, if at least r pairs (ni, nj) with 1 ≤ i < j ≤ k are coprime;

0, otherwise.
(15)

If r = 0, then β0 = β.

Lemma 5. Let k ≥ 2 and r ≥ 0. For every n1, . . . , nk ∈ N,

βr(n1, . . . , nk) =

k(k−1)/2
∑

j=r

(−1)j−r

(

j

r

)

∑

E⊆V (2)

|E|=j

δG(n1, . . . , nk), (16)

β(n1, . . . , nk) =

k(k−1)/2
∑

j=0

(−1)j
∑

E⊆V (2)

|E|=j

δG(n1, . . . , nk). (17)
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Proof. Given n1, . . . , nk ∈ N, assume that for 1 ≤ i < j ≤ k condition gcd(ni, nj) = 1 holds
for t times, where 0 ≤ t ≤ k(k − 1)/2. Then the right hand side of (16) is

Nr :=
t
∑

j=r

(−1)j−r

(

j

r

)(

t

j

)

.

If t < r, then this is the empty sum, and Nr = 0 = βr(n1, . . . , nk). If t ≥ r, then

Nr =

(

t

r

) t
∑

j=r

(−1)j−r

(

t− r

j − r

)

=

(

t

r

) t−r
∑

m=0

(−1)m
(

t− r

m

)

=

{

1, if t = r;

0, if t > r,

which is exactly βr(n1, . . . , nk).
In the case r = 0 we obtain identity (17).

Lemma 6. Let k ≥ 2 and r ≥ 1. For every n1, . . . , nk ∈ N,

β′
r(n1, . . . , nk) =

k(k−1)/2
∑

j=r

(−1)j−r

(

j − 1

r − 1

)

∑

E⊆V (2)

|E|=j

δG(n1, . . . , nk). (18)

Proof. We have by using (16),

β′
r(n1, . . . , nk) =

k(k−1)/2
∑

t=r

βt(n1, . . . , nk)

=

k(k−1)/2
∑

t=r

k(k−1)/2
∑

j=t

(−1)j−t

(

j

t

)

∑

E⊆V (2)

|E|=j

δG(n1, . . . , nk)

=

k(k−1/2
∑

j=r

(−1)j
∑

E⊆V (2)

|E|=j

δG(n1, . . . , nk)

j
∑

t=r

(−1)t
(

j

t

)

,

where the inner sum is (−1)r
(

j−1
r−1

)

, finishing the proof.

The above identities are similar to some known generalizations of the principle of inclu-
sion-exclusion. See, e.g., the books by Aigner [1, Sect. 5.1] and Stanley [13, Ch. 2].

4 Main results

Given a graph G = (V,E), the asymptotic density AG of the of k-tuples (n1, . . . , nk) ∈ Nk

such that gcd(ni, nj) = 1 for {i, j} ∈ E is the mean value of the characteristic function δG

8



defined by (7). According to Theorem 2, AG = D(µ∗δG, 1, . . . , 1), provided that this series is
absolutely convergent. We show this by a careful study of the Dirichlet series of the function
δG.

To formulate our results we need the following additional notation. For a graph G =
(V,E) let I be the set of non-isolated vertices of G, and J be a (minimum) vertex cover of
G, that is, a set of vertices that includes at least one endpoint of every edge (of smallest

possible size). The notation
∑′

L⊆J means the sum over independent subsets L of J (no two
vertices of L are adjacent in G). Also, let N(j) denote the neighbourhood of a vertex j, and
for a subset L of V let N(L) = ∪j∈LN(j).

