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Abstract

We use the convolution method for arithmetic functions of several variables to
deduce an asymptotic formula for the number of k-tuples of positive integers with
components which are pairwise non-coprime and < x. More generally, we obtain
asymptotic formulas on the number of k-tuples (ny,...,n;) € N¥ such that at least r
pairs (n;, nj), respectively exactly 7 pairs are coprime. Our results answer the questions
raised by Moree (2005, 2014), and generalize and refine related results obtained by
Heyman (2014) and Hu (2014).

Introduction and motivation

Let N={1,2,...} andlet k£ € N, k > 2. It is well-known that the asymptotic density of the k-

tuples (nq, ..

.,n) € NF having relatively prime (coprime) components is 1/¢(k). This result

goes back to the work of Cesaro, Dirichlet, Mertens and others. See, e.g., [4, 6, 12, 14, 15].
More exactly, one has the asymptotic estimate

k oL 9.
Z Lo O(xkl?igx), ?f k=2; )
O(z" 1), it k£ > 3.

gcd(nl,...,n;):l
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The asymptotic density of the k-tuples (ny,...,n) € N¥ with pairwise coprime compo-
nents is

a=TI(1- %) (+ 20 -11 (1 Py - n(%); ) e

i
p P j=2 J/ P
and we have the asymptotic formula

Z 1 = Apa® + 02" (logz) 1), (3)
N yeey N ST
ged(ng,nj)=1
1<i<j<k
valid for every fixed k > 2, proved by the author [15] using an inductive process on k. The
value of Ay was also deduced by Cai and Bach [3, Thm. 3.3 using probabilistic arguments.
Formula (3) has been reproved by the author [17], in a more general form, namely by inves-
tigating m-wise relatively prime integers (that is, every m of them are relatively prime) and
by using the convolution method for functions of several variables. Note that the asymptotic
formula for m-wise coprime integers was first proved by Hu [8] by the inductive method with
a weaker error term.
Now consider pairwise non-coprime positive integers nq, . .., n, satisfying ged(n;, n;) # 1
forall 1 <i<j <k LetB=p8:NF—{0,1} denote the characteristic function of k-tuples
having this property, that is,

B(ny,...,ng) = (4)

1, if nq,...,n, are pairwise non-coprime;
0, otherwise.

Moree [10, 11] and Heyman [7] raised the question of finding the asymptotic density Cj of
k-tuples with pairwise non-coprime components. If k = 2, then the answer is immediate by
(1): Cy =1—-1/¢(2). Heyman [7] obtained the value C3 and deduced an asymptotic formula
for the sum > . _ B(ni,n,n3) by using functions of one variable and the inclusion-
exclusion principle. The method in [7] cannot be applied if & > 4. Using the inductive
approach of the author [15] and the inclusion-exclusion principle, Hu [9] gave a formula for
the asymptotic density Cy (k > 3), with an incomplete proof.

Moree [10, 11] also formulated as an open problem to compute the density of k-tuples
(n1,...,n;) € NF such that at least (respectively, exactly) r pairs (n;,n;) are coprime. A
correct answer to this problem, but with some incomplete arguments has been given by Hu
9, Cor. 3]. In fact, Hu [9, Thm. 1] also deduced a related asymptotic formula with remainder
term concerning certain arbitrary coprimality conditions. See Theorem 1. Arias de Reyna
and Heyman [2] used a different method, based on certain properties of arithmetic functions
of one variable, and improved the error term by Hu [9].

See Sections 2 and 4 for some more details on the above results.

In this paper we use a different approach to study these questions. Applying the convo-
lution method for functions of several variables we first reprove Theorem 1. To do this we



need a careful study of the Dirichlet series of the corresponding characteristic function. See
Theorem 7. Our result concerning the related asymptotic formula, with the same error term
as obtained in [2], and with new representations of the constant Ag is contained in Theorem
9. Then we deduce asymptotic formulas with remainder terms on the number of k-tuples
such that at least r pairs (n;, n;), respectively exactly r pairs are coprime. See Theorem 11.
In particular, we obtain an asymptotic formula for the function g = f;, for every k > 2. See
Corollary 12. Our results generalize and refine those by Heyman [7] and Hu [9].

Basic properties of arithmetic functions of k£ variables are presented in Section 3.1. Some
lemmas related to the principle of inclusion-exclusion, used in the proofs are included in
Section 3.2. The proofs of our main results are similar to those in [17], and are given in
Section 5. Some numerical examples are presented in Section 6.

