
23 11

Article 24.4.8
Journal of Integer Sequences, Vol. 27 (2024),2

3

6

1

47

Exact Formulas for the Number of Palindromes in

Certain Arithmetic Progressions

Kritkhajohn Onphaeng
Faculty of Science and Technology
Princess of Naradhiwas University

Naratiwat 96000
Thailand

kritkhajohn.o@pnu.ac.th,
dome3579@gmail.com

Phakhinkon Napp Phunphayap*

Department of Mathematics
Faculty of Science
Burapha University
Chonburi 20131

Thailand
phakhinkon.ph@go.buu.ac.th,

phakhinkon@gmail.com

Tammatada Khemaratchatakumthorn
Department of Mathematics

Faculty of Science
Silpakorn University

Nakhon Pathom 73000
Thailand

tammatada@gmail.com,
khemaratchataku.t@silpakorn.edu

Prapanpong Pongsriiam
Department of Mathematics

Faculty of Science
Silpakorn University

Nakhon Pathom 73000
Thailand

and
Graduate School of Mathematics

Nagoya University
Nagoya 464-8602

Japan
prapanpong@gmail.com,

pongsriiam p@silpakorn.edu

Abstract

A positive integer n is a b-adic palindrome if the representation of n in base b reads
the same backward as forward. In this article, we obtain exact formulas for the number
of b-adic palindromes that are less than or equal to m and are congruent to r modulo
q when b is congruent to 0 or 1 mod q. This extends Pongsriiam and Subwattanachai’s
result (done only for q ≤ 2), and supplements Col’s theorem, which is restricted to the
case that b(b2 − 1) is coprime to q.
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1 Introduction

Let b ≥ 2, m,n, q ≥ 1, and 0 ≤ r < q be integers. We call n a palindrome in base b (or b-adic
palindrome) if the b-adic expansion of n = (akak−1 · · · a0)b with ak 6= 0 has the symmetric
property ak−i = ai for 0 ≤ i ≤ k. We let Pb be the set of all b-adic palindromes and Pb(m)
the set of all b-adic palindromes not exceeding m. The 2-adic and 10-adic palindromes are,
respectively, A006995 and A002113 in OEIS [21]. As usual, if we write a number without
specifying the base, then it is always in base 10, and if we write n = (akak−1 · · · a0)b, then
it means that n =

∑k
i=0 aib

i, ak 6= 0, and 0 ≤ ai < b for all i = 0, 1, . . . , k. So, for example,
9 = (1001)2 = (100)3 is a palindrome in bases 2 and 10 but not in base 3. In addition, let
Pb(m, q, r) be the set of all b-adic palindromes that are at most m and are congruent to r
modulo q. Finally, let Ab(m) = |Pb(m)| and Ab(m, q, r) = |Pb(m, q, r)|, that is,

Ab(m, q, r) =
∑

n∈Pb(m)
n ≡ r (mod q)

1.

In recent years, there has been an increasing interest in the study of palindromes. For
instance, in 2017, Vepir [23] asked on Mathematics Stack Exchange which number base
contains the most palindromic numbers. Pongsriiam and Subwattanachai [18] started the
investigation by determining an exact formula for Ab(m), but the formula is not easy to
analyze, and so it is not enough to answer Vepir’s question. After that, Phunphayap and
Pongsriiam [15] showed that if b1 > b2 ≥ 2 and sb denotes the reciprocal sum of all b-adic
palindromes, then sb1 and sb2 converge and sb1 > sb2 . Later, they also applied Pongsriiam and
Subwattanachai’s exact formula [18] to answer Vepir’s question that in fact, Ab(n)−Ab1(n)
has infinitely many sign changes when n ranges over all positive integers and b, b1 are distinct
integers larger than 1.

Moreover, Harminc and Soták [11] studied palindromes in arithmetic progressions and
proved that for a, b ≥ 2, d ∈ N, there are infinitely many b-adic palindromes that are con-
gruent to a mod d if and only if b ∤ a or b ∤ d. Col [8] extended Harminc and Soták’s
result and obtained some distributional theorems concerning Ab(m, q, r) and Ab(m)/q for all
b ≥ 2 satisfying gcd(q, b(b2 − 1)) = 1. In 2015, Pálvölgyi (aka “Domotorp”) asked on Math-
Overflow [14] whether or not there exists an arbitrarily long arithmetic progression whose
members are palindromes. Tao [22] gave a negative answer to Pálvölgyi’s question, and from
his comments, it seems that arithmetic progressions of palindromes should have length no
more than 108. Pongsriiam [17] then proved that the length of an arithmetic progression of
palindromes (in base 10) is at most 10.

In this article, we consider palindromes in arithmetic progressions and obtain exact formu-
las for Ab(m, q, r) where b ≡ 0, 1 (mod q). This improves Pongsriiam and Subwattanachai’s
result, which focuses only on the case q ≤ 2. It also supplements Col’s theorem, which is
restricted to the case gcd(q, b(b2 − 1)) = 1.

For more information on the palindromes, we refer the reader to Banks [1], Cilleruelo,
Luca, and Baxter [6], and Rajasekaran, Shallit, and Smith [19] for additive properties of
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palindromes, Banks, Hart, and Sakata [2] and Banks and Shparlinski [3] for some multiplica-
tive properties of palindromes, Bas̆ić [4, 5], Di Scala and Sombra [20], Goins [10], Luca and
Togbé [13] for the study of palindromes in different bases, Cilleruelo, Luca, and Tesoro [7]
for palindromes in linear recurrence sequences, and Korec [12] for nonpalindromic numbers
having palindromic squares.

2 Preliminaries and lemmas

In this section, we provide some definitions and lemmas that are needed in the proof of the
main theorems. Recall that for a real number x, ⌊x⌋ is the largest integer less than or equal
to x and ⌈x⌉ is the smallest integer greater than or equal to x. In addition, we write a mod m
to denote the least nonnegative residue of a modulo m. We also use the Iverson notation: if
P is a mathematical statement, then

[P ] =

{

1, if P holds;

0, otherwise.

Throughout this article, the empty sum is defined to be zero. It is also convenient to define
Cb(m) for each m ∈ N as follows:

Definition 1. Let b ≥ 2 and m = (akak−1 · · · a1a0)b be positive integers. We define Cb(m) =
(ckck−1 · · · c1c0)b to be the b-adic palindrome satisfying ci = ai for k − ⌊k/2⌋ ≤ i ≤ k. In
other words, Cb(m) is the b-adic palindrome having k+1 digits whose first half digits are the
same as those of m in its b-adic expansion, that is, Cb(m) = (akak−1 · · · ak−⌊k/2⌋ · · · ak−1ak)b.

For example, if m = (134240)5 = (12702)8, then C5(m) = (134431)5 and C8(m) =
(12721)8. In the next lemma and throughout this article, we let sb(n) be the sum of digits
of n in base b, that is, if n = (akak−1 · · · a0)b, then sb(n) =

∑

0≤i≤k ai.

Lemma 2. Let b, n, q, r be integers, b ≥ 2, n, q ≥ 1, and n = (akak−1 · · · a1a0)b. Then the

following statements hold.

(i) Assume that b ≡ 0 (mod q). Then n ≡ r (mod q) if and only if a0 ≡ r (mod q).

(ii) Assume that b ≡ 1 (mod q). Then n ≡ r (mod q) if and only if sb(n) ≡ r (mod q).

Proof. For (i), we have n =
∑

0≤j≤k ajb
j ≡ a0 (mod q), which implies that n ≡ r (mod q) if

and only if a0 ≡ r (mod q). For (ii), we have

n =
∑

0≤j≤k

ajb
j ≡

∑

0≤j≤k

aj (mod q),

which implies the desired result.
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It is convenient to have a lemma that gives the number of positive integers n ≤ x lying
in a residue class a mod q. It is also useful to define the following function.

Definition 3. Let b, q, k ∈ N and r, x, y ∈ Z. We define Nb(k, q, r, x, y) to be the number of
integer solutions to the congruence

x1 + x2 + · · ·+ xk ≡ r (mod q),

where x ≤ x1 < y and 0 ≤ xi < b for each i = 2, 3, . . . , k. In addition, we let

Nb(k, q, r) = Nb(k, q, r, 0, b).

Lemma 4. Let a, q ∈ N and r ∈ Z. Then

∑

0≤n<a
n ≡ r (mod q)

1 = ⌊a/q⌋+ [r mod q < a mod q].

