

Article 24.8.5 **²** Journal of Integer Sequences, Vol. 27 (2024),

On the Asymptotic Density of k -tuples of Positive Integers with Pairwise Non-Coprime Components

László Tóth Department of Mathematics University of Pécs Ifjúság útja 6 7624 Pécs Hungary ltoth@gamma.ttk.pte.hu

Abstract

We use the convolution method for arithmetic functions of several variables to deduce an asymptotic formula for the number of k -tuples of positive integers with components which are pairwise non-coprime and $\leq x$. More generally, we obtain asymptotic formulas on the number of k-tuples $(n_1, \ldots, n_k) \in \mathbb{N}^k$ such that at least r pairs (n_i, n_j) , respectively exactly r pairs are coprime. Our results answer the questions raised by Moree (2005, 2014), and generalize and refine related results obtained by Heyman (2014) and Hu (2014).

1 Introduction and motivation

Let $\mathbb{N} = \{1, 2, \ldots\}$ and let $k \in \mathbb{N}, k \geq 2$. It is well-known that the asymptotic density of the ktuples $(n_1, \ldots, n_k) \in \mathbb{N}^k$ having relatively prime (coprime) components is $1/\zeta(k)$. This result goes back to the work of Cesàro, Dirichlet, Mertens and others. See, e.g., $[4, 6, 12, 14, 15]$ $[4, 6, 12, 14, 15]$ $[4, 6, 12, 14, 15]$ $[4, 6, 12, 14, 15]$ $[4, 6, 12, 14, 15]$ $[4, 6, 12, 14, 15]$ $[4, 6, 12, 14, 15]$ $[4, 6, 12, 14, 15]$. More exactly, one has the asymptotic estimate

$$
\sum_{\substack{n_1,\dots,n_k \le x \\ \gcd(n_1,\dots,n_k)=1}} 1 = \frac{x^k}{\zeta(k)} + \begin{cases} O(x \log x), & \text{if } k = 2; \\ O(x^{k-1}), & \text{if } k \ge 3. \end{cases}
$$
(1)

The asymptotic density of the k-tuples $(n_1, \ldots, n_k) \in \mathbb{N}^k$ with pairwise coprime components is

$$
A_k = \prod_p \left(1 - \frac{1}{p}\right)^{k-1} \left(1 + \frac{k-1}{p}\right) = \prod_p \left(1 + \sum_{j=2}^k (-1)^{j-1} (j-1) \binom{k}{j} \frac{1}{p^j}\right),\tag{2}
$$

and we have the asymptotic formula

$$
\sum_{\substack{n_1,\ldots,n_k \le x\\ \gcd(n_i,n_j)=1\\1 \le i < j \le k}} 1 = A_k x^k + O(x^{k-1} (\log x)^{k-1}),\tag{3}
$$

valid for every fixed $k \geq 2$, proved by the author [\[15\]](#page-21-4) using an inductive process on k. The value of A_k was also deduced by Cai and Bach [\[3,](#page-20-0) Thm. 3.3] using probabilistic arguments. Formula (3) has been reproved by the author $[17]$, in a more general form, namely by investigating m-wise relatively prime integers (that is, every m of them are relatively prime) and by using the convolution method for functions of several variables. Note that the asymptotic formula for m-wise coprime integers was first proved by Hu [\[8\]](#page-21-6) by the inductive method with a weaker error term.

Now consider pairwise non-coprime positive integers n_1, \ldots, n_k , satisfying $gcd(n_i, n_j) \neq 1$ for all $1 \leq i < j \leq k$. Let $\beta = \beta_k : \mathbb{N}^k \to \{0, 1\}$ denote the characteristic function of k-tuples having this property, that is,

$$
\beta(n_1, \dots, n_k) = \begin{cases} 1, & \text{if } n_1, \dots, n_k \text{ are pairwise non-coprime;} \\ 0, & \text{otherwise.} \end{cases} \tag{4}
$$

Moree [\[10,](#page-21-7) [11\]](#page-21-8) and Heyman [\[7\]](#page-21-9) raised the question of finding the asymptotic density C_k of k-tuples with pairwise non-coprime components. If $k = 2$, then the answer is immediate by [\(1\)](#page-0-0): $C_2 = 1-1/\zeta(2)$. Heyman [\[7\]](#page-21-9) obtained the value C_3 and deduced an asymptotic formula for the sum $\sum_{n_1,n_2,n_3\leq x}\beta(n_1,n_2,n_3)$ by using functions of one variable and the inclusion-exclusion principle. The method in [\[7\]](#page-21-9) cannot be applied if $k \geq 4$. Using the inductive approach of the author [\[15\]](#page-21-4) and the inclusion-exclusion principle, Hu [\[9\]](#page-21-10) gave a formula for the asymptotic density C_k $(k \geq 3)$, with an incomplete proof.

Moree $[10, 11]$ $[10, 11]$ also formulated as an open problem to compute the density of k-tuples $(n_1,\ldots,n_k) \in \mathbb{N}^k$ such that at least (respectively, exactly) r pairs (n_i,n_j) are coprime. A correct answer to this problem, but with some incomplete arguments has been given by Hu [\[9,](#page-21-10) Cor. 3]. In fact, Hu [\[9,](#page-21-10) Thm. 1] also deduced a related asymptotic formula with remainder term concerning certain arbitrary coprimality conditions. See Theorem [1.](#page-3-0) Arias de Reyna and Heyman [\[2\]](#page-20-1) used a different method, based on certain properties of arithmetic functions of one variable, and improved the error term by Hu [\[9\]](#page-21-10).

See Sections [2](#page-2-0) and [4](#page-7-0) for some more details on the above results.

In this paper we use a different approach to study these questions. Applying the convolution method for functions of several variables we first reprove Theorem [1.](#page-3-0) To do this we need a careful study of the Dirichlet series of the corresponding characteristic function. See Theorem [7.](#page-8-0) Our result concerning the related asymptotic formula, with the same error term as obtained in |2|, and with new representations of the constant A_G is contained in Theorem [9.](#page-9-0) Then we deduce asymptotic formulas with remainder terms on the number of k-tuples such that at least r pairs (n_i, n_j) , respectively exactly r pairs are coprime. See Theorem [11.](#page-9-1) In particular, we obtain an asymptotic formula for the function $\beta = \beta_k$, for every $k \geq 2$. See Corollary [12.](#page-10-0) Our results generalize and refine those by Heyman [\[7\]](#page-21-9) and Hu [\[9\]](#page-21-10).

Basic properties of arithmetic functions of k variables are presented in Section [3.1.](#page-4-0) Some lemmas related to the principle of inclusion-exclusion, used in the proofs are included in Section [3.2.](#page-6-0) The proofs of our main results are similar to those in [\[17\]](#page-21-5), and are given in Section [5.](#page-10-1) Some numerical examples are presented in Section [6.](#page-16-0)

2 Previous results

Heyman [\[7\]](#page-21-9) proved the asymptotic formula

$$
\sum_{n_1, n_2, n_3 \le x} \beta(n_1, n_2, n_3) = C_3 x^3 + O(x^2 (\log x)^2),
$$

where the constant C_3 is

$$
C_3 = 1 - 3 \prod_p \left(1 - \frac{1}{p^2} \right) + 3 \prod_p \left(1 - \frac{2}{p^2} + \frac{1}{p^3} \right) - \prod_p \left(1 - \frac{3}{p^2} + \frac{2}{p^3} \right). \tag{5}
$$

Hu [\[9\]](#page-21-10) gave a formula for the asymptotic density C_k of k-tuples with pairwise non-coprime components, where $k \geq 3$. See [\(25\)](#page-10-2). It recovers [\(5\)](#page-2-1) for $k = 3$, and for $k = 4$ it can be written as

$$
C_4 = 1 - 6 \prod_p \left(1 - \frac{1}{p^2} \right) + 3 \prod_p \left(1 - \frac{1}{p^2} \right)^2 + 12 \prod_p \left(1 - \frac{2}{p^2} + \frac{1}{p^3} \right) \tag{6}
$$

$$
- 4 \prod_p \left(1 - \frac{3}{p^2} + \frac{3}{p^3} - \frac{1}{p^4} \right) - 16 \prod_p \left(1 - \frac{3}{p^2} + \frac{2}{p^3} \right) + 15 \prod_p \left(1 - \frac{4}{p^2} + \frac{4}{p^3} - \frac{1}{p^4} \right) - 6 \prod_p \left(1 - \frac{5}{p^2} + \frac{6}{p^3} - \frac{2}{p^4} \right) + \prod_p \left(1 - \frac{6}{p^2} + \frac{8}{p^3} - \frac{3}{p^4} \right).
$$

Related to identity [\(6\)](#page-2-2) we note that there are two typos in [\[9\]](#page-21-10), namely $\prod_p (1 - 1/p)^2 (1 2/p$ on pages 7 and 8 should be $\prod_{p}(1 - 1/p)^{2}(1 + 2/p)$.