2 Previous results

Heyman [7] proved the asymptotic formula
> B(ni,na,ng) = Csa® + O(a*(log 7)),
n1,n2,n3 <
where the constant Cj is

03=1—3H(1—1%)+3H(1—]%+}%)—H(l—%+%). (5)

- p p

Hu [9] gave a formula for the asymptotic density Cj, of k-tuples with pairwise non-coprime
components, where k > 3. See (25). It recovers (5) for k = 3, and for k = 4 it can be written
as

p p p p2 F
—4g(1—%+%—%)—161}(1—%+%)
(1) T30
TG )

Related to identity (6) we note that there are two typos in [9], namely [] (1 —1/p)*(1 -
2/p) on pages 7 and 8 should be [],(1 —1/p)*(1 +2/p).

For a fixed k > 2 let V = {1,2,...,k}, let E be an arbitrary subset of the set {(i,7) :
1 < i < j <k}, and let take the coprimality conditions ged(n;,n;) = 1 for (i,j) € E.
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Following Hu [9] and Arias de Reyna and Heyman [2], it is convenient and suggestive to
consider the corresponding simple graph G = (V| F), we call it coprimality graph, with set
of vertices V and set of edges E. Therefore, we use the notation £ C V® := {{i,j} : 1 <
i < j < k}, where the edges of G are denoted by {i,5} = {j,i}, and adopt some related
graph terminology.

Let d¢ denote the characteristic function attached to the graph G, defined by

1, if ged(ng,n;) =1 for every {i,j} € E;

(7)

0, otherwise,

5g(n1,...,nk) = {

and note that if £ = (), that is, the graph G has no edges, then 6g(ny,...,n;) = 1 for every
(n,...,nx) € NF.

Furthermore, let i,,,(G) be the number of independent sets S of vertices in G (i.e., no
two vertices of S are adjacent in G) of cardinality m. Also, for F' C E let v(F') denote the
number of distinct vertices appearing in F'.

Theorem 1. Let G = (V, E) be an arbitrary graph. With the above notation,

Z oa(ny, ..., ) = Agz® + O(z" 1 (log 2)7¢), (8)

—1)IF
= H (1;5 (pv(zv) ) , (10)

and V¢ = dg = max; ey deg(j), denoting the maximum degree of the vertices of G.

Here Ag is representing the asymptotic density of k-tuples (ni,...,n;) € N¥ such that
ged(ni,nj) = 1 for {i,j} € E. Theorem 1 was first proved by Hu [9] with the weaker
exponent g = k — 1 for every subset F and with identity (9) for the constant Ag. Arias de
Reyna and Heyman [2] deduced Theorem 1 by a different method, with the given exponent
Yg = dg and identity (10) for the constant Ag.

Note that if we have the complete coprimality graph, namely if £ = V@ then d is the
characteristic function of the set of k-tuples with pairwise coprime components (see (12)),
and (8) recovers formula (3).



3 Preliminaries

3.1 Arithmetic functions of k variables

The Dirichlet convolution of the functions f, g : N¥ — C is defined by

(frg)n,.com) = Y fdi,....dp)g(na/dy, ... m/dy). (11)

Let p = py : N¥ — {—1,0,1} denote the Mobius function of k variables, defined as
the inverse of the constant 1 function under the convolution (11). We have p(nq,...,ng) =
w(ny) - - p(ng) for every my, ..., n, € N, which recovers for k = 1 the classical (one variable)
Mbobius function.

The Dirichlet series of a function f : N¥ — C is given by

D(f;s1,...,8) = i f(nl’—’rik)

..... IRt
If D(f;s1,...,8:) and D(g;s1,...,s,) are absolutely convergent, where si,...,s; € C,
then D(f * g;s1,...,5sk) is also absolutely convergent and

D(f*g;817""8k) :D(f;817""8k>D(g;817"‘78k)‘

We recall that a nonzero arithmetic function of k variables f : N¥ — C is said to be
multiplicative if

Fmana, ., ming) = F(ma, ... mi) fmn, ., g)
holds for all my,n; ..., my, n, € Nsuch that ged(my - - - my,ny -+ -ng) = 1. If f is multiplica-
tive, then it is determined by the values f(p*',...,p"), where p is prime and vq,..., v €

NU{0}. More exactly, f(1,...,1) =1 and for all ny,...,n; € N,

flny, ... ng) = Hf(pyp("l), . ,pr(nk)%
p

where we use the notation n = Hp p*?(™ for the prime power factorization of n € N, the
product being over the primes p and all but a finite number of the exponents v,(n) are
zero. Examples of multiplicative functions of k variables are the GCD and LCM functions
ged(ng, ..., ng), lem(ny, ..., ny) and the characteristic functions

{1, if ged(ng,...,ng) = 1;

Ny, .oy Ny) = )
olm ) 0, otherwise,

1, if ged(ni,nj) =1forevery 1 <i<j<k;

0, otherwise.

