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Abstract

Practical numbers are positive integers n such that every positive integer less than
or equal to n can be written as a sum of distinct positive divisors of n. We show that
all positive integers can be written as a sum of a practical number and a triangular
number, resolving a conjecture by Sun. We also show that all sufficiently large natural
numbers can be written as a sum of a practical number and two s-gonal numbers.

1 Introduction

By a natural number, we mean a positive integer. Practical numbers, introduced by Srini-
vasan in [9], are natural numbers n such that every natural number less than or equal to n can
be written as a sum of distinct positive divisors of n. The sequence of practical numbers can
also be found on the On-Line Encyclopedia of Integer Sequences (OEIS) (see the sequence
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A005153 in the OEIS [7]). Stewart [10] and Sierpiriski [6] proved the characterization that a
natural number n > 2 with prime factorization n = p{'p5? - - - p*, where p; < py < -+ < py,
is practical if and only if p; = 2 and

pi <o (pips - opiy) +1

for all 2 < j <k, where o(-) denotes the sum of divisors.

There have been many works on various additive representations of natural numbers
involving practical numbers. Melfi [4] showed that every even natural number is a sum of
two practical numbers. Pomerance and Weingartner [5] proved that every sufficiently large
odd number can be written as a sum of a practical number and a prime. Somu et al. [§]
proved that all natural numbers congruent to 1 modulo 8 are expressible as a sum of a
practical number and a square. In this paper, we derive results involving sums of practical
and polygonal numbers.

In this article, we consider 0 as a triangular number. In Section 3, we prove that all
natural numbers can be written as a sum of a practical number and a triangular number,
resolving the conjecture proposed by Sun (see the sequence A208244 in the OEIS [7]). We
prove the following theorem.

Theorem 1. Every natural number can be written as a sum of a practical number and a
triangular number.

Section 4 focuses on additive representations of practical and polygonal numbers more
generally. We prove that all sufficiently large natural numbers can be written as a sum of a
practical number and two s-gonal numbers. We prove the following theorem.

Theorem 2. Let s be a natural number greater than 3. Then there exists a natural number
N(s) such that all natural numbers greater than N(s) can be written as a sum of a practical
number and two s-gonal numbers.

Finally, in Section 5, we propose two conjectures regarding additive representations of
natural numbers involving practical numbers.

2 Notation

We use the following notation:
N: the set of positive integers.
Nj: the set of non-negative integers.
o(+): the sum of positive divisors of a natural number.

=: We say a = b (mod n) if n divides a — b.


https://oeis.org/A005153
https://oeis.org/A208244

ged(+, +): the greatest common divisor of two integers.

|-]: the floor function of a real number, which is the largest integer not exceeding that
real number.

Ps(n): the n-th s-gonal number given by P,(n) = (s — 2)@ +n= w,
for s >3, n > 0.

O(-): We say f(x) = O(g(x)) if there exists a positive real number M such that
|f(z)] < Mg(x) for all sufficiently large .

3 Proof of Theorem 1

In this section, we prove that all natural numbers can be written as a sum of a practical
number and a triangular number, resolving the conjecture proposed by Sun (see the sequence
A208244 in the OEIS [7]). We require three lemmas to prove Theorem 1.

Lemma 3. Let m and n be natural numbers. There exists a natural number 1 < x < 2™ —1
such that
2> =8n+1 (mod 2™?).

Proof. See [8, Lemma 3.2] for proof. O

Lemma 4. If m is a practical number and n is a natural number such that n < o(m) + 1,
then mn is a practical number.

Proof. See [3, Corollary 1] for proof. O

Lemma 5. If x is an odd natural number, then % 18 a triangular number.

2_ k(k+1
% = (TJF) Hence, we can

is a triangular number. O]

Proof. As x = 2k + 1 for some non-negative integer k, we have
z2—1

conclude that 5

Now we prove Theorem 1.

Proof of Theorem 1. Let n be a natural number and m = |log,v/8n + 1|. By Lemma 3,
there exists a natural number z such that 1 < x < 2™ — 1 and 22 = 8n + 1 (mod 2m+2).
Since x < 2™ — 1 and m = |log, v/8n + 1|, we have 2 < 2™ < 8n + 1.