For a fixed $k \geq 2$ let $V = \{1, 2, ..., k\}$, let E be an arbitrary subset of the set $\{(i, j) :$ $1 \leq i \leq j \leq k$, and let take the coprimality conditions $gcd(n_i, n_j) = 1$ for $(i, j) \in E$. Following Hu [\[9\]](#page-21-10) and Arias de Reyna and Heyman [\[2\]](#page-20-1), it is convenient and suggestive to consider the corresponding simple graph $G = (V, E)$, we call it coprimality graph, with set of vertices V and set of edges E. Therefore, we use the notation $E \subseteq V^{(2)} := \{\{i, j\} : 1 \leq j \leq k\}$ $i < j \le k$, where the edges of G are denoted by $\{i, j\} = \{j, i\}$, and adopt some related graph terminology.

Let δ_G denote the characteristic function attached to the graph G, defined by

$$
\delta_G(n_1, \dots, n_k) = \begin{cases} 1, & \text{if } \gcd(n_i, n_j) = 1 \text{ for every } \{i, j\} \in E; \\ 0, & \text{otherwise,} \end{cases} \tag{7}
$$

and note that if $E = \emptyset$, that is, the graph G has no edges, then $\delta_G(n_1, \ldots, n_k) = 1$ for every $(n_1,\ldots,n_k)\in\mathbb{N}^k$.

Furthermore, let $i_m(G)$ be the number of independent sets S of vertices in G (i.e., no two vertices of S are adjacent in G) of cardinality m. Also, for $F \subseteq E$ let $v(F)$ denote the number of distinct vertices appearing in F.

Theorem 1. Let $G = (V, E)$ be an arbitrary graph. With the above notation,

$$
\sum_{n_1,\dots,n_k \le x} \delta_G(n_1,\dots,n_k) = A_G x^k + O(x^{k-1} (\log x)^{\vartheta_G}),\tag{8}
$$

where the constant A_G *is given by*

$$
A_G = \prod_p \left(\sum_{m=0}^k \frac{i_m(G)}{p^m} \left(1 - \frac{1}{p} \right)^{k-m} \right) \tag{9}
$$

$$
=\prod_{p}\left(\sum_{F\subseteq E}\frac{(-1)^{|F|}}{p^{v(F)}}\right),\tag{10}
$$

and $\vartheta_G = d_G := \max_{i \in V} \deg(i)$, denoting the maximum degree of the vertices of G.

Here A_G is representing the asymptotic density of k-tuples $(n_1, \ldots, n_k) \in \mathbb{N}^k$ such that $gcd(n_i, n_j) = 1$ $gcd(n_i, n_j) = 1$ for $\{i, j\} \in E$. Theorem 1 was first proved by Hu [\[9\]](#page-21-10) with the weaker exponent $\vartheta_G = k - 1$ for every subset E and with identity [\(9\)](#page-3-1) for the constant A_G . Arias de Reyna and Heyman [\[2\]](#page-20-1) deduced Theorem [1](#page-3-0) by a different method, with the given exponent $\vartheta_G = d_G$ and identity [\(10\)](#page-3-2) for the constant A_G .

Note that if we have the complete coprimality graph, namely if $E = V^{(2)}$, then δ_G is the characteristic function of the set of k-tuples with pairwise coprime components (see (12)), and [\(8\)](#page-3-3) recovers formula [\(3\)](#page-1-0).

3 Preliminaries

3.1 Arithmetic functions of k variables

The Dirichlet convolution of the functions $f, g : \mathbb{N}^k \to \mathbb{C}$ is defined by

$$
(f * g)(n_1, \dots, n_k) = \sum_{d_1 | n_1, \dots, d_k | n_k} f(d_1, \dots, d_k) g(n_1 / d_1, \dots, n_k / d_k).
$$
 (11)

Let $\mu = \mu_k : \mathbb{N}^k \to \{-1,0,1\}$ denote the Möbius function of k variables, defined as the inverse of the constant 1 function under the convolution [\(11\)](#page-4-2). We have $\mu(n_1, \ldots, n_k)$ = $\mu(n_1)\cdots\mu(n_k)$ for every $n_1,\ldots,n_k\in\mathbb{N}$, which recovers for $k=1$ the classical (one variable) Möbius function.

The Dirichlet series of a function $f: \mathbb{N}^k \to \mathbb{C}$ is given by

$$
D(f; s_1, \ldots, s_k) := \sum_{n_1, \ldots, n_k=1}^{\infty} \frac{f(n_1, \ldots, n_k)}{n_1^{s_1} \cdots n_k^{s_k}}.
$$

If $D(f; s_1, \ldots, s_k)$ and $D(g; s_1, \ldots, s_k)$ are absolutely convergent, where $s_1, \ldots, s_k \in \mathbb{C}$, then $D(f * g; s_1, \ldots, s_k)$ is also absolutely convergent and

$$
D(f * g; s_1, \ldots, s_k) = D(f; s_1, \ldots, s_k)D(g; s_1, \ldots, s_k).
$$

We recall that a nonzero arithmetic function of k variables $f: \mathbb{N}^k \to \mathbb{C}$ is said to be multiplicative if

$$
f(m_1n_1,\ldots,m_kn_k)=f(m_1,\ldots,m_k)f(n_1,\ldots,n_k)
$$

holds for all $m_1, n_1, \ldots, m_k, n_k \in \mathbb{N}$ such that $gcd(m_1 \cdots m_k, n_1 \cdots n_k) = 1$. If f is multiplicative, then it is determined by the values $f(p^{\nu_1}, \ldots, p^{\nu_k})$, where p is prime and $\nu_1, \ldots, \nu_k \in$ $\mathbb{N} \cup \{0\}$. More exactly, $f(1,\ldots,1) = 1$ and for all $n_1,\ldots,n_k \in \mathbb{N}$,

$$
f(n_1,\ldots,n_k)=\prod_p f(p^{\nu_p(n_1)},\ldots,p^{\nu_p(n_k)}),
$$

where we use the notation $n = \prod_p p^{\nu_p(n)}$ for the prime power factorization of $n \in \mathbb{N}$, the product being over the primes p and all but a finite number of the exponents $\nu_p(n)$ are zero. Examples of multiplicative functions of k variables are the GCD and LCM functions $gcd(n_1, \ldots, n_k)$, $lcm(n_1, \ldots, n_k)$ and the characteristic functions

$$
\varrho(n_1, \dots, n_k) = \begin{cases} 1, & \text{if } \gcd(n_1, \dots, n_k) = 1; \\ 0, & \text{otherwise,} \end{cases}
$$
\n
$$
\vartheta(n_1, \dots, n_k) = \begin{cases} 1, & \text{if } \gcd(n_i, n_j) = 1 \text{ for every } 1 \le i < j \le k; \\ 0, & \text{otherwise.} \end{cases} \tag{12}
$$

If the function f is multiplicative, then its Dirichlet series can be expanded into a (formal) Euler product, that is,

$$
D(f; s_1, \dots, s_k) = \prod_p \sum_{\nu_1, \dots, \nu_k = 0}^{\infty} \frac{f(p^{\nu_1}, \dots, p^{\nu_k})}{p^{\nu_1 s_1 + \dots + \nu_k s_k}},
$$
(13)

the product being over the primes p. More exactly, for f multiplicative, the series $D(f; s_1, \ldots,$ s_k) with $s_1, \ldots, s_k \in \mathbb{C}$ is absolutely convergent if and only if

$$
\sum_{p} \sum_{\substack{\nu_1,\dots,\nu_k=0\\ \nu_1+\dots+\nu_k\geq 1}}^{\infty} \frac{|f(p^{\nu_1},\dots,p^{\nu_k})|}{p^{\nu_1\Re s_1+\dots+\nu_k\Re s_k}} < \infty
$$

and in this case equality [\(13\)](#page-5-0) holds.

The mean value of a function $f: \mathbb{N}^k \to \mathbb{C}$ is

$$
M(f) := \lim_{x_1, ..., x_k \to \infty} \frac{1}{x_1 \cdots x_k} \sum_{n_1 \le x_1, ..., n_k \le x_k} f(n_1, ..., n_k),
$$

provided that this limit exists. As a generalization of Wintner's theorem (valid in the one variable case), Ushiroya [\[18,](#page-21-11) Thm. 1] proved the next result.

Theorem 2. *If* f *is a function of* k *variables, not necessary multiplicative, such that*

$$
\sum_{n_1,\ldots,n_k=1}^{\infty} \frac{|(\mu * f)(n_1,\ldots,n_k)|}{n_1\cdots n_k} < \infty,
$$

then the mean value M(f) *exists, and*

$$
M(f) = \sum_{n_1,\dots,n_k=1}^{\infty} \frac{(\mu * f)(n_1,\dots,n_k)}{n_1 \cdots n_k}.
$$

For multiplicative functions the above result can be formulated as follows. See [\[16,](#page-21-12) Prop. 19], [\[18,](#page-21-11) Thm. 4].

