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Abstract

In this paper, we introduce a new generalization of the perfect numbers, called S-
perfect numbers. Briefly stated, an S-perfect number is an integer equal to a weighted
sum of its proper divisors, where the weights are drawn from some fixed set S of
integers. After a short exposition of the definitions and some basic results, we present
our preliminary investigations into the S-perfect numbers for various special sets S
of small cardinality. In particular, we show that there are infinitely many {0,m}-
perfect numbers and {−1,m}-perfect numbers for every m ≥ 1. We also provide a
characterization of the {−1,m}-perfect numbers of the form 2kp (k ≥ 1, p an odd
prime), as well as a characterization of all even {−1, 1}-perfect numbers.

1 Introduction

A positive integer n > 1 is called a perfect number if it is equal to the sum of its proper
divisors; symbolically, if

n =
∑

1≤d<n
d|n

d.

It has been known since Euclid that any number of the form n = 2p−1(2p−1) where both
p and 2p − 1 are prime is perfect. Centuries later, Euler proved the converse: if any n > 1
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is an even perfect number, then it is of the form n = 2p−1(2p − 1), with both p and 2p − 1
prime. On the other hand, it is not known if there exist infinitely many perfect numbers,
or if there exists even a single odd perfect number. To date, fifty-one even perfect numbers
have been found, many by computer search, the largest of which corresponds to the prime
number p = 82589933 (see Hassler [5] for a brief review of the early history, or Cai [2] for
a more thorough treatment and a survey of the current state of research). The literature
has been broadened by the introduction of various generalizations, to which this paper adds
another, encompassing many of those previously put forward.

Let S ⊂ Z be any collection of integers, and let n ∈ Z with |n| > 1. Then we call n an
S-perfect number of the first kind if there exist integers λ1, . . . , λk ∈ S such that

1 +
k

∑

j=1

λjdj = n,

where 1 = d0 < d1 < · · · < dk < dk+1 = |n| are the positive divisors of n. We call n an
S-perfect number of the second kind if there exist integers λ0, . . . , λk ∈ S such that

λ0 +
k

∑

j=1

λjdj = n.

If n is an S-perfect number, we refer to the sum n = 1 +
k
∑

j=1

λjdj (respectively n = λ0 +

k
∑

j=1

λjdj) as an S-presentation of n, or simply a presentation of n when S is fixed.

Throughout this paper, we limit our investigation to positive S-perfect numbers of the
first kind unless otherwise indicated. We prove that there are infinitely many {0,m}-perfect
numbers and infinitely many {−1,m}-perfect numbers for every m ≥ 1. We also provide a
characterization of the {−1,m}-perfect numbers of the form 2kp (k ≥ 1, p an odd prime), as
well as a characterization of all even {−1, 1}-perfect numbers. The symbols τ and σ indicate
the familiar arithmetic functions

τ(n) =
∑

d|n

1,

σ(n) =
∑

d|n

d.

Example 1. The S-perfect numbers generalize the perfect numbers (S = {1}), as well
several other previously defined generalizations of the perfect numbers. The {1, 0}-perfect
numbers (of the second kind) are the semiperfect numbers. For k ≥ 1, the {k}-perfect
numbers of the first kind were introduced by Minoli and Bear [8] as k-hyperperfect numbers,
and subsequently also studied by te Riele [10] and McCranie [6]. The {−k}-perfect numbers
are integers n < 0 satisfying

σ(|n|) =
(k + 1)(|n|+ 1)

k
.
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When k = 1 , these are the numbers with abundance 2 (OEIS sequence A088831; see Guy
[4, §B2] for a discussion of related topics). Bege and Fogarasi [1] have investigated the case
k = 2.

Example 2. We list here the first few S-perfect numbers for various small S.

• S = {1}: 6, 28, 496, 8128, 33550336, . . . (perfect numbers, OEIS sequence A000396).

• S = {1, 0} (second kind): 6, 12, 18, 20, 24, 28, 30, 36, 40, 42, 48, 54, 56, 60, 66 . . . (semiper-
fect numbers, OEIS sequence A005835); the smallest semiperfect number that is not a
{1, 0}-perfect number of the first kind is 66.