Proof. We can assume that 0 ≤ r < q. Let s = a mod q and write a = ℓq + s for some
ℓ ∈ N0. If r < s, then there are ℓ+1 = ⌊a/q⌋+1 choices for n ∈ {r, q+ r, 2q+ r, . . . , ℓq+ r}.
Similarly, If r ≥ s, there are ℓ = ⌊a/q⌋ choices for n ∈ {r, q + r, 2q + r, . . . , (ℓ− 1)q + r}. In
any case, there are ⌊a/q⌋+ [r < s] possible values for n. This completes the proof.

The next lemma is an important tool in obtaining the main results. Recall that, through-
out this article, we write a mod m to denote the least nonnegative residue of a modulo m.

Lemma 5. Let a, b, k, q, r ∈ Z and a, b, k, q ≥ 1. Assume that b ≡ 1 (mod q). Then the

following statements hold.

(i) Nb(k, q, r) =
bk−1
q

+ [r ≡ 0 (mod q)].

(ii) Nb(k, q, r, 1, b) =
bk−bk−1

q
.

(iii) Nb(k, q, r, 0, a) =
a(bk−1−1)

q
+ ⌊a/q⌋+ [r mod q < a mod q].

(iv) Nb(k, q, r, 1, a) =
(a−1)(bk−1−1)

q
+ ⌊a/q⌋+ [r mod q < a mod q]− [r ≡ 0 (mod q)].

Proof. We can assume that 0 ≤ r < q and let s = a mod q. We prove (i) by induction on k.
Since b ≡ 1 (mod q), we obtain by Lemma 4 that

Nb(1, q, r) =
∑

0≤x<b
x ≡ r (mod q)

1 = ⌊b/q⌋+ [r < 1] =
b− 1

q
+ [r = 0].

Next, we let k ≥ 1 be integers and assume that Nb(k, q, r) = (bk − 1)/q + [r = 0]. Since

x1 + · · ·+ xk + xk+1 ≡ r (mod q) if and only if x1 + · · ·+ xk ≡ r − xk+1 (mod q),
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we see that

Nb(k + 1, q, r) =
∑

0≤xk+1<b

Nb (k, q, (r − xk+1) mod q)

=
∑

0≤xk+1<b

(
bk − 1

q
+ [r − xk+1 ≡ 0 (mod q)]

)

=
b
(
bk − 1

)

q
+

∑

0≤xk+1<b

[xk+1 ≡ r (mod q)]

=
b
(
bk − 1

)

q
+Nb(1, q, r)

=
b
(
bk − 1

)

q
+

b− 1

q
+ [r = 0]

=
bk+1 − 1

q
+ [r = 0].

This proves (i). For (ii), if k = 1, then we obtain by Lemma 4 that

Nb(k, q, r, 1, b) =
∑

0≤x<b
x ≡ r (mod q)

1− [r = 0] = ⌊b/q⌋+ [r < 1]− [r = 0] =
b− 1

q
.

If k ≥ 2, then we obtain by (i) that

Nb(k, q, r, 1, b) = Nb(k, q, r)−Nb(k − 1, q, r) =
bk − bk−1

q
.

For (iii), we obtain by Lemma 4 that

Nb(1, q, r, 0, a) =
∑

0≤x<a
x ≡ r (mod q)

1 = ⌊a/q⌋+ [r < s].

Now, suppose k ≥ 2. We first fix 0 ≤ x1 < a and then count the remaining xi. From (i) and
Lemma 4, we obtain that

Nb(k, q, r, 0, a) =
∑

0≤x1<a

Nb(k − 1, q, (r − x1) mod q)

=
∑

0≤x1<a

(
bk−1 − 1

q
+ [x1 ≡ r (mod q)]

)

=
a(bk−1 − 1)

q
+ ⌊a/q⌋+ [r < s],
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as desired. For (iv), if k = 1, then

Nb(1, q, r, 1, a) = Nb(1, q, r, 0, a)− [r ≡ 0 (mod q)] = ⌊a/q⌋+ [r < s]− [r = 0].

If k ≥ 2, then we obtain by (i) and (iii) that

Nb(k, q, r, 1, a) = Nb(k, q, r, 0, a)−Nb(k−1, q, r) =
(a− 1)(bk−1 − 1)

q
+⌊a/q⌋+[r < s]−[r = 0].

This completes the proof.

We will deal with some calculations involving the floor function. So it is useful to recall the
following results, which will be applied throughout this article sometimes without reference.

Lemma 6. For k ∈ Z and x ∈ R, the following statements hold.

(i) ⌊k + x⌋ = k + ⌊x⌋,

(ii) {k + x} = {x},

(iii) ⌊x⌋+ ⌊−x⌋ =

{

−1, if x 6∈ Z;

0, if x ∈ Z,

(iv) 0 ≤ {x} < 1 and {x} = 0 if and only if x ∈ Z.

(v) ⌊x+ y⌋ =

{

⌊x⌋+ ⌊y⌋, if {x}+ {y} < 1;

⌊x⌋+ ⌊y⌋+ 1, if {x}+ {y} ≥ 1,

(vi) ⌊⌊x⌋/k⌋ = ⌊x/k⌋ for k ≥ 1.

Proof. These are well-known and can be proved easily. For more details, see in the books
by Graham, Knuth, and Patashnik [9, Chapter 3] and Pongsriiam [16, Chapter 3].

3 Main results

In this section, we determine the formula for Ab(m, q, r) where b ≡ 0 or 1 (mod q). Since
the case b ≡ 0 (mod q) is easier than the other case, we begin with b ≡ 0 (mod q) as follows.

3.1 The case b ≡ 0 (mod q)

Theorem 7. Let b ≥ 2 and m, q ≥ 1 be integers, and b ≡ 0 (mod q). Let

m = (akak−1 · · · a1a0)b and α = αm =
b⌈k/2⌉ + b⌊k/2⌋ − 2

b− 1
.
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Then Ab(m, q, 0) is equal to

(
b

q
− 1

)

α+

⌊
ak − 1

q

⌋

b⌊k/2⌋+[ak ≡ 0 (mod q)]




∑

1≤i≤⌊k/2⌋

ak−ib
⌊k/2⌋−i + [m ≥ Cb(m)]



 , (1)

and if r mod q > 0, then Ab(m, q, r) is equal to

bα

q
+

⌈
ak − (r mod q)

q

⌉

b⌊k/2⌋ + [ak ≡ r (mod q)]




∑

1≤i≤⌊k/2⌋

ak−ib
⌊k/2⌋−i + [m ≥ Cb(m)]



 .

(2)

Proof. Throughout this proof, we apply Lemma 2(i) repeatedly without reference. We can
assume that 0 ≤ r < q and let

m∗ =
∑

0≤i≤⌊k/2⌋

ak−ib
k−i = (akak−1 · · · ak−⌊k/2⌋00 · · · 0)b.

Since b ≡ 0 (mod q), there exists an integer ℓ ≥ 1 such that b = ℓq. We have

Ab(m, q, r) =
∑

n∈Pb(m)
n ≡ r (mod q)

1 =
∑

n∈Pb
n ≡ r (mod q)

n < bk

1 +
∑

n∈Pb
n ≡ r (mod q)

bk ≤ n < akb
k

1 +
∑

n∈Pb
n ≡ r (mod q)

akb
k ≤ n < m∗

1 +
∑

n∈Pb
n ≡ r (mod q)
m∗ ≤ n ≤ m

1. (3)

In the first and second rightmost sum in (3), we see that if akb
k ≤ n ≤ m, then the leftmost

digit of n in its b-adic expansion is ak = a0. Therefore (3) implies that

Ab(m, q, r) =
∑

n∈Pb
n ≡ r (mod q)

n < bk

1 +
∑

n∈Pb
n ≡ r (mod q)

bk ≤ n < akb
k

1 + [ak ≡ r (mod q)]







∑

n∈Pb

akb
k ≤ n < m∗

1 +
∑

n∈Pb
m∗ ≤ n ≤ m

1







.

(4)
We divide the calculation into 4 parts according to the sums appearing on the right-hand
side of (4).

Part 1 We calculate the first sum on the right-hand side of (4) and divide the consider-
ation into two cases depending on r.