19(n1,...,nk):{



If the function f is multiplicative, then its Dirichlet series can be expanded into a (formal)
Euler product, that is,

D(f’ 81500058 H Z f 1/181’+..:H/k5k)’ (13)

P Vi,...,Vp=0

the product being over the primes p. More exactly, for f multiplicative, the series D(f; sy, .. .,
sk) with sq,..., s, € C is absolutely convergent if and only if

Z Z S ™)
pl/1§RS1+-~~+Vk§RSk <0
V15 V=0
v+ >1

and in this case equality (13) holds.
The mean value of a function f: N¥ — C is

M(f):= lim _ S ),

L1500y Xp—00 L1 * * * T ny <1 e <z
— R —

provided that this limit exists. As a generalization of Wintner’s theorem (valid in the one
variable case), Ushiroya [18, Thm. 1] proved the next result.

Theorem 2. If f is a function of k variables, not necessary multiplicative, such that

o)

Z [(p* f)(na, ... mg)]

nlnannk

< 00,

ni,...,nEp=1

then the mean value M(f) exists, and

nl-..nk

ny,...,np=1

For multiplicative functions the above result can be formulated as follows. See [16, Prop.
19], [18, Thm. 4].

Theorem 3. Let f : NF — C be a multz’plicative function. Assume that

V15,0 =0
v+t >1

Then the mean value M(f) exists, and

=TT (1-1) 3 It

D V1,V =0

See, e.g., Delange [5] and the survey by the author [16] for these and some other related
results on arithmetic functions of several variables. If £ = 1, i.e., in the case of functions of
a single variable we recover some familiar properties.
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3.2 The functions é; and
Consider the function ¢ defined by (7).
Lemma 4. For every subset E, the function dg is multiplicative.

Proof. This is a consequence of the fact that the ged function ged(m,n) is multiplicative,
viewed as a function of two variables. To give a direct proof, let mq,ny, ..., mg, ngy € N such
that ged(my -+ - mg,ng - -ny) = 1. Then we have

1, if ged(m;n;,m;n;) =1 for all {i,j} € E;
da(man, ..., myng) = & ( ’ ]) .}
0, otherwise;
)1, if ged(my, my) ged(ng, ny) = 1 for all {i,j} € E;
B 0, otherwise;
)1, if ged(my, my) = 1 for all {i,j} € E;
B 0, otherwise;
1, if ged(n;,n;) =1 for all {i,5} € E;
0, otherwise;
= 6g(m1, e ,mk)ég(nl, e ,nk),
finishing the proof. m

The function 8 given by (4) is not multiplicative. However, by the inclusion-exclusion
principle it can be written as an alternating sum of certain multiplicative functions dq.
More generally, for r > 0 we define the functions 3, = S, and 3, = f; . by

1, if exactly r pairs (n;,n;) with 1 <7 < j < k are coprime;
Br(ni, ... ,ng) = ) ( i) (14)
0, otherwise,
1, if at least r pairs (n;,n;) with 1 <i < j < k are coprime;
Br(ny,...,ng) = . ( 3) (15)
0, otherwise.
If r =0, then 5y = 5.
Lemma 5. Let k > 2 and r > 0. For every ny,...,n; € N,
k(k—1)/2 j
_ _1\i—r
Silm )= Y (1) () S o, ), (16)
J=r ECV(®)
|E|=j
k(k—1)/2
Bna,.om) = D> (=1 > dalm, ... ng) (17)
Jj=0 ECv(®2)



Proof. Given nq,...,n; € N, assume that for 1 <i¢ < j < k condition ged(n;,n;) = 1 holds
for t times, where 0 <t < k(k — 1)/2. Then the right hand side of (16) is

-5 ()()

J=r

If ¢ <r, then this is the empty sum, and N, =0 = (,(nq,...,ng). If t > r, then

= (e ()= () () - b

J=r m=0
which is exactly S,(nq,...,ng).
In the case r = 0 we obtain identity (17). O

Lemma 6. Let k > 2 and r > 1. For every ny,...,n; € N,

k(k—1)/2
B, m)= Y (1) (r_l) S bl m). (18)
J=r ECv®)
|E|=j
Proof. We have by using (16),
k(k—1)/2

6;,(7?4,..., Z ﬁtnl,..., )

(k 1)/2“ 1)/2

ECV(®)
| El=j
(k—1/2 j ;
_ t
=Y (S et S0 (1),
Jj=r ECV(® t=r
|El=j
where the inner sum is (—I)T(i j), finishing the proof. O

The above identities are similar to some known generalizations of the principle of inclu-
sion-exclusion. See, e.g., the books by Aigner [1, Sect. 5.1] and Stanley [13, Ch. 2].