Theorem 7. Let k ≥ 2 and G = (V,E) be an arbitrary graph. Then, with the above notation,

∞
∑

n1,...,nk=1

δG(n1, . . . , nk)

ns1
1 · · ·nsk

k

= ζ(s1) · · · ζ(sk)D
′
G(s1, . . . , sk),

where

D′
G(s1, . . . , sk) =

∏

p

(

∑′

L⊆J

∏

ℓ∈L

1

psℓ

∏

i∈(J\L)∪(N(L)\J)

(

1−
1

psi

)

)

(19)

=
∏

p

(

1−
∑

{i,j}∈E

1

psi+sj
+

|I|
∑

j=3

∑

i1,...,ij∈I
i1<···<ij

c(i1, . . . , ij)

psi1+···+sij

)

,

where c(i1, . . . , ij) are some integers, depending on i1, . . . , ij, but not on p.
Furthermore, D′(s1, . . . , sk) with s1, . . . , sk ∈ C is absolutely convergent provided that

ℜ(si1 + · · ·+ sij) > 1 for every i1, . . . , ij ∈ I with i1 < · · · < ij, 2 ≤ j ≤ |I|.

Remark 8. By choosing J = I or J = {1, . . . , k} the sum over L in identity (19) has
more terms than in the case of a minimum vertex cover J of G. However, if J = I, then
N(L) \ I = ∅ for every L, and (19) takes the slightly simpler form

D′
G(s1, . . . , sk) =

∏

p

(

∑′

L⊆I

∏

ℓ∈L

1

psℓ

∏

i∈I\L

(

1−
1

psi

)

)

,

and similarly if J = {1, . . . , k}.

Next we prove by the convolution method the asymptotic formula already given in The-
orem 1. This approach leads to new representations of the constant AG.
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Theorem 9. Asymptotic formula (8) holds with the exponent ϑG = dG in the error term,

and with the constant

AG =
∞
∑

n1,...,nk=1

(µ ∗ δG)(n1, . . . , nk)

n1 · · ·nk

=
∏

p

(

1−
1

p

)k ∞
∑

ν1,...,νk=0

δG(p
ν1 , . . . , pνk)

pν1+···+νk

=
∏

p

(

∑′

L⊆J

1

p|L|

(

1−
1

p

)|J\L|+|N(L)\J |
)

. (20)

Remark 10. If J = I, then N(L) \ I = ∅ for every L, and (20) gives

AG =
∏

p

(

∑′

L⊆I

1

p|L|

(

1−
1

p

)|I\L|
)

=
∏

p

(

|I|
∑

m=0

im(G, I)

pm

(

1−
1

p

)|I|−m
)

,

where im(G, I) denotes the number of independent subsets of I of cardinality m in the graph
G. Similarly, by choosing J = {1, . . . , k}, (20) reduces to identity (9) by Hu [9].

Now consider the functions βr and β′
r defined by (14) and (15).

Theorem 11. Let k ≥ 2. Then for r ≥ 0 we have

∑

n1,...,nk≤x

βr(n1, . . . , nk) = Crx
k +O(xk−1(log x)k−1), (21)

and for r ≥ 1,
∑

n1,...,nk≤x

β′
r(n1, . . . , nk) = C ′

rx
k +O(xk−1(log x)k−1), (22)

where

Cr = Ck,r =

k(k−1)/2
∑

j=r

(−1)j−r

(

j

r

)

∑

E⊆V (2)

|E|=j

AG, (23)

and

C ′
r = C ′

k,r =

k(k−1)/2
∑

j=r

(−1)j−r

(

j − 1

r − 1

)

∑

E⊆V (2)

|E|=j

AG (24)

are the asymptotic densities of the k-tuples (n1, . . . , nk) ∈ Nk such that gcd(ni, nj) = 1 occurs

exactly r times, respectively at least r times, with AG given in Theorems 1 and 9.
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We remark that identities (23) and (24) have been obtained by Hu [9, Cor. 3] with an
incomplete proof.

Corollary 12. (r = 0) We have
∑

n1,...,nk≤x

β(n1, . . . , nk) = Ckx
k +O(xk−1(log x)k−1),

where

Ck = Ck,0 =
∞
∑

n1,...,nk=1

(µ ∗ β)(n1, . . . , nk)

n1 · · ·nk

=

k(k−1)/2
∑

j=0

(−1)j
∑

E⊆V (2)

|E|=j

AG. (25)

Identity (25) has been obtained by Hu [9, Cor. 3].
Note that if G and G′ are isomorphic graphs then the corresponding densities AG and

AG′ are equal. The asymptotic densities Ck,r, C
′
k,r and Ck can be computed for given values

of k and r from identities (23), (24) and (25), respectively by determining the cardinalities
of the isomorphism classes of graphs G with k vertices and j edges (0 ≤ j ≤ k(k− 1)/2) and
by computing the corresponding values of AG. In particular, C3 and C4 given by (5) and (6)
can be obtained in this way.