Case 1.1 r = 0. We first show that

∑

n∈Pb
n ≡ 0 (mod q)
bt ≤ n < bt+1

1 =

(
b

q
− 1

)

b⌊t/2⌋ for all integers t ≥ 0. (5)
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Let t ≥ 0 be an integer. The left-hand side of (5) counts the number of b-adic palindromes
that have t+1 digits in their b-adic expansion and are congruent to 0 modulo q. Since b = ℓq,
such the numbers are of the form n = (ctct−1 · · · c1c0)b where ct ∈ {q, 2q, . . . , (ℓ − 1)q}, ci ∈
{0, 1, 2, . . . , b− 1}, and ci = ct−i for all i ∈ {0, 1, 2, . . . , ⌊t/2⌋}. So there are ℓ− 1 = (b/q − 1)
choices for ct and, after ct is chosen, there is only one choice for c0 = ct. There are b possible
values for ct−1 ∈ {0, 1, . . . , b − 1} and there is one possible value for c1 = ct−1. In general,
there are b choices for ct−i for 1 ≤ i ≤ ⌊t/2⌋ and exactly one choice for the corresponding ci.
Therefore

∑

n∈Pb
n ≡ 0 (mod q)
bt ≤ n < bt+1

1 =

(
b

q
− 1

)

· b · b · · · b
︸ ︷︷ ︸

⌊t/2⌋ terms

=

(
b

q
− 1

)

b⌊t/2⌋.

This proves (5). Then (5) implies that

∑

n∈Pb
n ≡ 0 (mod q)

1 ≤ n < bk

1 =
k−1∑

i=0

∑

n∈Pb
n ≡ 0 (mod q)
bi ≤ n < bi+1

1 =
k−1∑

i=0

(
b

q
− 1

)

b⌊i/2⌋ =

(
b

q
− 1

)
∑

1≤i≤k

b⌊(i−1)/2⌋. (6)

If k is even, then (6) is

(
b

q
− 1

)
(
2 + 2b+ · · · 2b(k−2)/2

)
= 2

(
b

q
− 1

)
bk/2 − 1

b− 1
=

(
b

q
− 1

)
b⌈k/2⌉ + b⌊k/2⌋ − 2

b− 1
.

Similarly, if k is odd, then (6) becomes

(
b

q
− 1

)
(
2 + 2b+ · · ·+ 2b(k−3)/2 + b(k−1)/2

)
=

(
b

q
− 1

)(

2
(
b(k−1)/2 − 1

)
+ (b− 1)b(k−1)/2

b− 1

)

=

(
b

q
− 1

)
b⌈k/2⌉ + b⌊k/2⌋ − 2

b− 1
.

From the above observation and (6), we obtain

∑

n∈Pb
n ≡ 0 (mod q)

1 ≤ n < bk

1 =

(
b

q
− 1

)
b⌈k/2⌉ + b⌊k/2⌋ − 2

b− 1
=

(
b

q
− 1

)

α. (7)

Case 1.2 r 6= 0. Similar to Case 1, we first show that

∑

n∈Pb
n ≡ r (mod q)
bt ≤ n < bt+1

1 =
b1+⌊t/2⌋

q
for all integers t ≥ 0. (8)
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Let t ≥ 0 be an integer and n = (ctct−1 · · · c1c0)b a b-adic palindrome that is counted in the
left-hand side of (8). Then ct ∈ {r, q + r, 2q + r, . . . , (ℓ − 1)q + r}, ci ∈ {0, 1, 2, . . . , b − 1},
and ci = ct−i for all i ∈ {0, 1, 2, . . . , ⌊t/2⌋}. So there are ℓ = b/q possible values for ct and
there is only one possible value for c0. For each 1 ≤ i ≤ ⌊t/2⌋, there are b choices for ct−i

and exactly one choice for the corresponding ci. This leads to

∑

n∈Pb
n ≡ r (mod q)
bt ≤ n < bt+1

1 =
b

q
· b · b · · · b
︸ ︷︷ ︸

⌊t/2⌋ terms

=
b1+⌊t/2⌋

q
.

Therefore

∑

n∈Pb
n ≡ r (mod q)

1 ≤ n < bk

1 =
k−1∑

i=0

∑

n∈Pb
n ≡ r (mod q)
bi ≤ n < bi+1

1 =
k−1∑

i=0

b1+⌊i/2⌋

q
=

b

q

∑

1≤i≤k

b⌊(i−1)/2⌋. (9)

The right-hand side of (9) can be evaluated in a similar way as (6), which leads to

∑

n∈Pb
n ≡ r (mod q)

1 ≤ n < bk

1 =
bα

q
. (10)

Part 2 We calculate the second sum on the right-hand side of (4), and divide the
calculation into two cases.

Case 2.1 r = 0. We show that

∑

n∈Pb
n ≡ 0 (mod q)

bk ≤ n < akb
k.

1 =

⌊
ak − 1

q

⌋

b⌊k/2⌋. (11)

The left-hand side of (11) counts the integers of the form n = (ckck−1 · · · c1c0)b where

1 ≤ ck < ak, ck ≡ 0 (mod q), ci ∈ {0, 1, 2, . . . , b− 1}, and ci = ck−i,

for all i ∈ [0, ⌊k/2⌋]∩Z. We write ak = xq+y where x, y ∈ Z and 0 ≤ y < q. Since 1 ≤ ak < b
and b = ℓq, we have 0 ≤ x ≤ ℓ− 1. If y = 0, then x ≥ 1 and ck ∈ {q, 2q, . . . , (x− 1)q}, and
so there are

x− 1 =

⌊
xq − 1

q

⌋

=

⌊
ak − 1

q

⌋

possible values for ck.

If 1 ≤ y < q, then ck ∈ {q, 2q, . . . , xq}, so there are x = ⌊(xq + y − 1)/q⌋ = ⌊(ak − 1)/q⌋
possible values for ck. In any case, there are ⌊(ak − 1)/q⌋ possible values for ck, and after
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ck is chosen, there is only one possible value for c0 = ck. There are b choices for ck−i for
1 ≤ i ≤ ⌊k/2⌋ and exactly one choice for the corresponding ci. Therefore

∑

n∈Pb
n ≡ 0 (mod q)

bk ≤ n < akb
k+1

1 =

⌊
ak − 1

q

⌋

· b · b · · · b
︸ ︷︷ ︸

⌊k/2⌋ terms

=

⌊
ak − 1

q

⌋

b⌊k/2⌋.

Case 2.2 r 6= 0. This case is similar to Case 1. We show that

∑

n∈Pb
n ≡ r (mod q)

bk ≤ n < akb
k.

1 =

⌈
ak − r

q

⌉

b⌊k/2⌋. (12)

Let n = (ckck−1 · · · c1c0)b be a b-adic palindrome that is counted in the left-hand side of
(12). Then 1 ≤ ck < ak, ck ≡ r (mod q), ci ∈ {0, 1, 2, . . . , b − 1}, and ci = ck−i for all
i = 0, 1, 2, . . . , ⌊k/2⌋. We write ak = xq + y where 0 ≤ x ≤ ℓ − 1 and 0 ≤ y < q. If y ≤ r,
then ck ∈ {r, q+ r, 2q+ r, . . . , (x−1)q+ r}, so there are x = ⌈(xq + y − r)/q⌉ = ⌈(ak − r)/q⌉
possible values for ck. If y > r, then ck ∈ {r, q + r, 2q + r, . . . , xq + r}, so there are x + 1 =
⌈(xq + y − r)/q⌉ = ⌈(ak − r)/q⌉ possible values for ck. In any case, there are ⌈(ak − r)/q⌉
possible values for ck, and after ck is chosen, there is only one possible value for c0. For each
1 ≤ i ≤ ⌊k/2⌋, there are b choices for ck−i and exactly one choice for the corresponding ci.
Therefore

∑

n∈Pb
n ≡ r (mod q)

bk ≤ n < akb
k+1

1 =

⌈
ak − r

q

⌉

· b · b · · · b
︸ ︷︷ ︸

⌊k/2⌋ terms

=

⌈
ak − r

q

⌉

b⌊k/2⌋,

as desired.
Part 3 We compute the third sum in (4). For each j ∈ {0, 1, . . . , ⌊k/2⌋}, let

mj =
∑

0≤i≤j

ak−ib
k−i = (akak−1 · · · ak−j00 · · · 0)b.