4 Main results

Given a graph G = (V, E), the asymptotic density Ag of the of k-tuples (ny,...,n;) € N
such that ged(n;,n;) = 1 for {i,j} € E is the mean value of the characteristic function g
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defined by (7). According to Theorem 2, Ag = D(u*dg,1,...,1), provided that this series is
absolutely convergent. We show this by a careful study of the Dirichlet series of the function
oG-

To formulate our results we need the following additional notation. For a graph G =
(V,E) let I be the set of non-isolated vertices of G, and J be a (minimum) vertex cover of
G, that is, a set of vertices that includes at least one endpoint of every edge (of smallest
possible size). The notation ZILC ; means the sum over independent subsets L of J (no two
vertices of L are adjacent in G). Also, let N(j) denote the neighbourhood of a vertex j, and
for a subset L of V' let N(L) = Uje, N(j).

Theorem 7. Letk > 2 and G = (V, E) be an arbitrary graph. Then, with the above notation,

o

(5(; ny,...,Ng
S o) ) () Do 50
1 Moy
Ny ,np=1
where
/ / 1 1
DG(Sl,...,Sk) :H T[ H - P (19)
p \zcs ter P icnnuinng) p
1 Ul C(?:l,...,ij)
=11 2 o=t 2 )
P {i,j}€E J=3 i1,...,i;€I
i< <
where c(iy, . ..,1;) are some integers, depending on iy, ..., 1;, but not on p.
Furthermore, D'(s1,...,s;) with sq1,...,sx € C is absolutely convergent provided that

R(siy + -+ +8i;,) > 1 for every iy, ..., i; € I with iy, <--- <1, 2<j < |,

Remark 8. By choosing J = I or J = {1,...,k} the sum over L in identity (19) has
more terms than in the case of a minimum vertex cover J of G. However, if J = I, then

N(L)\ I =0 for every L, and (19) takes the slightly simpler form
and similarly if J = {1,...,k}.

! 1 1
oo =TT T (0
» \rcren PR p

Next we prove by the convolution method the asymptotic formula already given in The-
orem 1. This approach leads to new representations of the constant Ag.




Theorem 9. Asymptotic formula (8) holds with the exponent Vg = dg in the error term,

and with the constant

AG: i (M*ég)(nl,...,nk)

1_1 F i 5G(p1/17.”7p7/k)
p prrtE
;1 1\ PAEHINE]
= — (1=-= .
(X (1-3)

Remark 10. If J = I, then N(L)\ I = () for every L, and (20) gives

o Tl (Z/% (1_}9>1\L|>

()

where 4,,(G, I') denotes the number of independent subsets of I of cardinality m in the graph

G. Similarly, by choosing J = {1,...,k}, (20) reduces to identity (9) by Hu [9].

Now consider the functions g, and /3, defined by (14) and (15).
Theorem 11. Let k > 2. Then for r > 0 we have

Z Be(ny,...,ng) = Cra® + O (log x)*),

and forr >1,
Z 67/“(”17 s 7nk) - C;“‘Tk + O(xk_l(log x)k_l)’
Nyeen N T
where
k(k—1)/2 j
Cr=Cip= >, (-7 (T) > Ao
j=r ECV(®
|El=j
and
k(k—1)/2 i1
' j—T
c=ct,= 3 07171 3 e
j=r ECV(2)
|E|l=j

(21)

(22)

(24)

are the asymptotic densities of the k-tuples (ni, ..., ni) € N¥ such that ged(n;, n;) = 1 occurs

exactly r times, respectively at least r times, with Ag given in Theorems 1 and 9.
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We remark that identities (23) and (24) have been obtained by Hu [9, Cor. 3] with an
incomplete proof.

Corollary 12. (r =0) We have

where

= (17 ) Ac. (25)

Identity (25) has been obtained by Hu [9, Cor. 3].