Theorem 3. Let $f : \mathbb{N}^k \to \mathbb{C}$ be a multiplicative function. Assume that

$$
\sum_{p} \sum_{\substack{\nu_1,\ldots,\nu_k=0\\ \nu_1+\cdots+\nu_k\geq 1}} \frac{|(\mu * f)(p^{\nu_1},\ldots,p^{\nu_k})|}{p^{\nu_1+\cdots+\nu_k}} < \infty.
$$

Then the mean value M(f) *exists, and*

$$
M(f) = \prod_{p} \left(1 - \frac{1}{p}\right)^{k} \sum_{\nu_{1},...,\nu_{k}=0}^{\infty} \frac{f(p^{\nu_{1}},...,p^{\nu_{k}})}{p^{\nu_{1}+...+\nu_{k}}}.
$$

See, e.g., Delange [\[5\]](#page-21-13) and the survey by the author [\[16\]](#page-21-12) for these and some other related results on arithmetic functions of several variables. If $k = 1$, i.e., in the case of functions of a single variable we recover some familiar properties.

3.2 The functions δ_G and β

Consider the function δ_G defined by [\(7\)](#page-3-4).

Lemma 4. For every subset E, the function δ_G is multiplicative.

Proof. This is a consequence of the fact that the gcd function $gcd(m, n)$ is multiplicative, viewed as a function of two variables. To give a direct proof, let $m_1, n_1, \ldots, m_k, n_k \in \mathbb{N}$ such that $gcd(m_1 \cdots m_k, n_1 \cdots n_k) = 1$. Then we have

$$
\delta_G(m_1n_1,\ldots,m_kn_k) = \begin{cases}\n1, & \text{if } \gcd(m_in_i,m_jn_j) = 1 \text{ for all } \{i,j\} \in E; \\
0, & \text{otherwise;} \n\end{cases}
$$
\n
$$
= \begin{cases}\n1, & \text{if } \gcd(m_i,m_j) \gcd(n_i,n_j) = 1 \text{ for all } \{i,j\} \in E; \\
0, & \text{otherwise;} \n\end{cases}
$$
\n
$$
= \begin{cases}\n1, & \text{if } \gcd(m_i,m_j) = 1 \text{ for all } \{i,j\} \in E; \\
0, & \text{otherwise;} \n\end{cases}
$$
\n
$$
\times \begin{cases}\n1, & \text{if } \gcd(n_i,n_j) = 1 \text{ for all } \{i,j\} \in E; \\
0, & \text{otherwise;} \n\end{cases}
$$
\n
$$
= \delta_G(m_1,\ldots,m_k)\delta_G(n_1,\ldots,n_k),
$$

finishing the proof.

The function β given by [\(4\)](#page-1-1) is not multiplicative. However, by the inclusion-exclusion principle it can be written as an alternating sum of certain multiplicative functions δ_G .

More generally, for $r \ge 0$ we define the functions $\beta_r = \beta_{k,r}$ and $\beta'_r = \beta'_{k,r}$ by

$$
\beta_r(n_1, \dots, n_k) = \begin{cases} 1, & \text{if exactly } r \text{ pairs } (n_i, n_j) \text{ with } 1 \le i < j \le k \text{ are coprime;}\\ 0, & \text{otherwise,} \end{cases} \tag{14}
$$
\n
$$
\beta'_r(n_1, \dots, n_k) = \begin{cases} 1, & \text{if at least } r \text{ pairs } (n_i, n_j) \text{ with } 1 \le i < j \le k \text{ are coprime;}\\ 0, & \text{otherwise.} \end{cases} \tag{15}
$$

If $r = 0$, then $\beta_0 = \beta$.

Lemma 5. *Let* $k \geq 2$ *and* $r \geq 0$ *. For every* $n_1, \ldots, n_k \in \mathbb{N}$ *,*

$$
\beta_r(n_1,\ldots,n_k) = \sum_{j=r}^{k(k-1)/2} (-1)^{j-r} {j \choose r} \sum_{\substack{E \subseteq V^{(2)} \\ |E|=j}} \delta_G(n_1,\ldots,n_k),\tag{16}
$$

 \Box

$$
\beta(n_1,\ldots,n_k) = \sum_{j=0}^{k(k-1)/2} (-1)^j \sum_{\substack{E \subseteq V^{(2)} \\ |E|=j}} \delta_G(n_1,\ldots,n_k). \tag{17}
$$

Proof. Given $n_1, \ldots, n_k \in \mathbb{N}$, assume that for $1 \leq i < j \leq k$ condition $gcd(n_i, n_j) = 1$ holds for t times, where $0 \le t \le k(k-1)/2$. Then the right hand side of [\(16\)](#page-6-1) is

$$
N_r := \sum_{j=r}^t (-1)^{j-r} \binom{j}{r} \binom{t}{j}.
$$

If $t < r$, then this is the empty sum, and $N_r = 0 = \beta_r(n_1, \ldots, n_k)$. If $t \geq r$, then

$$
N_r = {t \choose r} \sum_{j=r}^t (-1)^{j-r} {t-r \choose j-r} = {t \choose r} \sum_{m=0}^{t-r} (-1)^m {t-r \choose m} = \begin{cases} 1, & \text{if } t=r; \\ 0, & \text{if } t>r, \end{cases}
$$

which is exactly $\beta_r(n_1,\ldots,n_k)$.

In the case $r = 0$ we obtain identity [\(17\)](#page-6-2).

Lemma 6. *Let* $k \geq 2$ *and* $r \geq 1$ *. For every* $n_1, \ldots, n_k \in \mathbb{N}$ *,*

$$
\beta'_r(n_1,\ldots,n_k) = \sum_{j=r}^{k(k-1)/2} (-1)^{j-r} {j-1 \choose r-1} \sum_{\substack{E \subseteq V^{(2)} \\ |E|=j}} \delta_G(n_1,\ldots,n_k). \tag{18}
$$

 \Box

 \Box

Proof. We have by using [\(16\)](#page-6-1),

$$
\beta'_r(n_1,\ldots,n_k) = \sum_{t=r}^{k(k-1)/2} \beta_t(n_1,\ldots,n_k)
$$

=
$$
\sum_{t=r}^{k(k-1)/2} \sum_{j=t}^{k(k-1)/2} (-1)^{j-t} {j \choose t} \sum_{\substack{E \subseteq V^{(2)} \\ |E|=j}} \delta_G(n_1,\ldots,n_k)
$$

=
$$
\sum_{j=r}^{k(k-1/2} (-1)^j \sum_{\substack{E \subseteq V^{(2)} \\ |E|=j}} \delta_G(n_1,\ldots,n_k) \sum_{t=r}^{j} (-1)^t {j \choose t},
$$

where the inner sum is $(-1)^r\binom{j-1}{r-1}$ $_{r-1}^{j-1}$, finishing the proof.

The above identities are similar to some known generalizations of the principle of inclusion-exclusion. See, e.g., the books by Aigner [\[1,](#page-20-2) Sect. 5.1] and Stanley [\[13,](#page-21-14) Ch. 2].

4 Main results

Given a graph $G = (V, E)$, the asymptotic density A_G of the of k-tuples $(n_1, \ldots, n_k) \in \mathbb{N}^k$ such that $gcd(n_i, n_j) = 1$ for $\{i, j\} \in E$ is the mean value of the characteristic function δ_G defined by [\(7\)](#page-3-4). According to Theorem [2,](#page-5-1) $A_G = D(\mu * \delta_G, 1, \ldots, 1)$, provided that this series is absolutely convergent. We show this by a careful study of the Dirichlet series of the function δ_G .

To formulate our results we need the following additional notation. For a graph $G =$ (V, E) let I be the set of non-isolated vertices of G, and J be a (minimum) vertex cover of G, that is, a set of vertices that includes at least one endpoint of every edge (of smallest possible size). The notation $\sum'_{L\subseteq J}$ means the sum over independent subsets L of J (no two vertices of L are adjacent in G). Also, let $N(j)$ denote the neighbourhood of a vertex j, and for a subset L of V let $N(L) = \bigcup_{j \in L} N(j)$.