Then ∑

n∈Pb

akb
k ≤ n < m∗

1 =
∑

1≤j≤⌊k/2⌋

∑

n∈Pb
mj−1≤n<mj

1. (13)

We first show that for 1 ≤ j ≤ ⌊k/2⌋,

∑

n∈Pb
mj−1≤n<mj

1 = ak−jb
⌊k/2⌋−j. (14)

Let n = (ckck−1 . . . c1c0)b be an integer that is counted in the left-hand side of (14). We see
that mj−1 = (akak−1 · · · ak−(j−1)00 · · · 0)b and mj = (akak−1 · · · ak−j00 · · · 0)b. Then there is
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only one possible value for each ck, ck−1, . . . , ck−j+1, namely, ck = ak, ck−1 = ak−1, . . . , ck−j+1 =
ak−j+1. In addition, there is only one choice for each c0, c1, . . . , cj−1 since ck−i = ci for
i = 0, 1, . . . , j − 1. Since ck−j ∈ {0, 1, 2, . . . ak−j − 1}, there are ak−j choices for ck−j. The
remaining digits ck−i, where j+1 ≤ i ≤ ⌊k/2⌋, can be chosen arbitrarily from 0, 1, . . . , b− 1.
So the left-hand side of (14) is equal to

ak−j · b · b · · · b
︸ ︷︷ ︸

⌊k/2⌋−j terms

= ak−jb
⌊k/2⌋−j.

This proves (14). From (13) and (14), we obtain

∑

n∈Pb

akb
k ≤ n < m∗

1 =
∑

1≤j≤⌊k/2⌋

ak−jb
⌊k/2⌋−j. (15)

Part 4 We calculate the last sum in (4). Recall that m = (akak−1 · · · a1a0)b and m∗ =
(akak−1 · · · ak−⌊k/2⌋00 · · · 0)b. The only possible palindrome n such that m∗ ≤ n ≤ m is
n = Cb(m). So the number of such palindromes is 1 if m ≥ Cb(m) and is 0 otherwise. That
is ∑

n∈Pb
m∗≤n≤m

1 = [m ≥ Cb(m)]. (16)

Therefore we obtain the formula (1) from (7), (11), (15), and (16), and the formula (2) from
(10), (12), (15), and (16). This completes the proof.

Applying Theorem 7 with q = 1, 2, we obtain Pongsriiam and Subwattanachai’s result
[18, Theorems 2.2 and 2.3] as a corollary.

Corollary 8. Let b ≥ 2 and m ≥ 1 be integers and m = (akak−1 · · · a1a0)b. Then

Ab(m, 1, 0) = Ab(m) = b⌈k/2⌉ +
∑

0≤i≤⌊k/2⌋

ak−ib
⌊k/2⌋−i + [m ≥ Cb(m)]− 2.

In addition, if α = (b⌈k/2⌉ + b⌊k/2⌋ − 2)/(b − 1), q = 2, and b ≡ 0 (mod 2), then Ab(m, 2, 0)
is equal to

(
b

2
− 1

)

α +

⌊
ak − 1

2

⌋

b⌊k/2⌋ + [ak ≡ 0 (mod 2)]




∑

1≤i≤⌊k/2⌋

ak−ib
⌊k/2⌋−i + [m ≥ Cb(m)]



 ,

and Ab(m, 2, 1) is equal to

bα

2
+

⌈
ak − 1

2

⌉

b⌊k/2⌋ + [ak ≡ 1 (mod 2)]




∑

1≤i≤⌊k/2⌋

ak−ib
⌊k/2⌋−i + [m ≥ Cb(m)]



 .

11



3.2 The case b ≡ 1 (mod q)

Theorem 9. Let b ≥ 2, m, q ≥ 1, and 0 ≤ r < q be integers, b ≡ 1 (mod q), and

m = (akak−1 · · · a1a0)b. For each nonnegative integer j ≤ ⌊k/2⌋, let

rj =







(

r − 2
∑

0≤i≤(k/2)−1 ak−i

)

mod q, if j = k/2;
(

r
2
−
∑

0≤i≤j−1 ak−i

)

mod q/2, if q is even and j 6= k/2;
((

q+1
2

)
r −

∑

0≤i≤j−1 ak−i

)

mod q, if q is odd and j 6= k/2,

and

sj =

{

ak−j mod q/2, if q is even and j 6= k/2;

ak−j mod q, otherwise.

Let

m∗
1 =

∑

0≤j≤(k−1)/2

(
2ak−jb

((k−1)/2)−j − 2sj
q

+ [rj < sj]

)

, m∗
2 =

∑

0≤j≤(k/2)−1

ak−j(b− 1)b(k/2)−j−1

q
,

m∗
3 =

∑

0≤j≤(k/2)−1

(
ak−j(b+ 1)b(k/2)−j−1 − 2sj

q
+ [rj < sj]

)

, and

δ(m) = [m ≥ Cb(m)]
[
r⌊k/2⌋ = s⌊k/2⌋

]
.

Then the following statements hold.

(i) If q is odd, then

Ab(m, q, r) =
b⌊(k+1)/2⌋ − 1

q
+

∑

0≤j≤⌊k/2⌋

(⌊
ak−jb

⌊k/2⌋−j

q

⌋

+ [rj < sj]

)

− [r = 0] + δ(m).

(ii) If q is even, then Ab(m, q, r) is equal to







(b−1)b(k−1)/2

q
, if k and r are odd;

(b+1)b(k−1)/2−2
q

+m∗
1 − [r = 0] + δ(m), if k is odd and r is even;

⌊
ak/2
q

⌋

+m∗
2 +

[
rk/2 < sk/2

]
+ δ(m), if k is even and r is odd;

2(bk/2−1)
q

+
⌊
ak/2
q

⌋

+m∗
3 − [r = 0] +

[
rk/2 < sk/2

]
+ δ(m), if k and r are even.

Remark 10. In the proof of this theorem, we also show that
[
r⌊k/2⌋ = s⌊k/2⌋

]
can be replaced

by [sb(Cb(m)) ≡ r (mod q)], that is,

δ(m) = [m ≥ Cb(m)] [sb (Cb(m)) ≡ r (mod q)] .

12



Proof. If q = 1, then r = 0 and the result follows from Corollary 8. So assume that q ≥ 2.
If k = 0, then m = a0 where 1 ≤ a0 < b, m = Cb(m), and we obtain by Lemma 4 that

Ab(m, q, r) =
∑

1≤n≤a0
n ≡ r (mod q)

1 =
∑

0≤n<a0
n ≡ r (mod q)

1− [r = 0] + [a0 ≡ r (mod q)]

= ⌊a0/q⌋+ [r mod q < a0 mod q]− [r = 0] + [r mod q = a0 mod q]

= ⌊a0/q⌋+ [r0 < s0]− [r = 0] + δ(m).

This proves the case k = 0. For the clarity of the proof, we will also first consider the case
k = 1, that is, we have m = (a1a0)b. Since b ≡ 1 (mod q), we obtain by Lemma 4 that

Ab(m, q, r) =
∑

1≤n<b
n ≡ r (mod q)

1 +
∑

n∈Pb
n ≡ r (mod q)

b≤n≤m

1

=
b− 1

q
+

∑

n∈Pb
b≤n<a1b

n ≡ r (mod q)

1 +
∑

n∈Pb
a1b≤n≤m

n ≡ r (mod q)

1. (17)

The only possible b-adic palindrome that can be counted in the second sum in (17) is
(a1a1)b = Cb(m), and it is actually counted if and only if m ≥ Cb(m) and Cb(m) ≡ r (mod q).
Therefore (17) implies that

Ab(m, q, r) =
b− 1

q
+

∑

n∈Pb
b≤n<a1b

n ≡ r (mod q)

1 + δ1(m), (18)

where δ1(m) = [m ≥ Cb(m)][Cb(m) ≡ r (mod q)]. The palindromes counted in the sum on
the right-hand side of (18) is of the form n = (aa)b where 1 ≤ a < a1 and

2a ≡ ab+ a = n ≡ r (mod q). (19)

We divide the consideration into two cases.
Case 1 q is even. If r is odd, then (19) is not possible and the sum on the right-hand

side of (18) is equal to 0. Suppose that r is even. Then (19) is equivalent to

a ≡ r/2 (mod q/2).

By Lemma 5, the sum on the right-hand side of (18) is equal to

Nb (1, q/2, r/2, 1, a1) = ⌊2a1/q⌋+ [r/2 mod q/2 < a1 mod q/2]− [r/2 ≡ 0 (mod q/2)]

=
2a1 − 2s0

q
+ [r0 < s0]− [r = 0].
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Therefore (18) becomes

Ab(m, q, r) =

{
b−1
q

+ δ1(m), if r is odd;
b−1
q

+ 2a1−2s0
q

+ [r0 < s0]− [r = 0] + δ1(m), if r is even.

Since Cb(m) = a1b+ a1 ≡ 2a1 (mod q), we see that Cb(m) ≡ r (mod q) if and only if

2a1 ≡ r (mod q).