Note that if G and G’ are isomorphic graphs then the corresponding densities Ag and
A are equal. The asymptotic densities Cy ., C,’w and C} can be computed for given values
of k and r from identities (23), (24) and (25), respectively by determining the cardinalities
of the isomorphism classes of graphs G with k vertices and j edges (0 < j < k(k—1)/2) and
by computing the corresponding values of Ag. In particular, C3 and Cy given by (5) and (6)
can be obtained in this way.

5 Proofs

We first prove the key result of our treatment.

Proof of Theorem 7. We have

og(ny,...,n
D(dg; 81, -,8K) = Z M:

nil .. .nzk

Let I denote the set of non-isolated vertices of G. Then

D(6c;s1, - se) = [ [ ¢(s0) > 11 nl

ig¢l n; >1,i€l iel
gcd(nil ’niZ):L {il,iQ}EE

Tl Y )

il p >0, i€l
Vi Vig=0,{i1,i2}€E

= H C(Sz) H S;m

il

11



say, using that the function g is multiplicative by Lemma 4.

Now choose a (minimum) vertex cover J. Then v; (j € J) cover all the conditions
Vi, Vi, = 0 with {iy,i2} € F, that is, for every {i1,i2} € F there is j € J such that j =i, or
J = ia. Group the terms of the sum S, according to the subsets L = {¢ € J : v, > 1} of J.
Here v; = 0 for every j € J\ L. Note that L cannot contain any two adjacent vertices. Also,
for such a fixed subset L C J let M be the set of indexes m such that v, is forced to be zero
by L. More exactly, let M ={m € I\ J : there is ¢ € L with {m, ¢} € E}. If m € M, then
vy = 0 for some ¢ € L. Since vy > 1, we obtain v, = 0. Here M = N (L) \ J, where N(L)
is set of vertices adjacent to vertices in L.

Let Z/LC ; denote the sum over subsets L of J that have no adjacent vertices. We obtain

! 1

LCJ  wvp>1,4el
v;=0,j€J\L
vm=0,meM

v; >0, iEI\(JUM)

Z Z 0S¢ Z S
ZZ LV Z’L I\(JuM) ViSi
p [S er\( )

LCT v>1,te v;>0,ie1\(Jub) P

ZHZ( psf>1 [l (1_p1’°’f>1

LCJ (el ieI\(JUM)
1 1
() S I (5)
iel LCJ (€L e(J\L)\UM
1\ !
- 11 (1 N psﬁ) e

say. We deduce that

which shows that

D(bg; 81y, 8K) = (UC(si))D/(sh s Sk,

where

D/<51,...,sk>:1;[ g(znsl 11 (1—];))- (26)

LCJ teL ie(J\L)UM

Let us investigate the terms of the sum ZLQ in (26). If L =0, that is, v; = 0 for every
j € J, then M = () and we have

M(i-)-1-S 5+

1eJ icJ

1
Z s T (27)

1,5€J,1<j

12



If L = {io} for some fixed ig € J, then obtain, with M = M, := N(ig) \ J,

1 1 1 1 1
psio H <1_p5i>:psi0_ Z W"‘ Z W_

i€JUM;, i€JUM;, i,j€JUM;,
i#ig i#io lo#1<j#io

Here if 7o = t runs over J, then we have the terms

1 1 1
E - Z p5t+5i + Z pst-i-si—i-sj - (28)

teJ i€JUM; i,j€JUM;
teJ teJiAt j#t
i#t i<j

If L = {ip, i)} with some fixed ig, iy € J, ig < ip, which are not adjacent, then obtain,
with M = My g = N({io. i)})\ /.

1 1 1 1 Z 1 99
W H B psi B psio+8i’0 N Sig 1831+ e ( )
ZeJUMio,ié ZEJUMio,i6
i#i0,i i#i0,il

If ig = t,df, = v run over J, then we obtain from (29),

1 1
Z pSt-‘rsU o Z ]m SRR (30)

tveJ 1€JUMq o
t<v. t,veJ not adjacent
t,v not adjacent i#tw

Putting together (27), (28) and (30) we obtain the sum S, where

1 1 1 1
Szl_zps¢+ Z p8i+5j+ st Z pstTsi

ot
ieJ 1,j€J,1<] ted i€ JUM;
teJ
it

1
+ + other terms
t%] pSt +sv

t<v
t,v not adjacent

1
=1- Z p— + other terms,

i,t€J
i,t adjacent

where the terms +1/p® with i € J cancel out. Also the terms +1/p%*% with i, € J (each
appearing twice) cancel out, excepting when i, j are adjacent. Here for the “other terms”,
including the terms obtained if L has at least three elements, the exponents of p are sums
of at least three distinct values s;, s;, sy with 4, 7,0 € I.