5 Proofs

We first prove the key result of our treatment.

Proof of Theorem 7. We have

D(δG; s1, . . . , sk) =
∞
∑

n1,...,nk=1

δG(n1, . . . , nk)

ns1
1 · · ·nsk

k

=
∞
∑

n1,...,nk=1
gcd(ni1

,ni2
)=1

{i1,i2}∈E

1

ns1
1 · · ·nsk

k

.

Let I denote the set of non-isolated vertices of G. Then

D(δG; s1, . . . , sk) =
∏

i/∈I

ζ(si)
∑

ni≥1, i∈I
gcd(ni1

,ni2
)=1, {i1,i2}∈E

∏

i∈I

1

nsi
i

=
∏

i/∈I

ζ(si)
∏

p

(

∑

νi≥0, i∈I
νi1νi2=0, {i1,i2}∈E

1

p
∑

i∈I νisi

)

=:
∏

i/∈I

ζ(si)
∏

p

Sp,

11



say, using that the function δG is multiplicative by Lemma 4.
Now choose a (minimum) vertex cover J . Then νj (j ∈ J) cover all the conditions

νi1νi2 = 0 with {i1, i2} ∈ E, that is, for every {i1, i2} ∈ E there is j ∈ J such that j = i1 or
j = i2. Group the terms of the sum Sp according to the subsets L = {ℓ ∈ J : νℓ ≥ 1} of J .
Here νj = 0 for every j ∈ J \L. Note that L cannot contain any two adjacent vertices. Also,
for such a fixed subset L ⊆ J let M be the set of indexes m such that νm is forced to be zero
by L. More exactly, let M = {m ∈ I \ J : there is ℓ ∈ L with {m, ℓ} ∈ E}. If m ∈ M , then
νmνℓ = 0 for some ℓ ∈ L. Since νℓ ≥ 1, we obtain νm = 0. Here M = N(L) \ J , where N(L)
is set of vertices adjacent to vertices in L.

Let
∑′

L⊆J denote the sum over subsets L of J that have no adjacent vertices. We obtain

Sp =
∑′

L⊆J

∑

νℓ≥1, ℓ∈L
νj=0, j∈J\L
νm=0,m∈M

νi≥0, i∈I\(J∪M)

1

p
∑

i∈I νisi

=
∑′

L⊆J

∑

νℓ≥1, ℓ∈L

1

p
∑

ℓ∈L νℓsℓ

∑

νi≥0, i∈I\(J∪M)

1

p
∑

i∈I\(J∪M) νisi

=
∑′

L⊆J

∏

ℓ∈L

1

psℓ

(

1−
1

psℓ

)−1
∏

i∈I\(J∪M)

(

1−
1

psi

)−1

=
∏

i∈I

(

1−
1

psi

)−1
∑′

L⊆J

∏

ℓ∈L

1

psℓ

∏

i∈(J\L)∪M

(

1−
1

psi

)

=:
∏

i∈I

(

1−
1

psi

)−1

Tp,

say. We deduce that
∏

p

Sp =
∏

i∈I

ζ(si)
∏

p

Tp,

which shows that

D(δG; s1, . . . , sk) =
(

k
∏

i=1

ζ(si)
)

D′(s1, . . . , sk),

where

D′(s1, . . . , sk) =
∏

p

Tp =
∏

p

(

∑′

L⊆J

∏

ℓ∈L

1

psℓ

∏

i∈(J\L)∪M

(

1−
1

psi

)

)

. (26)

Let us investigate the terms of the sum
∑′

L⊆J in (26). If L = ∅, that is, νj = 0 for every
j ∈ J , then M = ∅ and we have

∏

i∈J

(

1−
1

psi

)

= 1−
∑

i∈J

1

psi
+

∑

i,j∈J, i<j

1

psi+sj
− · · · . (27)

12



If L = {i0} for some fixed i0 ∈ J , then obtain, with M = Mi0 := N(i0) \ J ,

1

psi0

∏

i∈J∪Mi0
i 6=i0

(

1−
1

psi

)

=
1

psi0
−

∑

i∈J∪Mi0
i 6=i0

1

psi0+si
+

∑

i,j∈J∪Mi0
i0 6=i<j 6=i0

1

psi0+si+sj
− · · · .