So, if r is odd, then δ1(m) = 0. If r is even, then the above congruence is equivalent to
a1 ≡ r/2 (mod q/2), that is, r0 = s0, and so δ1(m) = δ(m). Therefore the result follows.

Case 2 q is odd. This case is similar to Case 1, so we skip some details. We see that
(19) is equivalent to

a ≡

(
q + 1

2

)

r (mod q).

In addition, Cb(m) ≡ r (mod q) if and only if a1 ≡ (q + 1)r/2 (mod q), that is, r0 = s0.
Therefore δ1(m) = δ(m) and we obtain from (18) that Ab(m, q, r) is equal to

b− 1

q
+Nb

(

1, q,

(
q + 1

2

)

r, 1, a1

)

+ δ1(m)

=
b− 1

q
+ ⌊a1/q⌋+

[(
q + 1

2

)

r mod q < a1 mod q

]

− [r = 0] + δ(m)

=
b− 1

q
+ ⌊a1/q⌋+ [r0 < s0]− [r = 0] + δ(m),

which proves the result.
Hence from this point on, we assume that q, k ≥ 2. We will also apply Lemma 2(ii)

repeatedly without reference. Let

m∗ =
∑

0≤i≤⌊k/2⌋

ak−ib
k−i = (akak−1 · · · ak−⌊k/2⌋00 · · · 0)b. (20)

We write

Ab(m, q, r) =
∑

n∈Pb
n ≡ r (mod q)

n < bk

1 +
∑

n∈Pb
n ≡ r (mod q)

bk ≤ n < akb
k

1 +
∑

n∈Pb
n ≡ r (mod q)

akb
k ≤ n < m∗

1 +
∑

n∈Pb
n ≡ r (mod q)
m∗ ≤ n ≤ m

1, (21)

and divide the calculation into 6 parts.
Part 1 We will show that for integers t ≥ 1,

∑

n∈Pb
n ≡ r (mod q)
bt≤n<bt+1

1 =







0, if q is even, t is odd, and r is odd;
2(b−1)b(t−1)/2

q
, if q is even, t is odd, and r is even;

(b−1)2b(t/2)−1

q
, if q is even, t is even, and r is odd;

(b−1)(b+1)b(t/2)−1

q
, if q is even, t is even, and r is even;

(b−1)b⌊t/2⌋

q
, if q is odd.

(22)

14



Let t ≥ 1 be an integer and n = (ctct−1 · · · c1c0)b a b-adic palindrome that is counted in the
left-hand side of (22). Then we have sb(n) ≡ n ≡ r (mod q). We divide the consideration
into four cases according to the parity of q and t.

Case 1.1 q is even and t is odd. We have

2
∑

0≤j≤(t−1)/2

ct−j =
∑

0≤j≤t

cj = sb(n) ≡ r (mod q). (23)

Since q and the leftmost term in (23) are even, we see that r is even. So if r is odd, then the
left-hand side of (22) is equal to 0, which proves the first case of (22). Since r is even, the
congruence in (23) is equivalent to

∑

0≤j≤(t−1)/2

ct−j ≡ r/2 (mod q/2).

Since 1 ≤ ct < b and 0 ≤ ct−j < b for all integers j = 1, 2, . . . , (t−1)/2, we obtain by Lemma
5 that

∑

n∈Pb
n ≡ r (mod q)
bt≤n<bt+1

1 = Nb

(
t+ 1

2
, q/2, r/2, 1, b

)

=
b(t+1)/2 − b(t−1)/2

q/2
=

2(b− 1)b(t−1)/2

q
,

which proves the second case of (22).
Case 1.2 q and t are odd. This case is similar to Case 1.1, so we skip some details. We

also obtain (23), and (23) is equivalent to

∑

0≤j≤(t−1)/2

ct−j ≡

(
q + 1

2

)

r (mod q).

Therefore the left-hand side of (22) is

Nb

(
t+ 1

2
, q,

(
q + 1

2

)

r, 1, b

)

=
(b− 1)b(t−1)/2

q
.

Case 1.3 q and t are even. In this case, we first fix the value of ct/2 and then count the
number of choices for the remaining cj. We have

ct/2 + 2
∑

0≤j≤(t/2)−1

ct−j =
∑

0≤j≤t

cj = sn(n) ≡ r (mod q). (24)

Then ct/2 ≡ r (mod 2) and (24) is equivalent to

∑

0≤j≤(t/2)−1

ct−j ≡
r − ct/2

2
(mod q/2).
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Since q is even and b ≡ 1 (mod q), we see that b ≡ 1 (mod 2). By Lemmas 4 and 5, we
obtain

∑

n∈Pb
n ≡ r (mod q)
bt≤n<bt+1

1 =
∑

0≤c<b
c ≡ r (mod 2)

Nb

(

t/2, q/2,
r − c

2
, 1, b

)

=

(
bt/2 − b(t/2)−1

q/2

)(
b− 1

2
+ [r ≡ 0 (mod 2)]

)

=

{
(b−1)(b+1)b(t/2)−1

q
, if r is even;

(b−1)2b(t/2)−1

q
, if r is odd,

which proves the third and fourth cases of (22).
Case 1.4 q is odd and t is even. Using a similar method as in Case 1.3, we obtain (24),

and (24) is equivalent to

∑

0≤j≤(t/2)−1

ct−j ≡
(
r − ct/2

)
(
q + 1

2

)

(mod q).

Therefore the left-hand side of (22) is

∑

0≤c<b

Nb

(

t/2, q, (r − c)

(
q + 1

2

)

, 1, b

)

=
(b− 1)bt/2

q
.

Combining this and the result in Case 1.2, we obtain the last case of (22).
Part 2 We let S1 be the first sum on the right-hand side of (21), and apply (22) to

calculate S1. It is straightforward to see that

∑

1≤t≤k−1
t ≡ 0 (mod 2)

b(t/2)−1 =
b⌊(k−1)/2⌋ − 1

b− 1
and

∑

1≤t≤k−1
t ≡ 1 (mod 2)

b(t−1)/2 =
b⌊k/2⌋ − 1

b− 1
.

In addition, we have 1, 2, . . . , b− 1 are b-adic palindromes, b ≡ 1 (mod q), and S1 is equal to
∑

0≤t≤k−1

∑

n∈Pb
n ≡ r (mod q)
bt≤n<bt+1

1

=
∑

1≤n<b
n ≡ r (mod q)

1 +
∑

1≤t≤k−1
t ≡ 0 (mod 2)

∑

n∈Pb
n ≡ r (mod q)
bt≤n<bt+1

1 +
∑

1≤t≤k−1
t ≡ 1 (mod 2)

∑

n∈Pb
n ≡ r (mod q)
bt≤n<bt+1

1

= ⌊b/q⌋+
∑

1≤t≤k−1
t ≡ 0 (mod 2)

∑

n∈Pb
n ≡ r (mod q)
bt≤n<bt+1

1 +
∑

1≤t≤k−1
t ≡ 1 (mod 2)

∑

n∈Pb
n ≡ r (mod q)
bt≤n<bt+1

1,
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where the first sum is obtained by Lemma 4. If q is even and r is odd, then (22) implies

S1 = ⌊b/q⌋+
(b− 1)2

q

∑

1≤t≤k−1
t ≡ 0 (mod 2)

b(t/2)−1

=
b− 1

q
+

(
b− 1

q

)
(
b⌊(k−1)/2⌋ − 1

)
=

(b− 1)b⌊(k−1)/2⌋

q
. (25)

Similarly, if q and r are even, then

S1 =
b− 1

q
+

(b− 1)(b+ 1)

q

∑

1≤t≤k−1
t ≡ 0 (mod 2)

b(t/2)−1 +
2(b− 1)

q

∑

1≤t≤k−1
t ≡ 1 (mod 2)

b(t−1)/2

=
b− 1

q
+

(
b+ 1

q

)
(
b⌊(k−1)/2⌋ − 1

)
+

2
(
b⌊k/2⌋ − 1

)

q

=
(b+ 1)b⌊(k−1)/2⌋ + 2b⌊k/2⌋ − 4

q
. (26)

If q is odd, then

S1 =
b− 1

q
+

(b− 1)b

q

∑

1≤t≤k−1
t ≡ 0 (mod 2)

b(t/2)−1 +
(b− 1)

q

∑

1≤t≤k−1
t ≡ 1 (mod 2)

b(t−1)/2

=
b− 1

q
+

b⌊(k+1)/2⌋ − b

q
+

b⌊k/2⌋ − 1

q

=
b⌊(k+1)/2⌋ + b⌊k/2⌋ − 2

q
. (27)

From (25), (26), and (27), we obtain

∑

n∈Pb
n ≡ r (mod q)

1≤n<bk

1 =







(b−1)b⌊(k−1)/2⌋

q
, if q is even and r is odd;

(b+1)b⌊(k−1)/2⌋+2b⌊k/2⌋−4
q

, if q and r are even;

b⌊(k+1)/2⌋+b⌊k/2⌋−2
q

, if q is odd.