Theorem 7. Let $k \geq 2$ and $G = (V, E)$ be an arbitrary graph. Then, with the above notation,

$$
\sum_{n_1,\ldots,n_k=1}^{\infty} \frac{\delta_G(n_1,\ldots,n_k)}{n_1^{s_1}\cdots n_k^{s_k}} = \zeta(s_1)\cdots\zeta(s_k)D'_G(s_1,\ldots,s_k),
$$

where

$$
D'_{G}(s_{1},...,s_{k}) = \prod_{p} \left(\sum_{L \subseteq J} \prod_{\ell \in L} \frac{1}{p^{s_{\ell}}} \prod_{i \in (J \setminus L) \cup (N(L) \setminus J)} \left(1 - \frac{1}{p^{s_{i}}} \right) \right)
$$

=
$$
\prod_{p} \left(1 - \sum_{\{i,j\} \in E} \frac{1}{p^{s_{i}+s_{j}}} + \sum_{j=3}^{|I|} \sum_{\substack{i_{1},...,i_{j} \in I \\ i_{1} < ... < i_{j}}} \frac{c(i_{1},...,i_{j})}{p^{s_{i_{1}}+...+s_{i_{j}}}} \right),
$$
(19)

where $c(i_1, \ldots, i_j)$ *are some integers, depending on* i_1, \ldots, i_j *, but not on p.*

Furthermore, $D'(s_1, \ldots, s_k)$ *with* $s_1, \ldots, s_k \in \mathbb{C}$ *is absolutely convergent provided that* $\Re(s_{i_1} + \cdots + s_{i_j}) > 1$ for every $i_1, \ldots, i_j \in I$ with $i_1 < \cdots < i_j$, $2 \leq j \leq |I|$.

Remark 8. By choosing $J = I$ or $J = \{1, ..., k\}$ the sum over L in identity [\(19\)](#page-8-1) has more terms than in the case of a minimum vertex cover J of G. However, if $J = I$, then $N(L) \setminus I = \emptyset$ for every L, and [\(19\)](#page-8-1) takes the slightly simpler form

$$
D'_G(s_1,\ldots,s_k)=\prod_p\left(\sum_{L\subseteq I}\prod_{\ell\in L}\frac{1}{p^{s_\ell}}\prod_{i\in I\setminus L}\left(1-\frac{1}{p^{s_i}}\right)\right),\,
$$

and similarly if $J = \{1, \ldots, k\}.$

Next we prove by the convolution method the asymptotic formula already given in The-orem [1.](#page-3-0) This approach leads to new representations of the constant A_G .

Theorem 9. Asymptotic formula [\(8\)](#page-3-3) holds with the exponent $\vartheta_G = d_G$ in the error term, *and with the constant*

$$
A_G = \sum_{n_1, \dots, n_k=1}^{\infty} \frac{(\mu * \delta_G)(n_1, \dots, n_k)}{n_1 \cdots n_k}
$$

=
$$
\prod_p \left(1 - \frac{1}{p}\right)^k \sum_{\nu_1, \dots, \nu_k=0}^{\infty} \frac{\delta_G(p^{\nu_1}, \dots, p^{\nu_k})}{p^{\nu_1 + \dots + \nu_k}}
$$

=
$$
\prod_p \left(\sum_{L \subseteq J} \frac{1}{p^{|L|}} \left(1 - \frac{1}{p}\right)^{|J \setminus L| + |N(L) \setminus J|}\right).
$$
 (20)

Remark 10*.* If $J = I$, then $N(L) \setminus I = \emptyset$ for every L, and [\(20\)](#page-9-2) gives

$$
A_G = \prod_p \left(\sum_{L \subseteq I} \frac{1}{p^{|L|}} \left(1 - \frac{1}{p} \right)^{|I \setminus L|} \right)
$$

=
$$
\prod_p \left(\sum_{m=0}^{|I|} \frac{i_m(G, I)}{p^m} \left(1 - \frac{1}{p} \right)^{|I| - m} \right),
$$

where $i_m(G, I)$ denotes the number of independent subsets of I of cardinality m in the graph G. Similarly, by choosing $J = \{1, \ldots, k\}$, [\(20\)](#page-9-2) reduces to identity [\(9\)](#page-3-1) by Hu [\[9\]](#page-21-10).

Now consider the functions β_r and β'_r defined by [\(14\)](#page-6-3) and [\(15\)](#page-6-4).

Theorem 11. *Let* $k \geq 2$ *. Then for* $r \geq 0$ *we have*

$$
\sum_{n_1,\dots,n_k \le x} \beta_r(n_1,\dots,n_k) = C_r x^k + O(x^{k-1} (\log x)^{k-1}),\tag{21}
$$

and for $r \geq 1$ *,*

$$
\sum_{n_1,\dots,n_k \le x} \beta'_r(n_1,\dots,n_k) = C'_r x^k + O(x^{k-1} (\log x)^{k-1}),\tag{22}
$$

where

$$
C_r = C_{k,r} = \sum_{j=r}^{k(k-1)/2} (-1)^{j-r} {j \choose r} \sum_{\substack{E \subseteq V^{(2)} \\ |E|=j}} A_G,
$$
\n(23)

and

$$
C'_{r} = C'_{k,r} = \sum_{j=r}^{k(k-1)/2} (-1)^{j-r} {j-1 \choose r-1} \sum_{\substack{E \subseteq V^{(2)} \\ |E|=j}} A_G \tag{24}
$$

are the asymptotic densities of the k-tuples $(n_1, \ldots, n_k) \in \mathbb{N}^k$ such that $gcd(n_i, n_j) = 1$ *occurs exactly* r *times, respectively at least* r *times, with* A^G *given in Theorems [1](#page-3-0) and [9.](#page-9-0)*

We remark that identities [\(23\)](#page-9-3) and [\(24\)](#page-9-4) have been obtained by Hu [\[9,](#page-21-10) Cor. 3] with an incomplete proof.

Corollary 12. $(r = 0)$ *We have*

$$
\sum_{n_1,\dots,n_k\leq x}\beta(n_1,\dots,n_k)=C_kx^k+O(x^{k-1}(\log x)^{k-1}),
$$

where

$$
C_k = C_{k,0} = \sum_{\substack{n_1,\dots,n_k=1 \ j=0}}^{\infty} \frac{(\mu * \beta)(n_1,\dots,n_k)}{n_1 \cdots n_k}
$$

$$
= \sum_{j=0}^{k(k-1)/2} (-1)^j \sum_{\substack{E \subseteq V^{(2)} \\ |E|=j}} A_G.
$$
(25)

Identity [\(25\)](#page-10-2) has been obtained by Hu [\[9,](#page-21-10) Cor. 3].

Note that if G and G' are isomorphic graphs then the corresponding densities A_G and $A_{G'}$ are equal. The asymptotic densities $C_{k,r}$, $C'_{k,r}$ and C_k can be computed for given values of k and r from identities (23) , (24) and (25) , respectively by determining the cardinalities of the isomorphism classes of graphs G with k vertices and j edges $(0 \leq j \leq k(k-1)/2)$ and by computing the corresponding values of A_G . In particular, C_3 and C_4 given by [\(5\)](#page-2-1) and [\(6\)](#page-2-2) can be obtained in this way.

5 Proofs

We first prove the key result of our treatment.

Proof of Theorem [7](#page-8-0)*.* We have

$$
D(\delta_G; s_1, \ldots, s_k) = \sum_{n_1, \ldots, n_k=1}^{\infty} \frac{\delta_G(n_1, \ldots, n_k)}{n_1^{s_1} \cdots n_k^{s_k}} = \sum_{\substack{n_1, \ldots, n_k=1\\ \gcd(n_{i_1}, n_{i_2})=1\\ \{i_1, i_2\} \in E}}^{\infty} \frac{1}{n_1^{s_1} \cdots n_k^{s_k}}.
$$

Let I denote the set of non-isolated vertices of G . Then

$$
D(\delta_G; s_1, \dots, s_k) = \prod_{i \notin I} \zeta(s_i) \sum_{\substack{n_i \geq 1, i \in I \\ \gcd(n_{i_1}, n_{i_2}) = 1, \{i_1, i_2\} \in E}} \prod_{i \in I} \frac{1}{n_i^{s_i}}
$$

$$
= \prod_{i \notin I} \zeta(s_i) \prod_p \left(\sum_{\substack{\nu_i \geq 0, i \in I \\ \nu_{i_1} \nu_{i_2} = 0, \{i_1, i_2\} \in E}} \frac{1}{p^{\sum_{i \in I} \nu_i s_i}} \right)
$$

$$
=: \prod_{i \notin I} \zeta(s_i) \prod_p S_p,
$$

say, using that the function δ_G is multiplicative by Lemma [4.](#page-6-5)

Now choose a (minimum) vertex cover J. Then ν_j $(j \in J)$ cover all the conditions $\nu_{i_1}\nu_{i_2}=0$ with $\{i_1,i_2\}\in E$, that is, for every $\{i_1,i_2\}\in E$ there is $j\in J$ such that $j=i_1$ or $j = i_2$. Group the terms of the sum S_p according to the subsets $L = \{l \in J : \nu_l \geq 1\}$ of J. Here $\nu_j = 0$ for every $j \in J \backslash L$. Note that L cannot contain any two adjacent vertices. Also, for such a fixed subset $L \subseteq J$ let M be the set of indexes m such that ν_m is forced to be zero by L. More exactly, let $M = \{m \in I \setminus J : \text{there is } \ell \in L \text{ with } \{m, \ell\} \in E\}.$ If $m \in M$, then $\nu_m \nu_\ell = 0$ for some $\ell \in L$. Since $\nu_\ell \geq 1$, we obtain $\nu_m = 0$. Here $M = N(L) \setminus J$, where $N(L)$ is set of vertices adjacent to vertices in L.