Here if i0 = t runs over J , then we have the terms

∑

t∈J

1

pst
−
∑

i∈J∪Mt
t∈J
i 6=t

1

pst+si
+

∑

i,j∈J∪Mt
t∈J,i 6=t,j 6=t

i<j

1

pst+si+sj
− · · · . (28)

If L = {i0, i
′
0} with some fixed i0, i

′
0 ∈ J , i0 < i′0, which are not adjacent, then obtain,

with M = Mi0,i′0
:= N({i0, i

′
0}) \ J ,

1

p
si0+si′0

∏

i∈J∪Mi0,i
′
0

i 6=i0,i′0

(

1−
1

psi

)

=
1

p
si0+si′0

−
∑

i∈J∪Mi0,i
′
0

i 6=i0,i′0

1

p
si0+si′0

+si
+ · · · . (29)

If i0 = t, i′0 = v run over J , then we obtain from (29),

∑

t,v∈J
t<v

t,v not adjacent

1

pst+sv
−

∑

i∈J∪Mt,v

t,v∈J not adjacent
i 6=t,v

1

pst+sv+si
+ · · · . (30)

Putting together (27), (28) and (30) we obtain the sum S, where

S = 1−
∑

i∈J

1

psi
+

∑

i,j∈J, i<j

1

psi+sj
+
∑

t∈J

1

pst
−
∑

i∈J∪Mt
t∈J
i 6=t

1

pst+si

+
∑

t,v∈J
t<v

t,v not adjacent

1

pst+sv
± other terms

= 1−
∑

i,t∈J
i,t adjacent

1

pst+si
± other terms,

where the terms ±1/pi with i ∈ J cancel out. Also the terms ±1/psi+sj with i, j ∈ J (each
appearing twice) cancel out, excepting when i, j are adjacent. Here for the “other terms”,
including the terms obtained if L has at least three elements, the exponents of p are sums
of at least three distinct values si, sj, sℓ with i, j, ℓ ∈ I.

Hence the infinite product (26) is absolutely convergent provided the given condition.
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Remark 13. It turns out that the function µ ∗ δG is multiplicative (in general not symmetric
in the variables) and for all prime powers pν1 , . . . , pνk ,

(µ∗δG)(p
ν1 , . . . , pνk) =











1, if ν1 = · · · = νk = 0;

c(ν1, . . . , νk), if ν1, . . . , νk ∈ {0, 1}, j := ν1 + · · ·+ νk ≥ 2;

0, otherwise,

(31)

where c(ν1, . . . , νk) are some integers, depending on ν1, . . . , νk, but not on p.
Note that (µ ∗ δG)(p

ν1 , . . . , pνk) = 0 provided that νi ≥ 2 for at least one 1 ≤ i ≤ k,
or ν1, . . . , νk ∈ {0, 1} and ν1 + · · · + νk = 1. If ν1, . . . , νk ∈ {0, 1} and ν1 + · · · + νk = 2,
say νi0 = νi′0 = 1 and νi = 0 for i 6= i0, i

′
0, then (µ ∗ δG)(p

ν1 , . . . , pνk) = −1 if i0 and i′0 are
adjacent in the graph G and 0 otherwise.