(28)

Part 3 We show that the second sum on the right-hand side of (21) is equal to






0, if q is even, k is odd, and r is odd;
2(ak−1)b(k−1)/2−2s0+2

q
+ [r0 < s0]− [r = 0], if q is even, k is odd, and r is even;

(ak−1)(b−1)b(k/2)−1

q
, if q is even, k is even, and r is odd;

(ak−1)(b+1)b(k/2)−1−2s0+2
q

+ [r0 < s0]− [r = 0], if q is even, k is even, and r is even;
⌊
akb

⌊k/2⌋

q

⌋

− b⌊k/2⌋−1
q

+ [r0 < s0]− [r = 0], if q is odd.

(29)
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Let n = (ckck−1 · · · c1c0)b be a b-adic palindrome satisfying bk ≤ n < akb
k and n ≡ r (mod q).

We divide the calculation into four cases.
Case 3.1 q is even and k is odd. We have

2
∑

0≤j≤(k−1)/2

ck−j =
∑

0≤j≤k

cj = sb(n) ≡ r (mod q). (30)

Since q is even, the second sum on the right-hand side of (21) is zero when r is odd, which
proves the first case in (29). Suppose r is even. Then (30) is equivalent to

∑

0≤j≤(k−1)/2

ck−j ≡ r/2 (mod q/2).

Recall that r0 = r/2 mod q/2 and s0 = ak mod q/2. In addition, r0 = 0 if and only if r = 0
By Lemma 5 (iv), the second sum on the right-hand side of (21) is equal to

Nb

(
k + 1

2
, q/2, r/2, 1, ak

)

=
2(ak − 1)

(
b(k−1)/2 − 1

)

q
+ ⌊2ak/q⌋+ [r0 < s0]− [r0 = 0]

=
2(ak − 1)b(k−1)/2 − 2s0 + 2

q
+ [r0 < s0]− [r = 0],

which proves the second case in (29).
Case 3.2 q and k are odd. Similar to Case 1.2, we have

∑

0≤j≤(k−1)/2

ck−j ≡

(
q + 1

2

)

r (mod q).

Since b ≡ 1 (mod q), we obtain akb
(k−1)/2 ≡ s0 (mod q) and so (akb

(k−1)/2 − s0)/q =
⌊akb

⌊k/2⌋/q⌋. Therefore the second sum on the right-hand side of (21) is equal to

Nb

(
k + 1

2
, q,

(
q + 1

2

)

r, 1, ak

)

=
(ak − 1)(b(k−1)/2 − 1)

q
+ ⌊ak/q⌋+

[(
q + 1

2

)

r mod q < ak mod q

]

−

[(
q + 1

2

)

r mod q = 0

]

=
akb

(k−1)/2 − s0
q

−
b(k−1)/2 − 1

q
+ [r0 < s0]− [r0 = 0]

=

⌊
akb

⌊k/2⌋

q

⌋

−
b⌊k/2⌋ − 1

q
+ [r0 < s0]− [r = 0].

Case 3.3 q and k are even. Similar to Case 1.3, we have ck/2 ≡ r (mod 2) and

∑

0≤j≤(k/2)−1

ck−j ≡
r − ck/2

2
(mod q/2).
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For 0 ≤ c < b such that c ≡ r (mod 2), define r∗(c) = (r − c)/2 mod q/2. Recall that
s0 = ak mod q/2. Then by Lemma 5(iv), the second sum on the right-hand side of (21) is
equal to

∑

0≤c<b
c ≡ r (mod 2)

Nb(k/2, q/2, r
∗(c), 1, ak)

=
∑

0≤c<b
c ≡ r (mod 2)

(
2(ak − 1)(b(k/2)−1 − 1)

q
+ ⌊2ak/q⌋+ [r∗(c) < s0]− [r∗(c) = 0]

)

=

(
2(ak − 1)(b(k/2)−1 − 1)

q
+

2(ak − s0)

q

)(
b− 1

2
+ [r ≡ 0 (mod 2)]

)

+
∑

0≤c<b
c ≡ r (mod 2)

([r∗(c) < s0]− [r∗(c) = 0])

=

(
(ak − 1)b(k/2)−1 − s0 + 1

)
(b− 1 + 2[r ≡ 0 (mod 2)])

q

+
∑

0≤c<b
c ≡ r (mod 2)

([r∗(c) < s0]− [r∗(c) = 0]). (31)

Since b ≡ 1 (mod q), there exists an integer ℓ ≥ 1 such that b = ℓq+1. In addition, we have
b− 1 ≡ 0 (mod 2), and so if r is even, then r∗(b− 1) ≡ (r− (b− 1))/2 ≡ r/2 (mod q/2) and
thus r∗(b− 1) = r0 and [r0 = 0] = [r = 0]. Then the last sum in (31) is

[r ≡ 0 (mod 2)] ([r0 < s0]− [r = 0]) +
∑

1≤j≤ℓ

∑

(j−1)q≤c<jq
c ≡ r (mod 2)

([r∗(c) < s0]− [r∗(c) = 0]). (32)

We see that {(r − c)/2 | c ≡ r (mod 2) and (j − 1)q ≤ c < jq} is a complete residue system
modulo q/2 for any j = 1, 2, . . . , ℓ. So

∑

1≤j≤ℓ

∑

(j−1)q≤c<jq
c ≡ r (mod 2)

([r∗(c) < s0]− [r∗ = 0]) =
∑

1≤j≤ℓ

(s0 − 1) =
b− 1

q
(s0 − 1). (33)

From (31), (32), and (33), we obtain that the second sum on the right-hand side of (21) is

(ak − 1)(b− 1 + 2[r ≡ 0 (mod 2)])b(k/2)−1 − 2(s0 − 1)[r ≡ 0 (mod 2)]

q

+ [r ≡ 0 (mod 2)] ([r0 < s0]− [r = 0])

=

{
(ak−1)(b−1)b(k/2)−1

q
, if r is odd;

(ak−1)(b+1)b(k/2)−1−2(s0−1)
q

+ [r0 < s0]− [r = 0], if r is even,
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which proves the third and fourth cases in (29).
Case 3.4 q is odd and k is even. This case is similar to Case 3.3. We have

∑

0≤j≤(k/2)−1

ck−j ≡
(
r − ck/2

)
(
q + 1

2

)

(mod q).

For 0 ≤ c < b, let r∗(c) = ((r − c)(q + 1)/2) mod q. Since gcd((q + 1)/2, q) = 1 and

{c | (j − 1)q ≤ c < jq} is a complete residue system modulo q,

the set {r∗(c) | (j − 1)q ≤ c < jq} is also a complete residue system modulo q for any j =
1, 2, . . . , (b− 1)/q. In addition,

r∗(b− 1) ≡
(r − (b− 1))(q + 1)

2
≡

(q + 1)r

2
≡ r0 (mod q),

[r0 = 0] = [r = 0], and (akb
k/2 − s0)/q = ⌊akb

⌊k/2⌋/q⌋. Therefore

∑

n∈Pb
n ≡ r (mod q)

bk ≤ n < akb
k

1 =
∑

0≤c<b

Nb (k/2, q, r
∗(c), 1, ak)

=
∑

0≤c<b

(
(ak − 1)b(k/2)−1 − s0 + 1

q
+ [r∗(c) < s0]− [r∗(c) = 0]

)

=
(ak − 1)bk/2 − (s0 − 1)b

q
+
∑

0≤c<b

([r∗(c) < s0]− [r∗(c) = 0])

=
(ak − 1)bk/2 − (s0 − 1)b

q
+

(b− 1)

q
(s0 − 1) + [r0 < s0]− [r = 0]

=
akb

k/2 − s0
q

−
bk/2 − 1

q
−

(b− 1)

q
(s0 − 1) +

(b− 1)

q
(s0 − 1) + [r0 < s0]− [r = 0]

=

⌊
akb

⌊k/2⌋

q

⌋

−
b⌊k/2⌋ − 1

q
+ [r0 < s0]− [r = 0].

Combining Case 3.2 and Case 3.4, we obtain the last case in (29). Therefore the proof of
(29) is complete.

