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Abstract

We define a family of generalized Eulerian polynomials depending on three param-

eters. We prove that these polynomials have a nonnegative gamma vector, and we

provide a combinatorial description of the corresponding gamma coefficients. By as-

signing suitable integer values to the parameters, we obtain a new expansion of the

nth Eulerian polynomial over the symmetric group Sn−1, a new description of the

associated gamma vector, and an identity relating the derangements of S2n to the

alternating permutations of S2n+1.

1 Introduction

The Eulerian polynomial An(x) counts the permutations of the symmetric group Sn by
number of excedances. More precisely, we have

An(x) =
∑

w∈Sn

xexc(w), (1)

where
exc(w) :=

∣

∣{i | 1 ≤ i ≤ n, w(i) > i}
∣

∣.
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As An(x) is a palindromic polynomial of degree n− 1, namely

An(x) = xn−1 An(1/x),

we may consider its expansion in terms of the so-called gamma-basis:

An(x) =

⌊n−1
2

⌋
∑

k=0

γn,kx
k(x+ 1)n−1−2k. (2)

The array (γn,k)k is known as the gamma vector associated with An(x). The coefficients
γn,k are known to be nonnegative integers, and that is why the polynomial An(x) is said
gamma-nonnegative (or gamma-positive).

The idea behind gamma-nonnegativity is contained in the pioneering paper of Foata and
Schützenberger [8]. An explicit interpretation of γn,k in terms of permutation enumeration
can be given by means of “valley-hopping” [12], which is a technique based on the results of
Foata and Strehl [9]. Gamma-nonnegativity implies unimodality, which in turn has been the
subject of a considerable amount of research in the recent past [5,6,16]. The literature around
this topics is still growing, and provides interesting variants, refinements, and generalizations
of Eulerian polynomials. See, for example, the beautiful survey by Athanasiadis [3], and the
book of Petersen [12].

More recently, Petrullo [13] provided a characterization and a combinatorial description
of gamma-nonnegative Sheffer sequences, obtaining a direct connection with classical or-
thogonal polynomials. Moreover, Agapito et al. [1,2] introduced a new family of generalized
Eulerian polynomials through the action of the Weyl algebra on formal power series. Then,
as sometimes happens in the practice of mathematical investigation, in an attempt to prove
that some of these polynomials are gamma-nonnegative, we came to define a new family of
polynomials with nonnegative gamma vector.

In this paper we show that some of the most remarkable Eulerian-like polynomials can
be obtained by assigning suitable integer values to the parameters q, t, y in the polynomials
Pn(q, t; x, y) defined by

∑

n≥0

Pn(q, t; x, y)
zn

n!
=

(

x− y

xeyz − yexz

)q

e(x+y)qtz.

As Pn(q, t; x, y) is symmetric and homogeneous of degree n in x, y, by the fundamental
theorem of symmetric functions, there exist uniquely determined coefficients γn,k(q, t) such
that

Pn(q, t; x, y) =

⌊n
2
⌋

∑

k=0

γn,k(q, t) x
kyk (x+ y)n−2k.

So, Pn(q, t; x) := Pn(q, t; x, 1) is a palindromic polynomial in x, with gamma coefficients
γn,k(q, t). To achieve a combinatorial description of Pn(q, t; x), we define

Cn(x) :=
∑

w∈Cn

xexc(w),
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where Cn is the set of all n-cycles in Sn. Then, from Cn(x) = xAn−1(x) we recover the
generating function (Proposition 1)

∑

n≥1

Cn(x)
zn

n!
:= z + log

(

x− 1

xez − exz

)

,

so that we may write

∑

n≥0

Pn(q, t; x, y)
zn

n!
= eqtz+q

∑
n≥2 Cn(x)

zn

n! = eqtz+q
∑

n≥2 xAn−1(x)
zn

n! .

Given this, the enumerative properties of Pn(q, t; x) (Theorem 2), as well as its gamma-
nonnegative expansion (Theorem 4), plainly follow from the classical results on Eulerian
polynomials by means of the exponential formula. Moreover, by generalizing some results
on derangement polynomials [3, 15], we obtain a combinatorial interpretation of γn,k(q, t).
Finally, starting from the curious special case An+1(x) = Pn(2, 1/2; x, 1), we establish a new
expansion of An(x) over the symmetric group Sn−1, a new description of the associated
gamma vector, and a new identity relating the derangements of S2n to the alternating
permutations of S2n+1 (Example 5.4).

2 The generalized Eulerian polynomials

Let q, t, x, y, z denote indeterminates over the field Q of rational numbers, set

P(q, t; x, y; z) :=

(

x− y

xeyz − yexz

)q

e(x+y)qtz, (3)

and consider the polynomials Pn(q, t; x, y) that occur in the following formal power series
expansion of P(q, t; x, y; z):

P(q, t; x, y; z) =
∑

n≥0

Pn(q, t; x, y)
zn

n!
. (4)

Note that, if α is any further independent indeterminate, then we have

P(q, t;αx, αy; z) = P(q, t; x, y;αz) and P(q, t; x, y; z) = P(q, t; y, x; z).