Proof of Theorem 9. Write
∑

n1,...,nk≤x

δG(n1, . . . , nk) =
∑

n1,...,nk≤x

∑

d1|n1,...,dk|nk

(µ ∗ δG)(d1, . . . , dk)

=
∑

d1,...,dk≤x

(µ ∗ δG)(d1, . . . , dk)

⌊

x

d1

⌋

· · ·

⌊

x

dk

⌋

=
∑

d1,...,dk≤x

(µ ∗ δG)(d1, . . . , dk)

(

x

d1
+O(1)

)

· · ·

(

x

dk
+O(1)

)

= xk
∑

d1,...,dk≤x

(µ ∗ δG)(d1, . . . , dk)

d1 · · · dk
+Rk(x), (32)

with

Rk(x) ≪
∑

u1,...,ur

xu1+···+uk

∑

d1,...,dk≤x

|(µ ∗ δG)(d1, . . . , dk)|

du1
1 · · · duk

k

,

where the first sum is over u1, . . . , uk ∈ {0, 1} such that at least one ui is 0. Let u1, . . . , uk

be fixed and assume that ui0 = 0. Since (x/di)
ui ≤ x/di for every i (1 ≤ i ≤ k) we have

A := xu1+···+uk

∑

d1,...,dk≤x

|(µ ∗ δG)(d1, . . . , dk)|

du1
1 · · · duk

k

≤ xk−1
∑

d1,...,dk≤x

|(µ ∗ δG)(d1, . . . , dk)|
∏

1≤i≤k,i 6=i0
di

≤ xk−1
∏

p≤x

∞
∑

ν1,...,νk=0

|(µ ∗ δG)(p
ν1 , . . . , pνk)|

p
∑

1≤i≤k,i 6=i0
νi

= xk−1
∏

p≤x

(

1 +
ci0,1
p

+
ci0,2
p2

+ · · ·+
ci0,k−1

pk−1

)

, (33)

14



cf. (31), where ci0,j (1 ≤ j ≤ k − 1) are certain non-negative integers. Here ci0,1 = deg(i0),
the degree of i0, according to Remark 13. We obtain that

A ≪ xk−1
∏

p≤x

(

1 +
1

p

)deg(i0)

≪ xk−1(log x)deg(i0)

by Mertens’ theorem. This shows that

Rk(x) ≪ xk−1(log x)maxdeg(i0). (34)

Furthermore, for the main term of (32) we have

∑

d1,...,dk≤x

(µ ∗ δG)(d1, . . . , dk)

d1 · · · dk

=
∞
∑

d1,...,dk=1

(µ ∗ δG)(d1, . . . , dk)

d1 · · · dk
−

∑

∅6=I⊆{1,...,k}

∑

di>x, i∈I
dj≤x, j /∈I

(µ ∗ δG)(d1, . . . , dk)

d1 · · · dk
, (35)

where the series is convergent by Theorem 7 and its sum is D(µ ∗ δG; 1, . . . , 1) = AG.
Let I be fixed with |I| = t. We estimate the sum

B :=
∑

di>x, i∈I
dj≤x, j /∈I

|(µ ∗ δG)(d1, . . . , dk)|

d1 · · · dk
.

Case I. Assume that |I| = t ≥ 3. If 0 < ε < 1/2, then

B =
∑

di>x, i∈I
dj≤x, j /∈I

|(µ ∗ δG)(d1, . . . , dk)|
∏

i∈I d
ε−1/2
i

∏

i∈I d
1/2+ε
i

∏

j /∈I dj

≤ xt(ε−1/2)

∞
∑

d1,...,dk=1

|(µ ∗ δG)(d1, . . . , dk)|
∏

i∈I d
1/2+ε
i

∏

j /∈I dj

≪ xt(ε−1/2),

since the series is convergent (for t ≥ 1). Using that t(ε−1/2) < −1 for 0 < ε < (t−2)/(2t),
here we need t ≥ 3, we obtain B ≪ 1

x
.

Case II. t = 1: Let di0 > x, di ≤ x for i 6= i0, and consider a prime p. If p | di for some i 6= i0,
then p ≤ x. If p | di0 and p > x, then p ∤ di for every i 6= i0, and (µ ∗ δG)(d1, . . . , dk) = 0, cf.
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Remark 13. Hence it is enough to consider the primes p ≤ x. We deduce

B <
1

x

∑

di0>x
di≤x,i 6=i0

|(µ ∗ δG)(d1, . . . , dk)|
∏

i 6=i0
di

≤
1

x

∏

p≤x

∞
∑

ν1,...,νk=0

|(µ ∗ δG)(p
ν1 , . . . , pνk)|

p
∑

i 6=i0
νi

≪
1

x
(log x)maxdeg(i0),

similar to the estimate (34).