Hence the infinite product (26) is absolutely convergent provided the given condition. [

13



Remark 13. It turns out that the function u * d¢ is multiplicative (in general not symmetric

in the variables) and for all prime powers p**, ..., p**,
1, ifvry=---=v, =0;
(uxoq) (™, ..., p") =< clvy, ... ), v, €{0,1}, ji=v1+ -+ >2; (31)
0, otherwise,
where ¢(vy, ..., 1) are some integers, depending on vy, ..., g, but not on p.

Note that (u * dg)(p*,...,p"*) = 0 provided that v; > 2 for at least one 1 < i < k,
orvy,...,vp € {0,1} and vy + -+, = 1. M vq,...,p € {0,1} and v; + -+ + 1 = 2,
say v, = vy = 1 and v; = 0 for i # ig, 4y, then (u x dg)(p™, ..., p"*) = =1 if iy and i; are
adjacent in the graph G and 0 otherwise.

Proof of Theorem 9. Write

Y daln,m) =Y > (wxde)(dy,. .. dy)

N1y, ST N1 < dy |01, dp |1
T x
= Z (n*0c)(dy, ... dy) | = —
dy dy,
dl ..... dk<$
x
= Y (uxde)(dy,... dy) | 5 +0() 2 o)
dl dk
dl ..... dk<CC
_ Lk (1 6a)(dy, ..., dy)
- Z di---d, Ry(x), (32)
dl ..... dk<$
with
ug -t (1 x 6c)(dy, - - ., d)|
Ri(w) < Y amttm 3 T
UL sy Ur di,...,dg<zx
where the first sum is over uy,...,ur € {0, 1} such that at least one u; is 0. Let uq, ..., uy

be fixed and assume that u;, = 0. Since (z/d;)" < x/d; for every i (1 < i < k) we have

0c)(dy, ..., d
A= $u1+'"+uk Z |(:u * dil)( 17de ; k>|

< gk Z (% 6c)(dy, .. ., dy)|

di,.,dp <z Hléigk,#io d;

oo

<Y [(p* 0c)(p™, ..., p*)|

p21gigk,i¢io Vi

p<lz vi,...,vp=0

C; C; Cio k—
:xk_IH(l—l— T 1), (33)

P P pk-1
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cf. (31), where ¢;,; (1 < j < k — 1) are certain non-negative integers. Here ¢;, 1 = deg(io),
the degree of 7y, according to Remark 13. We obtain that

1 deg(io) .
A<Mt H (1 + ]—)> < 2% (log x)deelio)

p<z

by Mertens’ theorem. This shows that
Ri(z) < 2* 1 (log )mexdeslio), (34)

Furthermore, for the main term of (32) we have

Z (*0g)(dy, ..., dy)

di,....dp<z i+ dy
= (M*dG)(dlaadk) ”*5(; dla"'adk)
_ — 35
s bl Yy belelhed) g
di,..., drp=1 @#IC{l ..... k‘} di>x, i€l
d;<z,j¢I
where the series is convergent by Theorem 7 and its sum is D(p * dg;1,...,1) = Ag.

Let I be fixed with |I| =¢t. We estimate the sum

|(,LL * 5G)(d17 cee 7dk)|
B = )
> .
d;>x, i€l

Case I. Assume that |I| =t > 3. If 0 < e < 1/2, then

po y s e &

1/2+€
di>x, i€l Hze[ dz ngzl dj
dj<z,j¢I

wemryny N pxd)(dy, - dy))
<ot 35 i,
..... dip=1 H'LGI % Hjé[ J

5—1/2)

<& wt(

since the series is convergent (for ¢t > 1). Using that t(e —1/2) < —1for 0 < e < (t—2)/(2t),
here we need ¢ > 3, we obtain B < i

Case II. t = 1: Let d;, > x, d; < x for i # iy, and consider a prime p. If p | d; for some i # i,
then p < z. If p| d;, and p > x, then p { d; for every i # iy, and (u * d¢)(dy,...,dx) =0, cf.
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Remark 13. Hence it is enough to consider the primes p < x. We deduce

1 |(M*5G)(dlvvdk)|
B < z Z Hi;éiodi

:u*dG '>pyk>’
H > ST

P<:vl/1, V=0

max deg(io)

~qa
<<x(0gx) ;

similar to the estimate (34).