As 2?2 < 8n+1 and 22 = 8n + 1 (mod 2™"%), we have 8n + 1 — 2% = 2™"%s for some
natural number s. As m = |log, v/8n + 1], we have 2™2s < 8n + 1 < 222 which implies
that s < 2™,

Since 2™~ is a practical number and s < 2™ = ¢(2™"!)+1, by Lemma 4, we can conclude
that 2™ 's is a practical number. Notice that % is a triangular number, as x is an odd
natural number because 22 = 8n + 1 (mod 2™*2). Now, we have 8n + 1 — 2% = 225, or
equivalently n = 2m~1s + %. Since 2™~ !s is a practical number and % is a triangular
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number, we can conclude that n is a sum of a practical number and a triangular number.
Therefore, all natural numbers can be written as a sum of a practical number and a triangular
number. O

4 Proof of Theorem 2

In this section, we prove some results regarding additive representations of natural numbers
involving practical and polygonal numbers more generally. We require five lemmas to prove
Theorem 2.

Lemma 6. Let p be an odd prime, let n be a natural number, and let s be a natural number
greater than 3. There exist natural numbers x and y such that

Py(z) + Pi(y) = n (mod p).
Proof. If p | (s —2), then x = n and y = p satisfy

Py(x) + Pi(y) = n (mod p).
If pt(s—2), then

|{Ps(i) mod p:1<i SPH = ’{(n—PS(j)) modp:1<j gp}| = 1%1

This implies that
{Ps(i) mod p: 1 <i<p}n{(n—F(j)) modp:1<j<p}#a
Thus, there exist natural numbers x and y such that
Py(x) + Pi(y) = n (mod p).
O

Lemma 7. Let n be a natural number and s be a natural number greater than 3. There exist
natural numbers x and y such that

Py(x1) + Ps(y1) =n (mod 2)
for all natural numbers x1 = x (mod 4) and y; =y (mod 4).

Proof. If n is even, then (z,y) = (4,4) satisfies the condition above. If n is odd, then
(x,y) = (4, 1) satisfies the condition above. O

Lemma 8. Let p be a prime congruent to 1 modulo 4. For all natural numbers n and k,
there exist natural numbers x and y such that 2> + y?> =n (mod p*) and p {y.
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Proof. We will prove the lemma using mathematical induction on k. Let us first prove the
lemma for & = 1. Let n be any natural number. By [1, Theorem 84], we have

1
{i* mod p: 1 <i<p} =[{(n—j°) modpzlsjép}\:]%'

Hence
{i?modp:1<i<p}n{(n—j*)modp:1<j<p}+#a

Thus there exist natural numbers z and y such that
22 +y* =n (mod p).

If n # 0 (mod p), then x and y cannot both be multiples of p. Without loss of generality,
we can let p{y. Since p = 1 (mod 4), there exists a natural number @ such that a? + 1 =
0 (mod p) (see [1, Theorem 86]). So, we can conclude that z = a and y = 1 is a solution to
2?2 +y?> =0 (mod p) with p1y.

Now suppose that there exist natural numbers x and gy, such that

2 +y? =n (mod p*)
and p{ ys, where s > 1. Let [ be any natural number satisfying
22
I = (u) (2ys)™" (mod p),
ps
and let ys11 = ys + p°l. Now, as ys41 = ys (mod p®) and p 1 ys, we have p { ysr1. As
% + 2lys = 0 (mod p), we have
2 4y =2+ (ys + 07
=2 +y2 + 2p°lys + p*1?
=27 + y2 + 2p°ly, (mod p

2 2
n+p° (gﬁf—n + 2lys) (mod p**')

s+1)

=n (mod p*th).

Hence, by mathematical induction, for all natural numbers k, there exist natural numbers x
and y such that
2%+ y* = n (mod p¥)

and p1ty. O

Lemma 9. Let s be a natural number greater than 3. There exists an odd prime p not
dividing s — 2 such that for all k,n € N, there exist v,y € N such that

Py(z) + Py(y) = n (mod p").
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Proof. Let k and n be any natural numbers, and let p be a prime congruent to 1 modulo 4
such that p 1 (s — 2). Note that

8(s —2)Py(z) = (2(s — 2)x — (s — 4))* — (s — 4)*.
Since p = 1 (mod 4), by Lemma 8, there exist natural numbers zy and 7, such that
224 y2 = 8(s — 2)n + 2(s — 4)* (mod p").
Let x and y be natural numbers satisfying the congruences

r=2"(s—2)"(x0+s—4) (mod p")

and
y=2""s—2)"(yo +s—4) (mod p").
We have
8(s — 2)Py(z) + 8(s — 2)Py(y) = 22 + y2 — 2(s — 4)? (mod p*)
= 8(s — 2)n (mod p*).
Since ged(p*,8(s — 2)) = 1, we have P,(x) + P,(y) = n (mod p). O

Lemma 10. Let s be a natural number greater than 3, and let p;5) be the smallest prime for
which Lemma 9 holds. There exists a real number A(s) such that for all z > 1, we have

2PS(2pi(S)l‘)

12

< A(s).