Case III. t = 2: Let di0 > x, di′0 > x. We split the sum B into two sums, namely

B =
∑

di0>x,di′0
>x

di≤x,i 6=i0,i′0

|(µ ∗ δG)(d1, . . . , dk)|

d1 · · · dk

=
∑

di0>x3/2,di′0
>x

di≤x,i 6=i0,i′0

|(µ ∗ δG)(d1, . . . , dk)|

d1 · · · dk
+

∑

x3/2≥di0>x,di′0
>x

di≤x,i 6=i0,i′0

|(µ ∗ δG)(d1, . . . , dk)|

d1 · · · dk

=: B1 + B2,

say, where

B1 =
∑

di0>x3/2,di′0
>x

di≤x,i 6=i0,i′0

|(µ ∗ δG)(d1, . . . , dk)|

d
1/3
i0

∏

i 6=i0
di

1

d
2/3
i0

<
1

x

∞
∑

d1,...,dk=1

|(µ ∗ δG)(d1, . . . , dk)|

d
1/3
i0

∏

i 6=i0
di

≪
1

x
,

since the latter series is convergent. Furthermore,

B2 <
1

x

∑

x3/2≥di0 ,di′0
>x

di≤x,i 6=i0,i′0

|(µ ∗ δG)(d1, . . . , dk)|
∏

i 6=i′0
di

,

and consider a prime p. For the last sum, if p | di for some i 6= i′0 then p ≤ x3/2. If p | di′0
and p > x3/2, then p ∤ di for every i 6= i′0 and (µ ∗ δG)(d1, . . . , dr) = 0, cf. Remark 13. Hence
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it is enough to consider the primes p ≤ x3/2. We deduce, similar to (33), (34) that

B2 <
1

x

∏

p≤x3/2

∞
∑

ν1,...,νr=0

|(µ ∗ δG)(p
ν1 , . . . , pνk)|

p
∑

i 6=i′0
νi

≪
1

x
(log x3/2)dG ≪

1

x
(log x)dG ,

with dG = maxi∈G deg(i).
Hence given any |I| = t ≥ 1 we have B ≪ 1

x
(log x)dG . Therefore, by (35),

∑

d1,...,dr≤x

(µ ∗ δG)(d1, . . . , dk)

d1 · · · dk
= AG +O(x−1(log x)dG). (36)

The proof is complete by putting together (32), (34) and (36).

Proof of Theorem 11. According to identities (16) and (18) we have

∑

n1,...,nk≤x

βr(n1, . . . , nk) =

k(k−1)/2
∑

j=r

(−1)j−r

(

j

r

)

∑

E⊆V (2)

|E|=j

∑

n1,...,nk≤x

δG(n1, . . . , nk), (37)

and

∑

n1,...,nk≤x

β′
r(n1, . . . , nk) =

k(k−1)/2
∑

j=r

(−1)j−r

(

j − 1

r − 1

)

∑

E⊆S
|E|=j

∑

n1,...,nk≤x

δG(n1, . . . , nk). (38)

Now for the inner sums
∑

n1,...,nk≤x δG(n1, . . . , nk) of identities (37) and (38) use asymp-

totic formula (8). For the complete coprimality graph with E = V (2), corresponding to all
coprimality conditions, the error term is O(xk−1(log x)k−1), and this is the final error term
in both cases. This proves asymptotic formulas (21) and (22).

Proof of Corollary 12. Apply formula (21) for r = 0, with the constant Ck,0 given by (23).

6 Examples

To illustrate identities (19) and (20) let us work out the following examples.

Example 14. Let k = 4 and G = (V,E) with V = {1, 2, 3, 4}, E = {{1, 2}, {2, 3}, {3, 4},
{4, 1}}, that is, gcd(n1, n2) = 1, gcd(n2, n3) = 1, gcd(n3, n4) = 1, gcd(n4, n1) = 1. See
Figure 1.