• S = {2}: 21, 2133, 19521, 176661, . . . (2-hyperperfect numbers, OEIS sequence A007593).

• S = {3}: 325, . . . (3-hyperperfect numbers); it is not known whether or not there are
any more, but see McCranie [6] for some conjectures and numerical data, including all
hyperperfect numbers less than 1011.

• S = {0, 2}: 21, 63, 147, 171, 189, 225 . . . (see Section 2).

• S = {−1, 2}: 21, 28, 52, 84, 112, 156, 189, 208, 228, . . . (see Section 2).

• S = {−1, 1}: 6, 12, 24, 28, 30, 40, 42, 48, 54, 56, 60, 66, 70, 78, 80, . . . (see Section 3).

• S = {1, 2}: 6, 10, 21, 28, 44, 45, 50, 52, 99, 105, 117, 135, 136, . . ..

• S = {1, 3}: 6, 14, 15, 28, 44, 76, 110, 135, 152, 182, 184, 190, 231, . . ..

• S = {2, 3}: 21, 175, 325, 333, . . ..

The following proposition shows that, for most integers n > 1, it is easy to find a set
S ⊂ Z such that n is S-perfect. For this reason we focus our discussion mainly on determining
the S-perfect numbers and related properties for fixed S. This is somewhat at odds with
the literature on k-hyperperfect numbers, in which the term hyperperfect number is used
generically to refer to any integer that is k-hyperperfect for some k ≥ 1.

Proposition 3. If n ∈ Z (|n| > 1) has at least two prime factors, then there exists a finite
set S ⊂ Z with #S ≤ τ(n) − 2 such that n is S-perfect. If n ∈ Z is a prime power, then n
is not S-perfect for any S ⊂ Z.

Proof. If n has at least two prime factors, with positive divisors

1 = d0 < d1 < · · · < dk < dk+1 = |n|,

then gcd(d1, . . . , dk) = 1. It follows that the linear diophantine equation

k
∑

j=1

djxj = n− 1

has solutions. The second claim is obvious.
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For S ⊂ Z, we denote the set of S-perfect numbers by P(S), omitting curly brackets
when S is given by enumeration of its elements. We have the following easy inclusions.

Proposition 4. If (Sα)α∈A is any family of subsets Sα ⊂ Z, then
⋃

α∈A

P(Sα) ⊂ P(
⋃

α∈A

Sα),

P(
⋂

α∈A

Sα) ⊂
⋂

α∈A

P(Sα).

Proof. Follows immediately from the definitions.

2 Some special cases

In this section we investigate the {0,m}-perfect numbers and {−1,m}-perfect numbers for
arbitrary m ≥ 1. The former are dispatched quite easily via the following lemma.

Lemma 5. If n ∈ P(0,m) for some m ≥ 1, then also (m+ 1)n ∈ P(0,m).

Proof. If

n = 1 +
k

∑

j=1

λjdj

is a {0,m}-presentation of n, then

(m+ 1)n = 1 +
k

∑

j=1

λjdj +mn

is a {0,m}-presentation of (m+ 1)n.

Therefore it suffices to exhibit a single n ∈ P(0,m) to generate infinitely many {0,m}-
perfect numbers, which gives the following theorem.

Theorem 6. There exist infinitely many {0,m}-perfect numbers for all m ≥ 1.

Proof. Note that

(m+ 1)(m2 +m+ 1) = 1 +m(m+ 1) +m(m2 +m+ 1)

is {0,m}-perfect for any m ≥ 1.

The {−1,m}-perfect numbers are more interesting. We focus on the {−1,m}-perfect
numbers of the form n = 2kp, where p is an odd prime. The following lemma and corollary
will be useful for proving that there are infinitely many such numbers, and characterizing
their occurrences among numbers of the same form. We make frequent use of the 2-adic
valuation ν2(n) = max(k ≥ 0 : 2k divides n).
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Lemma 7. Let 0 ≤ s ≤ t, m ≥ 1. Then the numbers of the form n =
t
∑

j=s

λj · 2
j with

λs, . . . , λt ∈ {−1,m} are precisely the numbers

n ≡ −2s(2t−s+1 − 1) (mod 2s(m+ 1))

in the interval
−2s(2t−s+1 − 1) ≤ n ≤ 2sm(2t−s+1 − 1).