Let $\sum_{L\subseteq J}'$ denote the sum over subsets L of J that have no adjacent vertices. We obtain

$$
S_p = \sum_{L \subseteq J} \sum_{\substack{\nu_{\ell} \geq 1, \ell \in L \\ \nu_{\eta} = 0, \eta \in M \\ \nu_{i} \geq 0, i \in I \setminus (J \cup M)}} \frac{1}{p^{\sum_{i \in I} \nu_{i} s_{i}}}
$$

\n
$$
= \sum_{L \subseteq J} \sum_{\substack{\nu_{\ell} \geq 1, \ell \in L \\ \nu_{\ell} \geq 1, \ell \in L}} \frac{1}{p^{\sum_{\ell} \in L} \nu_{\ell s_{\ell}}}
$$

\n
$$
= \sum_{L \subseteq J} \sum_{\substack{\nu_{\ell} \geq 1, \ell \in L \\ \nu \in L}} \frac{1}{p^{s_{\ell}}} \left(1 - \frac{1}{p^{s_{\ell}}}\right)^{-1} \prod_{i \in I \setminus (J \cup M)} \left(1 - \frac{1}{p^{s_{i}}}\right)^{-1}
$$

\n
$$
= \prod_{i \in I} \left(1 - \frac{1}{p^{s_{i}}}\right)^{-1} \sum_{L \subseteq J} \prod_{\ell \in L} \frac{1}{p^{s_{\ell}}} \prod_{i \in (J \setminus L) \cup M} \left(1 - \frac{1}{p^{s_{i}}}\right)^{-1}
$$

\n
$$
=: \prod_{i \in I} \left(1 - \frac{1}{p^{s_{i}}}\right)^{-1} T_p,
$$

say. We deduce that

$$
\prod_p S_p = \prod_{i \in I} \zeta(s_i) \prod_p T_p,
$$

which shows that

$$
D(\delta_G; s_1,\ldots,s_k) = \Big(\prod_{i=1}^k \zeta(s_i)\Big)D'(s_1,\ldots,s_k),
$$

where

$$
D'(s_1, ..., s_k) = \prod_p T_p = \prod_p \left(\sum_{L \subseteq J} \prod_{\ell \in L} \frac{1}{p^{s_\ell}} \prod_{i \in (J \setminus L) \cup M} \left(1 - \frac{1}{p^{s_i}} \right) \right).
$$
 (26)

Let us investigate the terms of the sum $\sum_{L\subseteq J}^{\prime}$ in [\(26\)](#page-11-0). If $L=\emptyset$, that is, $\nu_j=0$ for every $j \in J$, then $M = \emptyset$ and we have

$$
\prod_{i \in J} \left(1 - \frac{1}{p^{s_i}} \right) = 1 - \sum_{i \in J} \frac{1}{p^{s_i}} + \sum_{i,j \in J, i < j} \frac{1}{p^{s_i + s_j}} - \dots \tag{27}
$$

If $L = \{i_0\}$ for some fixed $i_0 \in J$, then obtain, with $M = M_{i_0} := N(i_0) \setminus J$,

$$
\frac{1}{p^{s_{i_0}}}\prod_{\substack{i\in J\cup M_{i_0}\\i\neq i_0}}\left(1-\frac{1}{p^{s_i}}\right)=\frac{1}{p^{s_{i_0}}}-\sum_{\substack{i\in J\cup M_{i_0}\\i\neq i_0}}\frac{1}{p^{s_{i_0}+s_i}}+\sum_{\substack{i,j\in J\cup M_{i_0}\\i_0\neq i
$$

Here if $i_0 = t$ runs over J, then we have the terms

$$
\sum_{t \in J} \frac{1}{p^{s_t}} - \sum_{\substack{i \in J \cup M_t \\ t \in J \\ i \neq t}} \frac{1}{p^{s_t + s_i}} + \sum_{\substack{i,j \in J \cup M_t \\ t \in J, i \neq t, j \neq t}} \frac{1}{p^{s_t + s_i + s_j}} - \dots \tag{28}
$$

If $L = \{i_0, i'_0\}$ with some fixed $i_0, i'_0 \in J$, $i_0 < i'_0$, which are not adjacent, then obtain, with $M = M_{i_0, i'_0} := N(\{i_0, i'_0\}) \setminus J$,

$$
\frac{1}{p^{s_{i_0}+s_{i'_0}}}\prod_{\substack{i\in J\cup M_{i_0,i'_0}\\i\neq i_0,i'_0}}\left(1-\frac{1}{p^{s_i}}\right)=\frac{1}{p^{s_{i_0}+s_{i'_0}}}-\sum_{\substack{i\in J\cup M_{i_0,i'_0}\\i\neq i_0,i'_0}}\frac{1}{p^{s_{i_0}+s_{i'_0}+s_i}}+\cdots
$$
\n(29)

If $i_0 = t$, $i'_0 = v$ run over J, then we obtain from [\(29\)](#page-12-0),

$$
\sum_{\substack{t,v \in J \\ t < v \\ t,v \text{ not adjacent}}} \frac{1}{p^{s_t+s_v}} - \sum_{\substack{i \in J \cup M_{t,v} \\ t,v \in J \text{ not adjacent}}} \frac{1}{p^{s_t+s_v+s_i}} + \cdots \tag{30}
$$

Putting together (27) , (28) and (30) we obtain the sum S, where

$$
S = 1 - \sum_{i \in J} \frac{1}{p^{s_i}} + \sum_{i,j \in J, i < j} \frac{1}{p^{s_i + s_j}} + \sum_{t \in J} \frac{1}{p^{s_t}} - \sum_{\substack{i \in J \cup M_t \\ t \in J \\ i \neq t}} \frac{1}{p^{s_t + s_i}}
$$
\n
$$
+ \sum_{\substack{t, v \in J \\ t < v \\ t, v \text{ not adjacent} \\ i, t \text{ adjacent}}} \frac{1}{p^{s_t + s_v}} \pm \text{ other terms}
$$
\n
$$
= 1 - \sum_{\substack{i, t \in J \\ i, t \text{ adjacent}}} \frac{1}{p^{s_t + s_i}} \pm \text{ other terms},
$$

where the terms $\pm 1/p^i$ with $i \in J$ cancel out. Also the terms $\pm 1/p^{s_i+s_j}$ with $i, j \in J$ (each appearing twice) cancel out, excepting when i, j are adjacent. Here for the "other terms", including the terms obtained if L has at least three elements, the exponents of p are sums of at least three distinct values s_i , s_j , s_ℓ with $i, j, \ell \in I$.

Hence the infinite product [\(26\)](#page-11-0) is absolutely convergent provided the given condition. \Box

Remark 13. It turns out that the function $\mu * \delta_G$ is multiplicative (in general not symmetric in the variables) and for all prime powers $p^{\nu_1}, \ldots, p^{\nu_k}$,

$$
(\mu * \delta_G)(p^{\nu_1}, \dots, p^{\nu_k}) = \begin{cases} 1, & \text{if } \nu_1 = \dots = \nu_k = 0; \\ c(\nu_1, \dots, \nu_k), & \text{if } \nu_1, \dots, \nu_k \in \{0, 1\}, j := \nu_1 + \dots + \nu_k \ge 2; \ (31) \\ 0, & \text{otherwise}, \end{cases}
$$

where $c(\nu_1, \ldots, \nu_k)$ are some integers, depending on ν_1, \ldots, ν_k , but not on p.

Note that $(\mu * \delta_G)(p^{\nu_1}, \ldots, p^{\nu_k}) = 0$ provided that $\nu_i \geq 2$ for at least one $1 \leq i \leq k$, or $\nu_1, \ldots, \nu_k \in \{0, 1\}$ and $\nu_1 + \cdots + \nu_k = 1$. If $\nu_1, \ldots, \nu_k \in \{0, 1\}$ and $\nu_1 + \cdots + \nu_k = 2$, say $\nu_{i_0} = \nu_{i'_0} = 1$ and $\nu_i = 0$ for $i \neq i_0, i'_0$, then $(\mu * \delta_G)(p^{\nu_1}, \dots, p^{\nu_k}) = -1$ if i_0 and i'_0 are adjacent in the graph G and 0 otherwise.