Case III. t = 2: Let d;, > x, dy > x. We split the sum B into two sums, namely

|(p* dg)(dy, ..., dg)l
B =
s o)t

dio >x‘,di€) >m
d; <aiio,i}

B Z |(p % 0g)(dy, ..., d)| N
dy - d

di0>az3/2,di/ >x $3/22di0 >x,d; >x
0 0
d; <x,ii0,i) d; < ii0,i

= Bl + B27

%0 dla---;dk
Z (e Zf(...dk )l

say, where

|(:U’*5G>(d177dk)‘ 1
By = Z d1/31—[ 4 273
‘ iio Qi i

dig >x3/2,di6 > io io
d; <z,i700,%(,

_! i (% 06)(dy, . .., dy)]

1/3
T A
di,...,dp=1 dio Hi;ﬁio d;

1
<<_7
T

since the latter series is convergent. Furthermore,

1 |(p*dg)(dy, ..., dg)l
B, < =
2< Z H#l,d ’

x¥/2>d; d, 0>

d;<z 7,7510,10

and consider a prime p. For the last sum, if p | d; for some i # i) then p < x%/2. If p | dis

and p > %2, then p 1 d; for every i # i} and (u* 6¢)(dy, ..., d,) = 0, cf. Remark 13. Hence

16



it is enough to consider the primes p < 2%2. We deduce, similar to (33), (34) that

By < T H Z Sir Vi < 5(10g:p )¢ < E(lOg z)e,
p<x3/2 Vlyeeny V’f'fo p

with dg = max;cq deg(i).
Hence given any |I| =t > 1 we have B < 1(logz)%. Therefore, by (35),

dg)(dy,...,d
Z (o §)< 17d 2 i) = Ag + O(z7 Y (log 2)%). (36)
diyonde<z Lok
The proof is complete by putting together (32), (34) and (36). O

Proof of Theorem 11. According to identities (16) and (18) we have

k(k—1)/2

Yo B, m) = > (—1)fr<i) o> Salm,.m),  (37)
N1y, <T j=r ECV® ni,..,np<z
|E|=j
and
k(k—1)/2 i1
S B )= Y <—1>”< _ 1) SO el (38)
Ny N ST j=r r ECS ni,...,np<zx
|E|=j
Now for the inner sums >~ _ dg(ni,...,ng) of identities (37) and (38) use asymp-

totic formula (8). For the complete coprimality graph with £ = V) corresponding to all
coprimality conditions, the error term is O(z*~(log x)*~!), and this is the final error term
in both cases. This proves asymptotic formulas (21) and (22). O

Proof of Corollary 12. Apply formula (21) for r = 0, with the constant Cj given by (23).
]

6 Examples

To illustrate identities (19) and (20) let us work out the following examples.

Example 14. Let k =4 and G = (V, E) with V = {1,2,3,4}, £ = {{1,2},{2,3},{3,4},
{4,1}}, that is, ged(ng,n2) = 1, ged(ng,ng) = 1, ged(ng,ng) = 1, ged(ng,ny) = 1. See
Figure 1.

Here I = {1,2,3,4} and choose the minimum vertex cover J = {1,3}. According to (19),

Dis(s1, 52, 53,51) = [ [ Z'H}% I1 (1— 1) (39)

P LCJ (el 1€(J\L)U(N(L)\J) p

17



4 3

Figure 1: Graph of Example 14

| L [N [(\L)UN(L)\J) ] S |
0 0 {1,3} (1 —21)(1 — x3)
{1} | {2,4} {2,3,4} 21(1 — 29) (1 — 23)(1 — xy)
{3} |{2,4} {1,2,4} x3(1 — 1) (1 — 22)(1 — xy)
{1,3} | {2,4} {2,4} r123(1 — 22)(1 — 24)

Table 1: Terms of the sum in Example 14

Write the terms of the sum in (39), see Table 1, where z; = 1/p% (1 <i < 4). Note that
all subsets of J are independent.
We obtain

Dig(s1,. - 51) = [ [ (S0 + Sty + Spsy + Sy)

P

B ] 1 1 1 1 1

- H - po1ts2 o po1tsa o ps2tss o ps3+sa + psitsztss
P

1 1 1 1
+p81+82+84 + p51+33+54 + p52+53+54 o p51+52+53+54> :

Observe that the terms +1/p* with ¢ € J = {1,3} cancel out, and we have the terms
—1/p**% with {i,j} € E, according to the edges of G. Hence the infinite product is
absolutely convergent provided that $(s;, +--- +s;,) > 1 for every iy,...,4; € {1,2,3,4}
with iy < - <i;, 2< j < 4.