Proof. Since 2P;(2p;(s)x) is a quadratic polynomial, we have

2P, (2pi(s)x)

o = O(1).
Hence, there exists a real number A(s) such that
2P,(2pi(s)x)
T SAG)
for all real numbers z > 1. (]

Now we are ready to give a proof of Theorem 2.

Proof of Theorem 2. Let p; denote the ¢-th prime, and let p;,) be the smallest prime for
which Lemma 9 holds. By Lemma 10, there exists a real number A(s) such that

2P3(2pi(s)$)
12

< A(s)



for all real numbers x > 1. Let 7 be the smallest natural number such that r > i(s) and

o(pip2---pr) > A(s)
Dip2-Pr

Such an r is well-defined, as the product [],
3] and [1, Theorem 19]). Let

(14 %) diverges (see [2, Chapter 7, Theorem

prime

N(s) = 2P,(2pips -+ - py).

Consider any natural number n greater than N(s). Let k be the largest natural number such
that

2P, (2p1ps - - 'pi(s)—lpf(s)l?i(s)ﬂ py) <
Let ng = 2p1ps - - -pi(s)_lpf(s)pi(s)ﬂ -+ p,. From the definition of k, we have

2Ps(nk) <n< QPS(pi(s)nk).

From Lemma 6, there exists a solution  mod p;, y mod p; to the equation Py(z) + Pi(y) =
n (mod p;) for 2 < i < r and i # i(s). From Lemma 7, there exists a solution = mod 2p,,
y mod 2p; to the equation Ps(x) + Ps(y) = n (mod p;). From Lemma 9, there exists a
solution x mod pf(s), y mod pf(s) to Ps(z) + Ps(y) = n (mod pf(s)). Hence, by the Chinese
remainder theorem, there exists a solution x mod nx, y mod n; to the equation

ny

P,(z) + Py(y) = n (mod ?)

Thus, there exist natural numbers z,y < ny such that

Pi(x) + Ps(y) =n (mod %)

This, together with the fact that n > 2P;(ny), implies that

2(n — Pu(z) — Pu(y))

e N.
Ny
Note that
2n — Pufx) ~ P(y)) _ 20 _ APy(pisyne)
n N N
By Lemma 10, we have
2P, (pisyn) < A(s)

Therefore, we have




Also, we have

k
(Tk) (p1p2 " Pi(s)-1Pi(s)Pi(s)+1 .pr) S o(pipa - py) > A(s)
Tk pip2- i(s)—lpf(s)pi(s)—&-l e Dr DPiP2 Dy

This implies (S)"k < o(%). Therefore, we have

2(n — PS(Z — Pi(y)) < A(Z)"k < a(%)

Note that ”2—’“ = pips-- -pi(s),lpf(s)pi(s)ﬂ ---p, is a practical number by the characterization
of practical numbers (see [10, Section 3]). Thus, by Lemma 4, we can conclude that

2(n — Py(z) — P(y)) (@
N 2

) =n—Pix) - P(y)

is a practical number. Therefore, the natural number n can be written as a sum of a practical
number and two s-gonal numbers. O

In Theorem 1, we have proved that all natural numbers can be written as a sum of a
triangular number and a practical number. In Theorem 2, we have proved that for all s > 3,
all sufficiently large natural numbers can be written as a sum of a practical number and two
s-gonal numbers. Now we show that there are infinitely many s > 3 for which we cannot
write all sufficiently large natural numbers as a sum of a practical number and an s-gonal
number. We also show that as s tends to infinity, the number of natural numbers that cannot
be written as a sum of a practical number and two s-gonal numbers tends to infinity. Hence,
we cannot drop “sufficiently large” from the statement of Theorem 2. We will require one
lemma to prove these claims.

Lemma 11. If q is a practical number such that q is neither divisible by 3 nor by 4, then
qgq=1orqg=2.

Proof. For the sake of contradiction, assume that ¢ > 2. Since ¢ > 2 and 4 1 ¢, the natural
number ¢ should have at least one odd prime divisor. Let p be the smallest odd prime
divisor of q. As 3 1 ¢, we have p > 5. As p > 5 > 0(2) + 1, by the characterization of
practical numbers, we can conclude that ¢ is not practical (see [10, Section 3|). This is a
contradiction. O]

Proposition 12.