Proof of Theorem [9](#page-9-0)*.* Write

$$
\sum_{n_1,\dots,n_k \le x} \delta_G(n_1,\dots,n_k) = \sum_{n_1,\dots,n_k \le x} \sum_{d_1|n_1,\dots,d_k|n_k} (\mu * \delta_G)(d_1,\dots,d_k)
$$

\n
$$
= \sum_{d_1,\dots,d_k \le x} (\mu * \delta_G)(d_1,\dots,d_k) \left[\frac{x}{d_1} \right] \cdots \left[\frac{x}{d_k} \right]
$$

\n
$$
= \sum_{d_1,\dots,d_k \le x} (\mu * \delta_G)(d_1,\dots,d_k) \left(\frac{x}{d_1} + O(1) \right) \cdots \left(\frac{x}{d_k} + O(1) \right)
$$

\n
$$
= x^k \sum_{d_1,\dots,d_k \le x} \frac{(\mu * \delta_G)(d_1,\dots,d_k)}{d_1 \cdots d_k} + R_k(x), \tag{32}
$$

with

$$
R_k(x) \ll \sum_{u_1,\dots,u_r} x^{u_1+\dots+u_k} \sum_{d_1,\dots,d_k \leq x} \frac{|(\mu * \delta_G)(d_1,\dots,d_k)|}{d_1^{u_1}\cdots d_k^{u_k}},
$$

where the first sum is over $u_1, \ldots, u_k \in \{0,1\}$ such that at least one u_i is 0. Let u_1, \ldots, u_k be fixed and assume that $u_{i_0} = 0$. Since $(x/d_i)^{u_i} \le x/d_i$ for every $i \ (1 \le i \le k)$ we have

$$
A := x^{u_1 + \dots + u_k} \sum_{d_1, \dots, d_k \le x} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)|}{d_1^{u_1} \cdots d_k^{u_k}}
$$

\n
$$
\le x^{k-1} \sum_{d_1, \dots, d_k \le x} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)|}{\prod_{1 \le i \le k, i \ne i_0} d_i}
$$

\n
$$
\le x^{k-1} \prod_{p \le x} \sum_{\nu_1, \dots, \nu_k = 0}^{\infty} \frac{|(\mu * \delta_G)(p^{\nu_1}, \dots, p^{\nu_k})|}{p^{\sum_{1 \le i \le k, i \ne i_0} \nu_i}}
$$

\n
$$
= x^{k-1} \prod_{p \le x} \left(1 + \frac{c_{i_0,1}}{p} + \frac{c_{i_0,2}}{p^2} + \dots + \frac{c_{i_0,k-1}}{p^{k-1}}\right), \tag{33}
$$

cf. [\(31\)](#page-13-0), where $c_{i_0,j}$ ($1 \leq j \leq k-1$) are certain non-negative integers. Here $c_{i_0,1} = \deg(i_0)$, the degree of i_0 , according to Remark [13.](#page-13-1) We obtain that

$$
A \ll x^{k-1} \prod_{p \le x} \left(1 + \frac{1}{p} \right)^{\deg(i_0)} \ll x^{k-1} (\log x)^{\deg(i_0)}
$$

by Mertens' theorem. This shows that

$$
R_k(x) \ll x^{k-1} (\log x)^{\max \deg(i_0)}.
$$
\n
$$
(34)
$$

Furthermore, for the main term of [\(32\)](#page-13-2) we have

$$
\sum_{d_1,\dots,d_k \le x} \frac{(\mu * \delta_G)(d_1,\dots,d_k)}{d_1 \cdots d_k} - \sum_{\emptyset \ne I \subseteq \{1,\dots,k\}} \frac{(\mu * \delta_G)(d_1,\dots,d_k)}{d_1 \cdots d_k} - \sum_{\emptyset \ne I \subseteq \{1,\dots,k\}} \sum_{\substack{d_i > x, i \in I \\ d_j \le x, j \notin I}} \frac{(\mu * \delta_G)(d_1,\dots,d_k)}{d_1 \cdots d_k},\tag{35}
$$

where the series is convergent by Theorem [7](#page-8-0) and its sum is $D(\mu * \delta_G; 1, \ldots, 1) = A_G$.

Let I be fixed with $|I| = t$. We estimate the sum

$$
B := \sum_{\substack{d_i > x, i \in I \\ d_j \le x, j \notin I}} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)|}{d_1 \cdots d_k}.
$$

Case I. Assume that $|I| = t \geq 3$. If $0 < \varepsilon < 1/2$, then

$$
B = \sum_{\substack{d_i > x, i \in I \\ d_j \le x, j \notin I}} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)| \prod_{i \in I} d_i^{\varepsilon - 1/2}}{\prod_{i \in I} d_i^{1/2 + \varepsilon} \prod_{j \notin I} d_j}
$$

$$
\leq x^{t(\varepsilon - 1/2)} \sum_{d_1, \dots, d_k = 1}^{\infty} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)|}{\prod_{i \in I} d_i^{1/2 + \varepsilon} \prod_{j \notin I} d_j}
$$

$$
\ll x^{t(\varepsilon - 1/2)},
$$

since the series is convergent (for $t \ge 1$). Using that $t(\varepsilon - 1/2) < -1$ for $0 < \varepsilon < (t-2)/(2t)$, here we need $t \geq 3$, we obtain $B \ll \frac{1}{x}$.

Case II. $t = 1$: Let $d_{i_0} > x$, $d_i \leq x$ for $i \neq i_0$, and consider a prime p. If $p \mid d_i$ for some $i \neq i_0$, then $p \leq x$. If $p \mid d_{i_0}$ and $p > x$, then $p \nmid d_i$ for every $i \neq i_0$, and $(\mu * \delta_G)(d_1, \ldots, d_k) = 0$, cf. Remark [13.](#page-13-1) Hence it is enough to consider the primes $p \leq x$. We deduce

$$
B < \frac{1}{x} \sum_{\substack{d_{i_0} > x \\ d_i \le x, i \ne i_0}} \frac{|(\mu * \delta_G)(d_1, ..., d_k)|}{\prod_{i \ne i_0} d_i}
$$

$$
\le \frac{1}{x} \prod_{p \le x} \sum_{\substack{\nu_1, ..., \nu_k = 0}}^{\infty} \frac{|(\mu * \delta_G)(p^{\nu_1}, ..., p^{\nu_k})|}{p^{\sum_{i \ne i_0} \nu_i}}
$$

$$
\ll \frac{1}{x} (\log x)^{\max \deg(i_0)},
$$

similar to the estimate (34) .

Case III. $t = 2$: Let $d_{i_0} > x$, $d_{i'_0} > x$. We split the sum B into two sums, namely

$$
B = \sum_{\substack{d_{i_0} > x, d_{i'_0} > x \\ d_i \leq x, i \neq i_0, i'_0}} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)|}{d_1 \cdots d_k}
$$

\n
$$
= \sum_{\substack{d_{i_0} > x^{3/2}, d_{i'_0} > x \\ d_i \leq x, i \neq i_0, i'_0}} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)|}{d_1 \cdots d_k} + \sum_{\substack{x^{3/2} \geq d_{i_0} > x, d_{i'_0} > x \\ d_i \leq x, i \neq i_0, i'_0}} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)|}{d_1 \cdots d_k}
$$

\n
$$
=: B_1 + B_2,
$$

say, where

$$
B_1 = \sum_{\substack{d_{i_0} > x^{3/2}, d_{i'_0} > x \\ d_i \le x, i \ne i_0, i'_0}} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)|}{d_{i_0}^{1/3} \prod_{i \ne i_0} d_i} \frac{1}{d_{i_0}^{2/3}}
$$

$$
< \frac{1}{x} \sum_{d_1, \dots, d_k = 1}^{\infty} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)|}{d_{i_0}^{1/3} \prod_{i \ne i_0} d_i}
$$

$$
\ll \frac{1}{x},
$$

since the latter series is convergent. Furthermore,

$$
B_2 < \frac{1}{x} \sum_{\substack{x^{3/2} \ge d_{i_0}, d_{i'_0} > x \\ d_i \le x, i \ne i_0, i'_0}} \frac{|(\mu * \delta_G)(d_1, \dots, d_k)|}{\prod_{i \ne i'_0} d_i},
$$

and consider a prime p. For the last sum, if $p | d_i$ for some $i \neq i'_0$ then $p \leq x^{3/2}$. If $p | d_{i'_0}$
and $p > x^{3/2}$, then $p \nmid d_i$ for every $i \neq i'_0$ and $(\mu * \delta_G)(d_1, \ldots, d_r) = 0$, cf. Remark [13.](#page-13-1) Hence

it is enough to consider the primes $p \leq x^{3/2}$. We deduce, similar to [\(33\)](#page-13-3), [\(34\)](#page-14-0) that

$$
B_2 < \frac{1}{x} \prod_{p \le x^{3/2}} \sum_{\nu_1, \dots, \nu_r=0}^{\infty} \frac{|(\mu * \delta_G)(p^{\nu_1}, \dots, p^{\nu_k})|}{p^{\sum_{i \ne i'_0} \nu_i}} \ll \frac{1}{x} (\log x^{3/2})^{d_G} \ll \frac{1}{x} (\log x)^{d_G},
$$

with $d_G = \max_{i \in G} \deg(i)$.