The asymptotic density of 4-tuples (ni,...,ns) € N* such that ged(n;,n;) = 1 with
{i,j} € Eis

4 4 1
%umgp{IO—7+E—7)

» p p

This asymptotic density has been obtained using identity (10) by de Reyna and Heyman
2, Sect. 4].

Example 15. Now let k =7 and G = (V, E) with V = {1,2,3,4,5,6,7} and
E={{1,2}{1,3},{2,4},{2,5}, {3, 4}, {4, 5} },

18



that iS, ng(nhTLQ) = 1a ng(nlan3) = ]-7 ng(TLQ,TM) = ]-7 ng(TLQ,TL5> = 17 ng(n3an4) = 17
ged(ng, ns) = 1. See Figure 2.

1 2

3 4

Figure 2: Graph of Example 15

Here I = {1,2,3,4,5}, since the variables ng, n; do not appear in the constraints. Choose
the minimum vertex cover J = {1,2,4}. Consider the subsets L of J and write the corre-
sponding terms Sy, of the sum in (19), see Table 2, where z; = p~* (1 <1 <5). The subsets
L ={1,2} and L = {2,4} do not appear in the sum, since 1,2 and 2,4 are adjacent vertices.

L NI | (J\NLDUNL)\J) | St |
@ @ {17274} (1 _xl)(l )(1 )
e 2.3.1) ErT = ) (1= )=
DERS) Li5) vl — (1= 2)(— )
{4} | {3,5} {1,2,3,5} y(1 — ) (1 — 22)(1 — 23)(1 — 5)
{1,4} | {3,5} {2,3,5} r124(1 — 22)(1 — 23)(1 — z5)

Table 2: Terms of the sum in Example 15
It follows that

Dy (s1,...,8 H So + Sy + Spey + Sy +S{14})

B 1 1 1 1 1
o 1;[ 81+82 p81+83 o p82+84 o p82+85 - p83+84 o p84+85

1 1 1 1 1
+p81+82+83 + p51+82+84 + p81+82+85 + p81+33+84 + p52+83+84

2 1 1 1 1
p82+84+85 + p53+84+85 p81+82+83+54 p51+52+54+55 p52+53+54+55 ’

Observe that the terms +1/p’ with 4,5 € {1,2,4} cancel out, and we have the terms
—1/p%*si with {i,j} € E, according to the edges of G. Here the infinite product is absolutely
convergent provided that (s; + --- + s;;,) > 1 for every iy,...,i7; € {1,2,3,4,5} with
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The asymptotic density of 7-tuples (ny,...,n7) € N7 with the corresponding constraints
ged(ng, ny) =1 with {i,j} € E'is

D’G(L..,1)=H(1—£+§—3).

2 3 4
p p p p

Application of identity (10) by de Reyna and Heyman [2] is more laborious here, since
G has six edges and there are 2% = 64 subsets of E.

Example 16. Now consider the case of pairwise coprime integers with £ = {{i,j} : 1 <
i < j <k}. For k = 4 the graph is in Figure 3.

1 2

4 3
Figure 3: Graph to Example 16

Here I = {1,...,k} and choose the minimum vertex cover J = {1,...,k — 1}. The only
independent subsets L of J are L = () and L = {1}, ..., L = {k — 1} having one single
element.

If L =10, then N(L)=0, (J\L)U(N(L)\J) = J and obtain, with z; = p~ (1 <i < k),
Sp=(1—ax1) (1 —zp_1).
If L={l}, ¢e J, then N(L)={k}, (J\L)U(N(L)\J)=A{1,...,k}\ {¢}, and have

k
Sgy = 2 [ (1 — ).

j=1
J#t
We need to evaluate the sum
k—1
S:=5S+> Sy (40)
=1
Let ej(z1,...,25) = Zl§i1<...<ij§k T, - 1, denote the elementary symmetric polynomi-
als in xq, ..., 2 of degree j (j > 0). By convention, eq(xy,...,zx) = 1.
Consider the polynomial
k k
P(z) = [J(x = 2)) =) (~1Vej(w, ... mp)a* .
j=1 j=0



Its derivative is

T
I

P'(z) = ‘ (=1)7(k — j)ej(z1,. .. Jag)xh I

<
I
<)

and on the other hand

=i
We obtain that the sum (40) is
k—1 k—1 k
S=1[—a)+> o [0 - =)

j=1 =1 i=1

i+

ko k k
S I CEEDEICEN | [CEED)

that is,

For sy = -+ = s, = 1 this gives identity (2), representing the asymptotic density of
k-tuples with pairwise relatively prime components.
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