Part 4 For each j ∈ {0, 1, . . . , ⌊k/2⌋}, let

mj =
∑

0≤i≤j

ak−ib
k−i = (akak−1 · · · ak−j00 · · · 0)b. (34)
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For 1 ≤ j ≤ ⌊k/2⌋, we will show that

∑

n∈Pb
n ≡ r (mod q)
mj−1≤n<mj

1 =







0, if q is even, k is odd, and r is odd;
2ak−jb

((k−1)/2)−j−2sj
q

+ [rj < sj], if q is even, k is odd, and r is even;
ak−j(b−1)b(k/2)−j−1

q
, if q is even, k is even, j < k/2, and r is odd;

ak−j(b+1)b(k/2)−j−1−2sj
q

+ [rj < sj] , if q is even, k is even, j < k/2, and r is even;
⌊
ak/2
q

⌋

+
[
rk/2 < sk/2

]
, if q is even, k is even, and j = k/2;

⌊
ak−jb

⌊k/2⌋−j

q

⌋

+ [rj < sj], if q is odd.

(35)
Let 1 ≤ j ≤ ⌊k/2⌋, A the sum on the left-hand side of (35), and n = (ckck−1 · · · c1c0)b a
b-adic palindrome which is counted in the left-hand side of (35). Since mj−1 ≤ n < mj,

mj−1 = (akak−1 · · · ak−(j−1)00 · · · 0)b, and mj = (akak−1 · · · ak−j00 · · · 0)b,

the following properties hold:

1. ci = ck−i for all i = 0, 1, 2, . . . , k.

2. ck−i = ak−i for all i = 0, 1, 2, . . . , j − 1.

3. 0 ≤ ck−j < ak−j.

4. 0 ≤ ck−i < b for all i = j + 1, j + 2, . . . , ⌊k/2⌋.

We see that there are only one choice for each c0, c1, . . . , cj−1, ck−j+1, ck−j+2, . . . , ck and A
depends on the choices of ci for j ≤ i ≤ ⌊k/2⌋. We divide the calculation into two cases.

Case 4.1 q is even and k is odd. We have

2
∑

0≤i≤(k−1)/2

ck−i =
∑

0≤i≤k

ci = sb(n) ≡ r (mod q). (36)

Then (36) is impossible when r is odd, so A = 0, which proves the first case in (35). Suppose
r is even. From the above properties and the definition of rj, we obtain that (36) is equivalent
to ∑

j≤i≤(k−1)/2

ck−i ≡ r/2−
∑

0≤i≤j−1

ck−i ≡ r/2−
∑

0≤i≤j−1

ak−i ≡ rj (mod q/2),
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and A is equal to

Nb

(
k − 1

2
− j + 1, q/2, rj , 0, ak−j

)

=
2ak−j

(
b((k−1)/2)−j − 1

)

q
+

⌊
2ak−j

q

⌋

+ [rj mod q/2 < ak−j mod q/2]

=
2ak−j

(
b((k−1)/2)−j − 1

)

q
+

2(ak−j − sj)

q
+ [rj < sj]

=
2ak−jb

((k−1)/2)−j − 2sj
q

+ [rj < sj],

which proves the second case in (35).
Case 4.2 q and k are odd. Similar to Case 4.1, we have

∑

j≤i≤(k−1)/2

ck−i ≡

(
q + 1

2

)

r −
∑

0≤i≤j−1

ak−i ≡ rj (mod q).

In addition, ak−jb
(k−1)/2−j ≡ sj (mod q). Therefore

A = Nb

(
k − 1

2
− j + 1, q, rj , 0, ak−j

)

=
ak−jb

((k−1)/2)−j − sj
q

+ [rj < sj] =

⌊
ak−jb

⌊k/2⌋−j

q

⌋

+ [rj < sj].

Case 4.3 q and k are even. Using the same method of calculation, we have ck/2 ≡
r (mod 2) and

∑

0≤i≤(k/2)−1

ck−i ≡
r − ck/2

2
(mod q/2).

Case 4.3.1 j < k/2. We have

∑

j≤i≤(k/2)−1

ck−i ≡
r − ck/2

2
−

∑

0≤i≤j−1

ck−i ≡
r − ck/2

2
−

∑

0≤i≤j−1

ak−i (mod q/2).

For 0 ≤ c < b and c ≡ r (mod 2), define r∗j (c) =
(

(r − c)/2−
∑

0≤i≤j−1 ak−i

)

mod q/2.
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Then A is equal to

∑

0≤c<b
c ≡ r (mod 2)

Nb

(
(k/2)− j, q/2, r∗j (c), 0, ak−j

)

=
∑

0≤c<b
c ≡ r (mod 2)

(

2ak−j

(
b(k/2)−j−1 − 1

)

q
+

⌊
2ak−j

q

⌋

+ [r∗j (c) < sj]

)

=

(
2ak−jb

(k/2)−j−1 − 2sj
q

)(
b− 1

2
+ [r ≡ 0 (mod 2)]

)

+
∑

0≤c<b
c ≡ r (mod 2)

[r∗j (c) < sj]. (37)

Similar to Case 3.3, we write b = ℓq + 1 for some ℓ ∈ Z, and obtain that

{
r∗j (c) | c ≡ r (mod 2) and (i− 1)q ≤ c < iq

}

is a complete residue system modulo q/2 for any i = 1, 2, . . . , ℓ, and if r is even, then

r∗j (b− 1) ≡
r − (b− 1)

2
−

∑

0≤i≤j−1

ak−i ≡ r/2−
∑

0≤i≤j−1

ak−i ≡ rj (mod q/2).

Therefore the last sum in (37) is

[r ≡ 0 (mod 2)][rj < sj] +
∑

1≤i≤ℓ

∑

(i−1)q≤c<iq
c ≡ r (mod 2)

[r∗j (c) < sj]

= [r ≡ 0 (mod 2)][rj < sj] +
∑

1≤i≤ℓ

sj

= [r ≡ 0 (mod 2)][rj < sj] +
b− 1

q
sj. (38)

From (37) and (38), we have

A =
ak−j(b− 1)b(k/2)−j−1

q
+ [r ≡ 0 (mod 2)]

(
2ak−jb

(k/2)−j−1 − 2sj
q

+ [rj < sj]

)

=

{
ak−j(b−1)b(k/2)−j−1

q
, if r ≡ 1 (mod 2);

ak−j(b+1)b(k/2)−j−1−2sj
q

+ [rj < sj] , if r ≡ 0 (mod 2),

which proves the third and fourth case in (35).
Case 4.3.2 j = k/2. Then A depends only on the choices of ck/2 and

ck/2 ≡ r − 2
∑

0≤i≤(k/2)−1

ck−i ≡ r − 2
∑

0≤i≤(k/2)−1

ak−i ≡ rk/2 (mod q).
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By Lemma 4, we obtain that

A =
∑

0≤c<ak/2
c ≡ rk/2 (mod q)

1 =

⌊
ak/2
q

⌋

+ [rk/2 < sk/2],

which proves the fifth case in (35).
Case 4.4 q is odd and k is even. There is a similarity between Case 4.3 and this case,

so we skip some details.

Case 4.4.1 j < k/2. For 0 ≤ c < b, define r∗j (c) =
(

(r − c)(q + 1)/2−
∑

0≤i≤j−1 ak−i

)

mod

q. We see that {r∗j (c) | (i − 1)q ≤ c < iq} is a complete residue system modulo q for any

i = 1, 2, . . . , (b− 1)/q. In addition, r∗j (b− 1) = rj and ak−jb
k/2−j ≡ sj (mod q). We have

∑

j≤i≤(k/2)−1

ck−i ≡ (r − ck/2)

(
q + 1

2

)

−
∑

0≤i≤j−1

ak−i (mod q), and

A =
∑

0≤c<b

Nb

(
(k/2)− j, q, r∗j (c), 0, ak−j

)

=
∑

0≤c<b

(
ak−jb

(k/2)−j−1 − sj
q

+ [r∗j (c) < sj]

)

=
ak−jb

(k/2)−j − sjb

q
+
∑

0≤c<b

[r∗j (c) < sj]

=
ak−jb

(k/2)−j − sj
q

−

(
b− 1

q

)

sj +

(
b− 1

q

)

sj + [rj < sj]

=

⌊
ak−jb

⌊k/2⌋−j

q

⌋

+ [rj < sj].

Case 4.4.2 j = k/2. Then A depends only on the choices of ck/2 and

ck/2 ≡ r − 2
∑

0≤i≤(k/2)−1

ak−i ≡ rk/2 (mod q).