Proof. It is easy to see that

t
∑

j=s

λj · 2
j ≡ −

t
∑

j=s

2j = −2s(2t−s+1 − 1) (mod 2s(m+ 1))

for any λs, . . . , λt ∈ {−1,m}. Therefore the different choices of λs, . . . , λt ∈ {−1,m} give
2t−s+1 different numbers

n ≡ −2s(2t−s+1 − 1) (mod 2s(m+ 1))

in the interval

−2s(2t−s+1 − 1) ≤ n ≤
t

∑

j=s

2jm = 2sm(2t−s+1 − 1).

Since there are exactly 2t−s+1 such numbers, we are done.

Corollary 8. Fix m ≥ 1 and set β = ν2(m + 1). If n =
t
∑

j=s

λj · 2
j for some 0 ≤ s ≤ t

and some λs, . . . , λt ∈ {−1,m}, with t ≥ s + β − 1, then also n =
t+α
∑

j=s

Λj · 2
j for some

Λs, . . . ,Λt+α ∈ {−1,m} whenever 2α ≡ 1 (mod (m+ 1)/2β).

Proof. If 2α ≡ 1 (mod (m+ 1)/2β), then

2t+α+1 ≡ 2t+1 (mod 2t+1−β(m+ 1)).

If moreover t+ 1− β ≥ s, we also have

2t+α+1 ≡ 2t+1 (mod 2s(m+ 1)),

so
−2s(2t−s+1 − 1) ≡ −2s(2t+α−s+1 − 1) (mod 2s(m+ 1)),

as required by the conditions in Lemma 7.
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Theorem 9. Fix m ≥ 1, and set β = ν2(m + 1). If both 2kp, 2k+αp ∈ P(−1,m) for some
odd prime p and some integers k, α ≥ 1, then

2α ≡ 1 (mod (m+ 1)/2β).

Conversely, if 2kp ∈ P(−1,m) for some odd prime p and some integer k ≥ β, then also
2k+αp ∈ P(−1,m) whenever 2α ≡ 1 (mod (m+ 1)/2β).

Proof. Suppose first that both 2kp, and 2k+αp ∈ P(−1,m), with presentations

2kp = 1 +
k

∑

j=1

λ
(1)
j · 2j +

k−1
∑

j=0

λ
(2)
j · 2jp, (1)

2k+αp = 1 +
k+α
∑

j=1

Λ
(1)
j · 2j +

k+α−1
∑

j=0

Λ
(2)
j · 2jp (2)

respectively. Note that every λ
(i)
j ,Λ

(i)
j ≡ −1 (mod m + 1); we reduce the first equation to

find

2kp ≡ 1−
k

∑

j=1

2j −
k−1
∑

j=0

2jp (mod m+ 1),

or (2k+1 − 1)(p+ 1) ≡ 2 (mod m+ 1), from which it follows easily that p+ 1 must be a unit
modulo (m+ 1)/2β.

Subtracting (1) from (2) and reducing again modulo m+ 1 gives

2kp(2α − 1) ≡ −
k+α
∑

j=k+1

2j −
k+α−1
∑

j=k

2jp (mod m+ 1),

or
2k+1(p+ 1)(2α − 1) ≡ 0 (mod m+ 1),

so that also
2k+1(p+ 1)(2α − 1) ≡ 0 (mod (m+ 1)/2β).

Since both 2k+1 and p+ 1 are units modulo (m+ 1)/2β, we conclude that

2α − 1 ≡ 0 (mod (m+ 1)/2β).

Conversely, suppose k ≥ β and 2kp ∈ P(−1,m) for some odd prime p, with presentation
given by (1). Fix any α ≥ 1 such that 2α ≡ 1 (mod (m+ 1)/2β). We have

2k+αp = 1 +
k

∑

j=1

λ
(1)
j · 2j +

k−1
∑

j=0

λ
(2)
j · 2jp+

k+α−1
∑

j=k

2jp. (3)
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Since k ≥ β, we can use Corollary 8 to find Λ
(1)
1 , . . . ,Λ

(1)
k+α such that

k+α
∑

j=1

Λ
(1)
j · 2j =

k
∑

j=1

λ
(1)
j · 2j.