Hence given any $|I| = t \ge 1$ we have $B \ll \frac{1}{x} (\log x)^{d_G}$. Therefore, by [\(35\)](#page-14-1),

$$
\sum_{d_1,\dots,d_r \le x} \frac{(\mu * \delta_G)(d_1,\dots,d_k)}{d_1 \cdots d_k} = A_G + O(x^{-1} (\log x)^{d_G}). \tag{36}
$$

The proof is complete by putting together [\(32\)](#page-13-2), [\(34\)](#page-14-0) and [\(36\)](#page-16-1).

 \Box

Proof of Theorem [11](#page-9-1). According to identities [\(16\)](#page-6-1) and [\(18\)](#page-7-1) we have

$$
\sum_{n_1,\dots,n_k \le x} \beta_r(n_1,\dots,n_k) = \sum_{j=r}^{k(k-1)/2} (-1)^{j-r} {j \choose r} \sum_{\substack{E \subseteq V^{(2)} \\ |E|=j}} \sum_{n_1,\dots,n_k \le x} \delta_G(n_1,\dots,n_k), \qquad (37)
$$

and

$$
\sum_{n_1,\dots,n_k \le x} \beta'_r(n_1,\dots,n_k) = \sum_{j=r}^{k(k-1)/2} (-1)^{j-r} {j-1 \choose r-1} \sum_{\substack{E \subseteq S \ n_1,\dots,n_k \le x}} \sum_{n_1,\dots,n_k \le x} \delta_G(n_1,\dots,n_k). \tag{38}
$$

Now for the inner sums $\sum_{n_1,\dots,n_k\leq x}\delta_G(n_1,\dots,n_k)$ of identities [\(37\)](#page-16-2) and [\(38\)](#page-16-3) use asymp-totic formula [\(8\)](#page-3-3). For the complete coprimality graph with $E = V^{(2)}$, corresponding to all coprimality conditions, the error term is $O(x^{k-1}(\log x)^{k-1})$, and this is the final error term in both cases. This proves asymptotic formulas (21) and (22) . \Box

Proof of Corollary [12](#page-10-0). Apply formula [\(21\)](#page-9-5) for $r = 0$, with the constant $C_{k,0}$ given by [\(23\)](#page-9-3). \Box

6 Examples

To illustrate identities [\(19\)](#page-8-1) and [\(20\)](#page-9-2) let us work out the following examples.

Example 14. Let $k = 4$ and $G = (V, E)$ with $V = \{1, 2, 3, 4\}$, $E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}\}$ $\{4, 1\}$, that is, $gcd(n_1, n_2) = 1$, $gcd(n_2, n_3) = 1$, $gcd(n_3, n_4) = 1$, $gcd(n_4, n_1) = 1$. See Figure [1.](#page-17-0)

Here $I = \{1, 2, 3, 4\}$ and choose the minimum vertex cover $J = \{1, 3\}$. According to [\(19\)](#page-8-1),

$$
D'_{G}(s_1, s_2, s_3, s_4) = \prod_{p} \left(\sum_{L \subseteq J} \prod_{\ell \in L} \frac{1}{p^{s_{\ell}}} \prod_{i \in (J \setminus L) \cup (N(L) \setminus J)} \left(1 - \frac{1}{p^{s_i}} \right) \right)
$$
(39)

Figure 1: Graph of Example [14](#page-16-4)

	N(L)	$(J \setminus L) \cup (N(L) \setminus J)$	
		$\{1,3\}$	$(1-x_1)(1-x_3)$
{1}	$\{2,4\}$	$\{2,3,4\}$	$x_1(1-x_2)(1-x_3)(1-x_4)$
$\{3\}$	$\{2,4\}$	$\{1, 2, 4\}$	$x_3(1-x_1)(1-x_2)(1-x_4)$
${1,3}$	$\{2,4\}$	$\{2,4\}$	$x_1x_3(1-x_2)(1-x_4)$

Table 1: Terms of the sum in Example [14](#page-16-4)

Write the terms of the sum in [\(39\)](#page-16-5), see Table [1,](#page-17-1) where $x_i = 1/p^{s_i}$ ($1 \le i \le 4$). Note that all subsets of J are independent.

We obtain

$$
D'_{G}(s_{1},...,s_{4}) = \prod_{p} (S_{\emptyset} + S_{\{1\}} + S_{\{3\}} + S_{\{1,3\}})
$$

=
$$
\prod_{p} \left(1 - \frac{1}{p^{s_{1}+s_{2}}} - \frac{1}{p^{s_{1}+s_{4}}} - \frac{1}{p^{s_{2}+s_{3}}} - \frac{1}{p^{s_{3}+s_{4}}} + \frac{1}{p^{s_{1}+s_{2}+s_{3}}} + \frac{1}{p^{s_{1}+s_{2}+s_{4}}} + \frac{1}{p^{s_{1}+s_{2}+s_{4}}} + \frac{1}{p^{s_{1}+s_{2}+s_{3}+s_{4}}} - \frac{1}{p^{s_{1}+s_{2}+s_{3}+s_{4}}}}\right).
$$

Observe that the terms $\pm 1/p^i$ with $i \in J = \{1,3\}$ cancel out, and we have the terms $-1/p^{s_i+s_j}$ with $\{i,j\}\in E$, according to the edges of G. Hence the infinite product is absolutely convergent provided that $\Re(s_{i_1} + \cdots + s_{i_j}) > 1$ for every $i_1, \ldots, i_j \in \{1, 2, 3, 4\}$ with $i_1 < \cdots < i_j, 2 \leq j \leq 4$.

The asymptotic density of 4-tuples $(n_1, \ldots, n_4) \in \mathbb{N}^4$ such that $gcd(n_i, n_j) = 1$ with $\{i, j\} \in E$ is

$$
D'_G(1\dots,1)=\prod_p\left(1-\frac{4}{p^2}+\frac{4}{p^3}-\frac{1}{p^4}\right).
$$

This asymptotic density has been obtained using identity [\(10\)](#page-3-2) by de Reyna and Heyman [\[2,](#page-20-1) Sect. 4].

Example 15. Now let $k = 7$ and $G = (V, E)$ with $V = \{1, 2, 3, 4, 5, 6, 7\}$ and

 $E = \{\{1, 2\}, \{1, 3\}, \{2, 4\}, \{2, 5\}, \{3, 4\}, \{4, 5\}\},\$

that is, $gcd(n_1, n_2) = 1$, $gcd(n_1, n_3) = 1$, $gcd(n_2, n_4) = 1$, $gcd(n_2, n_5) = 1$, $gcd(n_3, n_4) = 1$, $gcd(n_4, n_5) = 1$. See Figure [2.](#page-18-0)

Figure 2: Graph of Example [15](#page-17-2)

Here $I = \{1, 2, 3, 4, 5\}$, since the variables n_6, n_7 do not appear in the constraints. Choose the minimum vertex cover $J = \{1, 2, 4\}$. Consider the subsets L of J and write the corresponding terms S_L of the sum in [\(19\)](#page-8-1), see Table [2,](#page-18-1) where $x_i = p^{-s_i}$ ($1 \le i \le 5$). The subsets $L = \{1, 2\}$ and $L = \{2, 4\}$ do not appear in the sum, since 1, 2 and 2, 4 are adjacent vertices.

	N(L)	$(J \setminus L) \cup (N(L) \setminus J)$	
Ø	V)	$\{1,2,4\}$	$(1-x_1)(1-x_2)(1-x_4)$
1 I F	$\{3\}$	$\{2,3,4\}$	$x_1(1-x_2)(1-x_3)(1-x_4)$
$\{2\}$	$\{5\}$	$\{1,4,5\}$	$x_2(1-x_1)(1-x_4)(1-x_5)$
$\{4\}$	$\{3,5\}$	$\{1, 2, 3, 5\}$	$x_4(1-x_1)(1-x_2)(1-x_3)(1-x_5)$
$\{1,4\}$ $\{3,5\}$		$\{2,3,5\}$	$x_1x_4(1-x_2)(1-x_3)(1-x_5)$

Table 2: Terms of the sum in Example [15](#page-17-2)

It follows that

$$
D'_{G}(s_{1},...,s_{7}) = \prod_{p} (S_{\emptyset} + S_{\{1\}} + S_{\{2\}} + S_{\{4\}} + S_{\{1,4\}})
$$