Here I = {1, 2, 3, 4} and choose the minimum vertex cover J = {1, 3}. According to (19),

D′
G(s1, s2, s3, s4) =

∏

p





∑′

L⊆J

∏

ℓ∈L

1

psℓ

∏

i∈(J\L)∪(N(L)\J)

(

1−
1

psi

)



 (39)
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1 2

4 3

Figure 1: Graph of Example 14

L N(L) (J \ L) ∪ (N(L) \ J) SL

∅ ∅ {1, 3} (1− x1)(1− x3)
{1} {2, 4} {2, 3, 4} x1(1− x2)(1− x3)(1− x4)
{3} {2, 4} {1, 2, 4} x3(1− x1)(1− x2)(1− x4)
{1, 3} {2, 4} {2, 4} x1x3(1− x2)(1− x4)

Table 1: Terms of the sum in Example 14

Write the terms of the sum in (39), see Table 1, where xi = 1/psi (1 ≤ i ≤ 4). Note that
all subsets of J are independent.

We obtain

D′
G(s1, . . . , s4) =

∏

p

(

S∅ + S{1} + S{3} + S{1,3}

)

=
∏

p

(

1−
1

ps1+s2
−

1

ps1+s4
−

1

ps2+s3
−

1

ps3+s4
+

1

ps1+s2+s3

+
1

ps1+s2+s4
+

1

ps1+s3+s4
+

1

ps2+s3+s4
−

1

ps1+s2+s3+s4

)

.

Observe that the terms ±1/pi with i ∈ J = {1, 3} cancel out, and we have the terms
−1/psi+sj with {i, j} ∈ E, according to the edges of G. Hence the infinite product is
absolutely convergent provided that ℜ(si1 + · · · + sij) > 1 for every i1, . . . , ij ∈ {1, 2, 3, 4}
with i1 < · · · < ij, 2 ≤ j ≤ 4.

The asymptotic density of 4-tuples (n1, . . . , n4) ∈ N4 such that gcd(ni, nj) = 1 with
{i, j} ∈ E is

D′
G(1 . . . , 1) =

∏

p

(

1−
4

p2
+

4

p3
−

1

p4

)

.

This asymptotic density has been obtained using identity (10) by de Reyna and Heyman
[2, Sect. 4].

Example 15. Now let k = 7 and G = (V,E) with V = {1, 2, 3, 4, 5, 6, 7} and

E = {{1, 2}, {1, 3}, {2, 4}, {2, 5}, {3, 4}, {4, 5}},

18



that is, gcd(n1, n2) = 1, gcd(n1, n3) = 1, gcd(n2, n4) = 1, gcd(n2, n5) = 1, gcd(n3, n4) = 1,
gcd(n4, n5) = 1. See Figure 2.

1 2

3 4

5 6 7

Figure 2: Graph of Example 15

Here I = {1, 2, 3, 4, 5}, since the variables n6, n7 do not appear in the constraints. Choose
the minimum vertex cover J = {1, 2, 4}. Consider the subsets L of J and write the corre-
sponding terms SL of the sum in (19), see Table 2, where xi = p−si (1 ≤ i ≤ 5). The subsets
L = {1, 2} and L = {2, 4} do not appear in the sum, since 1, 2 and 2, 4 are adjacent vertices.

L N(L) (J \ L) ∪ (N(L) \ J) SL

∅ ∅ {1, 2, 4} (1− x1)(1− x2)(1− x4)
{1} {3} {2, 3, 4} x1(1− x2)(1− x3)(1− x4)
{2} {5} {1, 4, 5} x2(1− x1)(1− x4)(1− x5)
{4} {3, 5} {1, 2, 3, 5} x4(1− x1)(1− x2)(1− x3)(1− x5)
{1, 4} {3, 5} {2, 3, 5} x1x4(1− x2)(1− x3)(1− x5)

Table 2: Terms of the sum in Example 15

It follows that

D′
G(s1, . . . , s7) =

∏

p

(

S∅ + S{1} + S{2} + S{4} + S{1,4}

)

=
∏

p

(

1−
1

ps1+s2
−

1

ps1+s3
−

1

ps2+s4
−

1

ps2+s5
−

1

ps3+s4
−

1

ps4+s5

+
1

ps1+s2+s3
+

1

ps1+s2+s4
+

1

ps1+s2+s5
+

1

ps1+s3+s4
+

1

ps2+s3+s4

+
2

ps2+s4+s5
+

1

ps3+s4+s5
−

1

ps1+s2+s3+s4
−

1

ps1+s2+s4+s5
−

1

ps2+s3+s4+s5

)

.