As for the remaining sum in (3), set

A =
k−1
∑

j=0

λ
(2)
j · 2j +

k+α−1
∑

j=k

2j .

Reducing modulo m+ 1,

A ≡ 2k+α − 2k+1 + 1 ≡ −(2k+α − 1) (mod m+ 1),

where we have made use of the hypotheses 2α ≡ 1 (mod (m+1)/2β) and k ≥ β to substitute
2k+α ≡ 2k (mod m + 1). Therefore A satisfies the conditions of Lemma 7 (with s = 0,

t = k + α− 1), so we can find Λ
(2)
0 , . . . ,Λ

(2)
k+α−1 such that A =

k+α−1
∑

j=0

Λ
(2)
j .

Thus we obtain a presentation

2k+αp = 1 +
k+α
∑

j=1

Λ
(1)
j · 2j +

k+α−1
∑

j=0

Λ
(2)
j · 2jp.

It follows that a single {−1,m}-perfect number of the form 2kp, with k ≥ β and p
an odd prime, is sufficient to generate infinitely many. The following theorem provides a
construction.

Theorem 10. Fix m ≥ 1, and set β = ν2(m+ 1). Choose α > β such that

2α ≡ 1 (mod (m+ 1)/2β).

If some
p ≡ 2(2α+1 − 1)− 1 (mod 2(m+ 1))

is prime, then 2kp ∈ P(−1,m) for some k ≥ α.

Proof. Set N = 2α+1 − 1, and note that α > β implies that N2 ≡ 1 (mod 2(m+ 1)). If

p ≡ 2(2α+1 − 1)− 1 (mod 2(m+ 1)),

then
Np ≡ 2N2 −N ≡ 2−N = 3− 2α+1 (mod 2(m+ 1)).
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That is,
Np− 1 ≡ −2(2α − 1) (mod 2(m+ 1)).

Choose k ≥ α with 2k ≡ 2α (mod 2(m+1)) such that Np−1 ≤ 2m(2k−1). Then by Lemma

7, there are some λ
(1)
1 , . . . , λ

(1)
k ∈ {−1,m} such that

Np = 1 +
k

∑

j=1

λ
(1)
j · 2j.

We also have 2k −N ≡ −(2k − 1) (mod 2(m+ 1)), so

2k −N =
k−1
∑

j=0

λ
(2)
j · 2j.

for some λ
(2)
1 , . . . , λ

(2)
k−1 ∈ {−1,m}. Therefore

1 +
k

∑

j=1

λ
(1)
j · 2j +

k−1
∑

j=0

λ
(2)
j · 2jp = Np+ (2k −N)p = 2kp

is a presentation.

Corollary 11. There exist infinitely many {−1,m}-perfect numbers for every m ≥ 1.

Proof. With α, β as in Theorem 10, we have

2(2α+1 − 1)− 1 ≡ 1 (mod (m+ 1)/2β).

Then since 2(2α+1 − 1)− 1 is odd, it follows also that

gcd(2(2α+1 − 1)− 1, 2(m+ 1)) = 1,

so there do in fact exist primes p ≡ 2(2α+1 − 1)− 1 (mod 2(m+ 1)).

3 The {−1, 1}-perfect numbers

In the previous section, we obtained a characterization of the {−1,m}-perfect numbers (for
m ≥ 1) of the form 2kp, where p is an odd prime. When m = 1, this can be extended to
a characterization of all even {−1, 1}-perfect numbers. The {−1, 1}-perfect numbers have
a certain aesthetic appeal owing to the formal similarity between the sum involved in a
{−1, 1}-presentation and the divisor sum involved in the definition of perfect numbers.

We first refine slightly the relevant special case of Lemma 7.
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Lemma 12. If n ∈ Z, then n = 1+
k
∑

j=1

λj · 2
j for some k ≥ 1 and some λ1, . . . , λk ∈ {−1, 1}

if and only if n ≡ 3 (mod 4).