(a) If s =0 (mod 12) or s =4 (mod 12), then infinitely many natural numbers cannot be
written as a sum of a practical number and an s-gonal number.

(b) Let E(s) be the number of natural numbers that cannot be written as a sum of a practical
number and two s-gonal numbers. Then we have

lim E(s) = oc.

S§—00



Proof.
(a) If s =0 (mod 12) or s =4 (mod 12), then

-2
Pi(n) = i n? 4+

5 5 n = an®+bn,

where a = % and b = %. Note that a is odd and is not divisible by 3. Also, note

that b is even. Hence, as

for all n € Ny, we have

and
2

P,(n) #Za! (2 — %) (mod 4).

This is because 2 is a quadratic non-residue modulo 3 and modulo 4. Let r be a natural
number such that

b2
r=a! <2 — Z) (mod 12),

and let = be any positive real number. Let k be a natural number congruent to r
modulo 12 and not exceeding x such that k = Py;(m) + ¢ for some m € Ny and some
practical number ¢. Since k = r (mod 12), we have 31 (k— Ps(m)) and 4 { (k— Ps(m)).
Hence, by Lemma 11, we can conclude that ¢ = 1 or ¢ = 2, and thus

ke{P;(n)+1:neNgand Ps(n)+1 <z} U{Pi(n)+2:n€Nyand Ps(n)+2 <z}

Since

{Ps(n)+1:n¢€Ngand Py(n)+1 <z} +
[{Ps(n) +2:n €Ny and Py(n) +2 < z}| = O(Vz),

there are at most O(y/z) natural numbers not exceeding = that are congruent to r
modulo 12 and expressible as a sum of a practical number and an s-gonal number.
Since there are 5 + O(1) natural numbers not exceeding x that are congruent to r
modulo 12, there are at least 55 4+ O(y/z) natural numbers not exceeding z that are
congruent to » modulo 12 and not expressible as a sum of a practical number and an
s-gonal number. Therefore, infinitely many natural numbers cannot be written as a

sum of a practical number and an s-gonal number if s = 0 (mod 12) or s = 4 (mod 12).
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(b) Let us count the number of natural numbers less than s that can be represented as a

sum of a practical number and two s-gonal numbers. Only 0 and 1 are s-gonal numbers
less than s. Thus, if n < s is a sum of a practical number and two s-gonal numbers,
then

n € {P +i: P is practical, P < s, and 7 € {0,1,2}}.

From a result of Weingartner [12, Theorem 1], it follows that

‘{P—i—z’ : P is practical, P < s, and i € {0,1,2}}| :O(l i )
og s

Hence, at least s + O(lofé -) natural numbers less than s cannot be written as a sum of

a practical number and two s-gonal numbers. Therefore, we have

lim E(s) = oo.

S§—00

]

Conjectures on sums of practical and polygonal num-
bers

In this section, we propose a few conjectures on some additive representations involving
practical and polygonal numbers based on numerical computations. All of the code for the
conjectures below, written in Python, can be found on Github [11].

For each natural number s > 3, let n, be the number of natural numbers below 10® that
cannot be written as a sum of a practical number and an s-gonal number, and let N, be
the largest number below 10® that cannot be written as a sum of a practical number and an
s-gonal number. We have the following conjecture based on Table 1.

s N N, s N N, s N N,
4117929061 | 99999998 9 186 325808 14 79 106878
) 13 2671 10 341 13613213 15 767 1486748
6 101 1332329 11 68 105712 16 | 16665797 | 99999998
7 73 79445 12 | 16663689 | 99999998 17 106 9314

8 414 4005819 13 609 1612172 18 1020 8541224

Table 1: Data regarding the sum of a practical number and an s-gonal number.

Conjecture 13. If s > 3, s 0 (mod 12), and s # 4 (mod 12), then all sufficiently large
natural numbers can be written as a sum of a practical number and an s-gonal number.

10



For s € {4,5,6,7,8,10}, we also computationally verified that all natural numbers below
10® are expressible as a sum of a practical number and two s-gonal numbers. We have the fol-
lowing conjecture, which is a stronger version of Theorem 2, for the cases s € {4,5,6,7,8,10}.

Conjecture 14. For s € {4,5,6,7,8,10}, all natural numbers can be written as a sum of a
practical number and two s-gonal numbers.

The conjecture above does not hold for other values of s. One can verify that 23 cannot
be written as a sum of a practical number and two nonagonal numbers and that 11 cannot
be written as a sum of a practical number and two s-gonal numbers if s > 11.
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