=
$$
\prod_{p} \left(1 - \frac{1}{p^{s_{1}+s_{2}}} - \frac{1}{p^{s_{1}+s_{3}}} - \frac{1}{p^{s_{2}+s_{4}}} - \frac{1}{p^{s_{2}+s_{5}}} - \frac{1}{p^{s_{3}+s_{4}}} - \frac{1}{p^{s_{4}+s_{5}}} + \frac{1}{p^{s_{1}+s_{2}+s_{3}}} + \frac{1}{p^{s_{1}+s_{2}+s_{4}}} + \frac{1}{p^{s_{1}+s_{2}+s_{5}}} + \frac{1}{p^{s_{1}+s_{3}+s_{4}}} + \frac{1}{p^{s_{2}+s_{3}+s_{4}}} + \frac{1}{p^{s_{2}+s_{3}+s_{4}}} - \frac{1}{p^{s_{2}+s_{3}+s_{4}+s_{5}}} - \frac{1}{p^{s_{2}+s_{3}+s_{4}+s_{5}}} - \frac{1}{p^{s_{2}+s_{3}+s_{4}+s_{5}}} - \frac{1}{p^{s_{2}+s_{3}+s_{4}+s_{5}}} - \frac{1}{p^{s_{2}+s_{3}+s_{4}+s_{5}}} \right).
$$

Observe that the terms $\pm 1/p^i$ with $i, j \in \{1, 2, 4\}$ cancel out, and we have the terms $-1/p^{s_i+s_j}$ with $\{i,j\} \in E$, according to the edges of G. Here the infinite product is absolutely convergent provided that $\Re(s_{i_1} + \cdots + s_{i_j}) > 1$ for every $i_1, \ldots, i_j \in \{1, 2, 3, 4, 5\}$ with $i_1 < \cdots < i_j, 2 \le j \le 5.$

The asymptotic density of 7-tuples $(n_1, \ldots, n_7) \in \mathbb{N}^7$ with the corresponding constraints $gcd(n_i, n_j) = 1$ with $\{i, j\} \in E$ is

$$
D'_G(1\dots,1)=\prod_p\left(1-\frac{6}{p^2}+\frac{8}{p^3}-\frac{3}{p^4}\right).
$$

Application of identity [\(10\)](#page-3-2) by de Reyna and Heyman [\[2\]](#page-20-1) is more laborious here, since G has six edges and there are $2^6 = 64$ subsets of E.

Example 16. Now consider the case of pairwise coprime integers with $E = \{\{i, j\} : 1 \leq j \leq k\}$ $i < j \leq k$. For $k = 4$ the graph is in Figure [3.](#page-19-0)

Figure 3: Graph to Example [16](#page-19-1)

Here $I = \{1, \ldots, k\}$ and choose the minimum vertex cover $J = \{1, \ldots, k-1\}$. The only independent subsets L of J are $L = \emptyset$ and $L = \{1\}$, ..., $L = \{k-1\}$ having one single element.

If $L = \emptyset$, then $N(L) = \emptyset$, $(J \setminus L) \cup (N(L) \setminus J) = J$ and obtain, with $x_i = p^{-s_i}$ $(1 \le i \le k)$,

$$
S_{\emptyset} = (1-x_1)\cdots(1-x_{k-1}).
$$

If $L = \{\ell\}, \ell \in J$, then $N(L) = \{k\}, \left(J \setminus L\right) \cup \left(N(L) \setminus J\right) = \{1, \ldots, k\} \setminus \{\ell\}$, and have

$$
S_{\{\ell\}} = x_{\ell} \prod_{\substack{j=1 \ j \neq \ell}}^{k} (1 - x_j).
$$

We need to evaluate the sum

$$
S := S_{\emptyset} + \sum_{\ell=1}^{k-1} S_{\{\ell\}}.
$$
\n(40)

Let $e_j(x_1,\ldots,x_k) = \sum_{1 \leq i_1 < \ldots < i_j \leq k} x_{i_1} \cdots x_{i_j}$ denote the elementary symmetric polynomials in x_1, \ldots, x_k of degree j $(j \geq 0)$. By convention, $e_0(x_1, \ldots, x_k) = 1$.

Consider the polynomial

$$
P(x) = \prod_{j=1}^{k} (x - x_j) = \sum_{j=0}^{k} (-1)^j e_j(x_1, \dots, x_k) x^{k-j}.
$$

Its derivative is

$$
P'(x) = \sum_{j=0}^{k-1} (-1)^j (k-j) e_j(x_1, \dots, x_k) x^{k-j-1},
$$

and on the other hand

$$
P'(x) = \sum_{j=1}^{k} \prod_{\substack{i=1 \\ i \neq j}}^{k} (x - x_i).
$$

We obtain that the sum [\(40\)](#page-19-2) is

$$
S = \prod_{j=1}^{k-1} (1 - x_j) + \sum_{j=1}^{k-1} x_j \prod_{\substack{i=1 \ i \neq j}}^k (1 - x_i)
$$

=
$$
\sum_{j=1}^k \prod_{\substack{i=1 \ i \neq j}}^k (1 - x_i) - (k - 1) \prod_{j=1}^k (1 - x_j)
$$

=
$$
P'(1) - (k - 1)P(1)
$$

=
$$
1 + \sum_{j=2}^k (-1)^{j-1} (j - 1) e_j(x_1, ..., x_k),
$$

that is,

$$
\sum_{\substack{n_1,\ldots,n_k=1\\ \gcd(n_i,n_j)=1, 1\leq i
$$

For $s_1 = \cdots = s_k = 1$ this gives identity [\(2\)](#page-1-2), representing the asymptotic density of k-tuples with pairwise relatively prime components.

References

- [1] M. Aigner, *A Course in Enumeration*, Graduate Texts in Mathematics, Vol. 238, Springer, 2007.
- [2] J. Arias de Reyna and R. Heyman, Counting tuples restricted by pairwise coprimality conditions, *J. Integer Sequences* 18 (2015), [Article 15.10.4.](https://cs.uwaterloo.ca/journals/JIS/VOL18/Heyman/heyman6.html)
- [3] J.-Y. Cai and E. Bach, On testing for zero polynomials by a set of points with bounded precision, *Theoret. Comp. Sci.* 296 (2003), 15–25.
- [4] J. Christopher, The asymptotic density of some k-dimensional sets, *Amer. Math. Monthly* 63 (1956), 399–401.
- [5] H. Delange, On some sets of pairs of positive integers, *J. Number Theory* 1 (1969), 261–279.
- [6] J. L. Fernández and P. Fernández, Divisibility properties of random samples of integers, *Rev. R. Acad. Cienc. Exactas F´ıs. Nat. Ser. A Mat. RACSAM* 115 (2021), no. 1, Paper No. 26.
- [7] R. Heyman, Pairwise non-coprimality of triples, arXiv preprint arXiv:1309.5578 [math.NT], May 7 2014. Available at <https://arxiv.org/abs/1309.5578>.
- [8] J. Hu, The probability that random positive integers are k-wise relatively prime, *Int. J. Number Theory* 9 (2013), 1263–1271.
- [9] J. Hu, Pairwise relative primality of positive integers, ArXiv preprint, arXiv:1406.3113 [math.NT], June 12 2014. Available at <https://arxiv.org/abs/1406.3113>.
- [10] P. Moree, Counting carefree couples, ArXiv preprint arXiv:math/0510003 [math.NT], September 30 2005. Revision, July 4 2014. Available at [https://arxiv.org/abs/math/](https://arxiv.org/abs/math/0510003) [0510003](https://arxiv.org/abs/math/0510003).
- [11] P. Moree, Counting carefree couples, *Mathematics Newsletter* 24 (2014), no. 4, 103–110.
- [12] J. E. Nymann, On the probability that k positive integers are relatively prime, *J. Number Theory* 4 (1972), 469–473.
- [13] R. P. Stanley, *Enumerative Combinatorics*, Vol. 1, Cambridge Univ. Press, Cambridge, 1997.
- [14] L. Tóth, On the asymptotic densities of certain subsets of \mathbb{N}^k , Riv. Mat. Univ. Parma (6) 4 (2001), 121–131.
- [15] L. T´oth, The probability that k positive integers are pairwise relatively prime, *Fibonacci Quart.* 40 (2002), 13–18.
- [16] L. Tóth, Multiplicative arithmetic functions of several variables: a survey, in Th. M. Rassias and P. Pardalos, eds., *Mathematics Without Boundaries, Surveys in Pure Mathematics*, Springer, 2014, pp. 483–514.
- [17] L. Tôth, Counting r-tuples of positive integers with k-wise relatively prime components, *J. Number Theory* 166 (2016), 105–116.
- [18] N. Ushiroya, Mean-value theorems for multiplicative arithmetic functions of several variables, *Integers* 12 (2012), 989–1002.

2020 Mathematics Subject Classification: Primary 11A25; Secondary 11N25, 11N37, 05A15, 05C07.

Keywords: pairwise coprime integers, pairwise non-coprime integers, asymptotic density, asymptotic formula, multiplicative function of several variables, inclusion-exclusion principle, simple graph, vertex cover.

(Concerned with sequences [A229099,](https://oeis.org/A229099) [A256390,](https://oeis.org/A256390) [A256391,](https://oeis.org/A256391) and [A256392.](https://oeis.org/A256392))

Received March 19 2024; revised version received September 11 2024. Published in *Journal of Integer Sequences*, November 29 2024.

Return to [Journal of Integer Sequences home page.](https://cs.uwaterloo.ca/journals/JIS/)