Proof. Choose k ≥ 1 such that −2(2k − 1) ≤ n − 1 ≤ 2(2k − 1); then Lemma 7 applies
(m = 1, s = 1, t = k).

Lemma 13. Let n ∈ Z, and let p be prime, with p not dividing n. Then

(a) if n ∈ P(−1, 1) , then also npk ∈ P(−1, 1) for all k ≥ 1;

(b) if np ∈ P(−1, 1), then also np2k−1 ∈ P(−1, 1) for all k ≥ 1.

Proof. (a) If

n = 1 +
k

∑

j=1

λjdj

and

npk = 1 +
t

∑

s=1

ΛsDs,

where k ≥ 0, are presentations of n and npk respectively, then

npk+1 = 1 +
t

∑

s=1

ΛsDs − npk + pk+1(1 +
k

∑

j=1

λjdj)

is a presentation of npk+1. The proof of (b) is similar.

Lemma 14. If n ∈ P(−1, 1), then also 2n ∈ P(−1, 1).

Proof. If n is odd, this follows from Lemma 13. Suppose n is even, and

n = 1 +
k

∑

j=1

λjdj

is a presentation of n. Then

2n = 1 +
k

∑

j=1

λjdj + n.

The proper divisors of 2n missing from this sum have the form 2dj for some divisor dj of n
with 1 < dj < n (since n is even). Replace all such λjdj in the sum with −λjdj + λj(2dj) to
obtain a presentation of 2n.

Theorem 15. If d ≥ 1 is odd and not a square, then 2kd ∈ P(−1, 1) for all but finitely
many k ≥ 1. Conversely if 2kd ∈ P(−1, 1) for some k ≥ 0, d ≥ 1, then d is not square.
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Proof. In light of Lemmas 13 and 14, it suffices to show that, for every odd prime p, there
exists some k ≥ 1 (depending on p), such that 2kp ∈ P(−1, 1). Choose (Lemma 12) k ≥ 1
and λ1, . . . , λk ∈ {−1, 1} such that

1 +
k

∑

j=1

λj2
j =

{

p, if p ≡ 3 (mod 4);

3p, if p ≡ 1 (mod 4).

Then

2kp = 1 +
k

∑

j=1

λj2
j + (−1)(p+1)/2p+

k−1
∑

j=1

2jp

is a presentation, as required.
Conversely, suppose n > 1 is {1,−1}-perfect with presentation

n = 1 +
k

∑

j=1

λjdj.

Then

σ(n) = 2 +
k

∑

j=1

(1 + λj)dj

is even, since every 1 + λj = 0 or 2. But it is well known that σ(n) is even if and only if n
is not square or twice a square.

We conclude with a few further remarks and conjectures concerning the {−1, 1}-perfect
numbers. Recall that an abundant number (OEIS sequence A005101) is a positive integer n
satisfying σ(n) ≥ 2n. Evidently, every positive {−1, 1}-perfect number is abundant, but not
every abundant number is {−1, 1}-perfect; the first few abundant numbers that are not also
{−1, 1}-perfect are 18, 20, 36, 72, . . .. We conjecture that almost every abundant number is
{−1, 1}-perfect

Conjecture 16. The positive {−1, 1}-perfect numbers have a density equal to the density
A of the abundant numbers, for which we have the bounds 0.2474 < A < 0.2480, obtained
by Deléglise [3].

The smallest odd abundant number (OEIS sequence A005231) is 945, which is also
{−1, 1}-perfect, as, in fact, is every odd abundant number smaller than 104. On the other
hand, theoretical considerations show that not every odd abundant number is {−1, 1}-
perfect: if n ∈ Z is odd and abundant, then also n2 is odd and abundant, since the set
of abundant numbers is closed under multiplication; but Theorem 15 shows that n2 cannot
be {−1, 1}-perfect. So, for example, 9452 = 893025 is odd and abundant, but not {−1, 1}-
perfect. We propose the following conjecture.

Conjecture 17. Every nonsquare odd abundant number is {−1, 1}-perfect.
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