By Lemma 4, we obtain

A =
∑

0≤c<ak/2
c ≡ rk/2 (mod q)

1 =

⌊
ak/2
q

⌋

+
[
rk/2 < sk/2

]
.

Combining the results in Case 4.2 and in this case, we obtain the last case in (35). Therefore
the verification of (35) is complete.
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Part 5 In this part, we compute the third sum on the right-hand side of (21). Recall
the definitions of m∗ and mj given in (20) and (34), and the definitions of m∗

1, m
∗
2, and m∗

3

given in the statement of this theorem. We see that the third sum on the right-hand side of
(21) is

∑

n∈Pb
n ≡ r (mod q)

akb
k≤n<m∗

1 =
∑

1≤j≤⌊k/2⌋

∑

n∈Pb
n ≡ r (mod q)
mj−1≤n<mj

1. (39)

From (35) and (39), we obtain that the third sum on the right-hand side of (21) is equal to






0, if q is even, k is odd,

and r is odd;

m∗
1 −

2akb
(k−1)/2−2s0

q
− [r0 < s0], if q is even, k is odd,

and r is even;

m∗
2 −

ak(b−1)b(k/2)−1

q
+
⌊
ak/2
q

⌋

+
[
rk/2 < sk/2

]
, if q is even, k is even,

and r is odd;

m∗
3 −

ak(b+1)b(k/2)−1−2s0
q

− [r0 < s0] +
⌊
ak/2
q

⌋

+
[
rk/2 < sk/2

]
, if q is even, k is even,

and r is even;
∑

1≤j≤⌊k/2⌋

(⌊
ak−jb

⌊k/2⌋−j

q

⌋

+ [rj < sj]
)

, if q is odd.

(40)
Part 6 Let L be the last sum in (21). We will calculate L and Aq(m, q, r). The only

possible b-adic palindrome n lying in the interval [m∗,m] is n = Cb(m). Therefore

L = [m ≥ Cb(m)][Cb(m) ≡ r (mod q)].

If k is odd, then Cb(m) ≡ r (mod q) if and only if

2
∑

0≤j≤(k−1)/2

ak−j = sb (Cb(m)) ≡ r (mod q). (41)

Similarly, if k is even, then Cb(m) ≡ r (mod q) if and only if

2
∑

0≤j≤(k/2)−1

ak−j + ak/2 = sb (Cb(m)) ≡ r (mod q). (42)

If k is even, then (42) is equivalent to r⌊k/2⌋ = s⌊k/2⌋. If k is odd, q is even, and r is odd, then
(41) is not possible, and so L = 0. In the remaining cases, the congruence (41) is equivalent
to r⌊k/2⌋ = s⌊k/2⌋. Therefore

L =

{

0, if k is odd, q is even, and r is odd;

δ(m), otherwise.
(43)

Therefore the desired formula for Ab(m, q, r) can be obtained from (21), (28), (29), (40), and
(43). This completes the proof.
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The formulas presented in Theorems 7 and 9 may look complicated. However, by exam-
ining certain special cases, the formulas are of a simpler form as shown in the corollary.

Corollary 11. Let b ≥ 2, k, q ≥ 1, and 0 ≤ r < q be integers. Then the following statements

hold.

(i) Assume that b ≡ 0 (mod q). Then

Ab

(
bk, q, r

)
= ((b/q)− [r = 0])

(
b⌈k/2⌉ + b⌊k/2⌋ − 2

b− 1

)

(ii) Assume that b ≡ 1 (mod q). Then

Ab

(
bk, q, r

)
=







b⌈k/2⌉+b⌊k/2⌋−2
q

, if q is odd;

(b−1)b⌊(k−1)/2⌋

q
, if q is even and r is odd;

(b+1)b⌊(k−1)/2⌋+2b⌊k/2⌋−4
q

, if q and r are even.

Proof. We see that Cb(b
k) = bk + 1 > bk, which implies that [bk ≥ Cb(b

k)] = 0. In addition,
if r > 0, then ⌈(1− r)/q⌉ = 0. Then (i) follows from Theorem 7. For (ii), let m = bk =
(100 · · · 0)b and let m∗

1,m
∗
2,m

∗
3, rj , sj for each 0 ≤ j ≤ ⌊k/2⌋ be defined as in Theorem 9.

Then for 0 ≤ j ≤ ⌊k/2⌋, we have

sj =

{

1, if j = 0;

0, if j 6= 0,

[rj < sj] =

{

[r = 0], if j = 0;

0, if j 6= 0,

m∗
1 =

2b(k−1)/2 − 2

q
+ [r = 0], m∗

2 =
2b(k−1)/2 − 2

q
,

m∗
3 =

(b+ 1)b(k/2)−1 − 2

q
, and [m ≥ Cb(m)] = 0.

From the above observation and Theorem 9, we obtain (ii).

The next corollary gives a supplementary result to Col’s theorems [8]. Recall that if we
write f(b) = g(b) + O∗(h(b)), then it means that f(b) = g(b) + O(h(b)) and the implied
constant can be taken to be 1.

Corollary 12. Let b ≥ 2, q ≥ 1, and 0 ≤ r < q be integers. Assume that q is odd and

b ≡ 1 (mod q). Then uniformly for m ≥ 1, we have

Ab(m, q, r) =
1

q
Ab(m) +O∗

(
logm

2 log b
+ 2

)

.
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Proof. If q = 1, then Ab(m, q, r) = Ab(m)/q and the result follows immediately. So assume
that q ≥ 2. Let m = (akak−1 · · · a1a0)b. By Corollary 8 and Theorem 9, we obtain

1

q
Ab(m) =

b⌊(k+1)/2⌋

q
+

∑

0≤i≤⌊ k
2⌋

ak−ib
⌊k/2⌋−i

q
+

[m ≥ Cb(m)]− 2

q
and

Ab(m, q, r) =
b⌊(k+1)/2⌋ − 1

q
+

∑

0≤j≤⌊ k
2⌋

(⌊
ak−jb

⌊k/2⌋−j

q

⌋

+ [rj < sj]

)

− [r = 0] + δ(m),

where r0, . . . , r⌊k/2⌋, s0, . . . , s⌊k/2⌋, δ(m) are defined as in Theorem 9. In addition, we also have
k = ⌊(logm)/(log b)⌋ and 0 ≤ x−⌊x⌋ < 1 for all x ∈ R. If δ(m) = 1, then [m ≥ Cb(m)] = 1.
If δ(m) = 0, then 0 ≤ [m ≥ Cb(m)] ≤ 1. Therefore

Ab(m, q, r)−
1

q
Ab(m) ≤ −(1/q) + ((k/2) + 1) + 1 + 1/q = (k/2) + 2.

It is also easy to see that

Ab(m, q, r)−
1

q
Ab(m) ≥ −(1/q)− ((k/2) + 1)− 1 + 1/q = −(k/2)− 2.

Hence |Ab(m, q, r)− Ab(m)/q| ≤ k/2 + 2 ≤ (logm)/(2 log b) + 2, as required.

4 Conclusion and open questions

We obtain exact formulas for the number of b-adic palindromes not exceeding a positive
integer m that lie in an arithmetic progression r mod q when b ≡ 0, 1 (mod q). By modifying
Lemmas, we strongly believe that an analogous formula for the case b ≡ −1 (mod q) can be
obtained, but we have not proceeded to a calculation yet to avoid making this article too
lengthy. We also derive an asymptotic formula for the number of b-adic palindrome that
are at most m and are congruent to r modulo q when q is odd and b ≡ 1 (mod q) that
gives an equidistribution result in residue classes modulo q extending Col’s result [8], which
is under the different condition gcd(b(b2 − 1), q) = 1. We currently do not have sufficiently
satisfactory or interesting results in the other cases. This leads us to some open questions.

Problem 13. What can we say about the distribution of b-adic palindromes in residue
classes modulo q when b 6≡ −1, 0, 1 (mod q) and gcd(b(b2 − 1), q) > 1? Are they uniformly
distributed?

Problem 14. Is there any nontrivial case for b and q that b-adic palindromes are not
asymptotically equidistributed in residue classes modulo q? A trivial case is, for example,
when r = 0, b = 10, and q is a power of 10 where Ab(m, q, r) = A10(m, q, r) = 0 for all m.

Problem 15. What are the necessary and sufficient conditions on b and q for an (asymptotic)
equidistributed result?
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[4] B. Bas̆ić, On d-digit palindromes in different bases: the number of bases is unbounded,
Int. J. Number Theory 8 (2012), 1387–1390.
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