Observe that the terms ±1/pi with i, j ∈ {1, 2, 4} cancel out, and we have the terms
−1/psi+sj with {i, j} ∈ E, according to the edges of G. Here the infinite product is absolutely
convergent provided that ℜ(si1 + · · · + sij) > 1 for every i1, . . . , ij ∈ {1, 2, 3, 4, 5} with
i1 < · · · < ij, 2 ≤ j ≤ 5.

19



The asymptotic density of 7-tuples (n1, . . . , n7) ∈ N7 with the corresponding constraints
gcd(ni, nj) = 1 with {i, j} ∈ E is

D′
G(1 . . . , 1) =

∏

p

(

1−
6

p2
+

8

p3
−

3

p4

)

.

Application of identity (10) by de Reyna and Heyman [2] is more laborious here, since
G has six edges and there are 26 = 64 subsets of E.

Example 16. Now consider the case of pairwise coprime integers with E = {{i, j} : 1 ≤
i < j ≤ k}. For k = 4 the graph is in Figure 3.

1 2

4 3

Figure 3: Graph to Example 16

Here I = {1, . . . , k} and choose the minimum vertex cover J = {1, . . . , k − 1}. The only
independent subsets L of J are L = ∅ and L = {1}, ..., L = {k − 1} having one single
element.

If L = ∅, then N(L) = ∅, (J \L)∪ (N(L)\J) = J and obtain, with xi = p−si (1 ≤ i ≤ k),

S∅ = (1− x1) · · · (1− xk−1).

If L = {ℓ}, ℓ ∈ J , then N(L) = {k}, (J \ L) ∪ (N(L) \ J) = {1, . . . , k} \ {ℓ}, and have

S{ℓ} = xℓ

k
∏

j=1
j 6=ℓ

(1− xj).

We need to evaluate the sum

S := S∅ +
k−1
∑

ℓ=1

S{ℓ}. (40)

Let ej(x1, . . . , xk) =
∑

1≤i1<...<ij≤k xi1 · · · xij denote the elementary symmetric polynomi-

als in x1, . . . , xk of degree j (j ≥ 0). By convention, e0(x1, . . . , xk) = 1.
Consider the polynomial

P (x) =
k
∏

j=1

(x− xj) =
k
∑

j=0

(−1)jej(x1, . . . , xk)x
k−j.
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Its derivative is

P ′(x) =
k−1
∑

j=0

(−1)j(k − j)ej(x1, . . . , xk)x
k−j−1,

and on the other hand

P ′(x) =
k
∑

j=1

k
∏

i=1
i 6=j

(x− xi).

We obtain that the sum (40) is

S =
k−1
∏

j=1

(1− xj) +
k−1
∑

j=1

xj

k
∏

i=1
i 6=j

(1− xi)

=
k
∑

j=1

k
∏

i=1
i 6=j

(1− xi)− (k − 1)
k
∏

j=1

(1− xj)

= P ′(1)− (k − 1)P (1)

= 1 +
k
∑

j=2

(−1)j−1(j − 1)ej(x1, . . . , xk),

that is,

∞
∑

n1,...,nk=1
gcd(ni,nj)=1, 1≤i<j≤k

1

ns1
1 · · ·nsk

k

=
∏

p

(

1 +
k
∑

j=2

(−1)j−1(j − 1)ej(p
−s1 , . . . , p−sk)

)

.

For s1 = · · · = sk = 1 this gives identity (2), representing the asymptotic density of
k-tuples with pairwise relatively prime components.
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