The identities above say us that Pn(q, t; x, y) is a degree n homogeneous symmetric poly-
nomial in x, y. In particular, this means that Pn(q, t; x) := Pn(q, t; x, 1) is palindromic of
degree n in x, namely we have

xn Pn(q, t; 1/x) = Pn(q, t; x).
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Recall that the Eulerian polynomials (1) have the following exponential generating function:

A(x; z) := 1 +
∑

n≥1

An(x)
zn

n!
=

1− x

e(x−1)z − x
=

x− 1

xez − exz
ez. (5)

So, comparing with (3), we have

An(x) = Pn(1, 1/(x+ 1); x). (6)

Now, for all S ⊆ {1, 2, . . . , n}, we let C(S) denote the set of all w ∈ Sn that cyclically
permute the elements of S, and that fix every i /∈ S. Then, we define

CS(x) :=
∑

w∈C(S)

xexc(w). (7)

As CS(x) depends only on |S|, we will often write Cn(x) instead of CS(x) whenever |S| = n.
The exponential generating function of the polynomials Cn(x) is given below.

Proposition 1. We have

C(x; z) :=
∑

n≥1

Cn(x)
zn

n!
= z + ln

(

x− 1

xez − exz

)

. (8)

Proof. Recall that every permutation w ∈ Sn induces a partition π = {S1, S2, . . . , Sk} of
the set {1, 2, . . . , n} as follows: set a, b ∈ Si if and only if b = σj(a) for a suitable j. We
write c1, c2, . . . , ck to denote the disjoint cycles (1-cycles included) of w, and we assume that
ci ∈ C(Si) for 1 ≤ i ≤ k. Because exc(w) = exc(c1) + exc(c2) + · · ·+ exc(ck), we may write

An(x) =
∑

w∈Sn

xexc(w) =
∑

π∈Πn

∏

S∈π

CS(x),

where Πn is the set of all partitions of {1, 2, . . . , n}. Now, the exponential formula ensures
us that

A(x; z) = eC(x;z),

and (8) comes directly from (5).

Identity (8) is our starting point to develop a combinatorial description of the polynomial
Pn(q, t; x, y). To this aim, for every w ∈ Sn, we let fix(w) denote the number of fixed points
of w. Moreover, we let cyc(w) denote the number of disjoint cycles of w.

Theorem 2. We have

Pn(q, t; x, y) =
∑

w∈Sn

qcyc(w)tfix(w)xexc(w)yexc(w
−1)(x+ y)fix(w). (9)
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Proof. From (3), (4), and (8), it follows that

eq[C(x;z)−(1−t)z] =

(

x− 1

xez − exz

)q

eqtz = 1 +
∑

n≥1

Pn

(

q,
t

x+ 1
; x, 1

)

zn

n!
.

On the other hand, again by the exponential formula, we recover

Pn(q, t/(x+ 1); x) =
∑

π∈Πn

q|π|tsing(π)
∏

S∈π

CS(x), (10)

where |π| is the number of blocks of π, and sing(π) is the number of singletons of π. Now,
as we have |π| = cyc(w) and sing(π) = fix(w) for every w that induces π, by virtue of (7)
we get

∑

π∈Πn

q|π|tsing(π)
∏

S∈π

CS(x) =
∑

w∈Sn

qcyc(w)tfix(w)xexc(w). (11)

Finally, since Pn(q, t; x, y) is homogeneous of degree n in x, y, from (10) and (11) we conclude

Pn(q, t; x, y) = ynPn(q, t; x/y) =

=
∑

w∈Sn

qcyc(w)tfix(w)xexc(w)yn−exc(w)−fix(w)(x+ y)fix(w).

At this point, (9) is obtained by observing that exc(w) + fix(w) + exc(w−1) = n.

Remark 3. A slightly different version of the generating function (3) has been studied by
Zeng [17] in connection with continued fractions.

3 Gamma-nonnegativity

As we have already pointed out, Pn(q, t; x, y) is symmetric and homogeneous polynomial
of degree n in x, y. So, by the fundamental theorem of symmetric functions, there exist
uniquely determined coefficients γn,k(q, t) such that

Pn(q, t; x, y) =

⌊n
2
⌋

∑

k=0

γn,k(q, t) x
kyk(x+ y)n−2k. (12)

We are going to prove that Pn(q, t; x) is gamma-nonnegative as a polynomial in x. Namely, we
will show that each γn,k(q, t) occurring in (12) is itself a polynomial in q, t with nonnegative
integer coefficients. To this goal, we first recall that An(x) is gamma-nonnegative, which
means that the coefficients γn,k in (2) are nonnegative integers. In addition, we observe that
from (5) and (8) it follows that

1 +
1

x

d

dz
C(x, z) =

1

x
+

x− 1

xez − exz
ez =

1

x
+A(x, z),
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whence

Cn(x) = xAn−1(x) =

⌊n−2
2

⌋
∑

k=0

γn−1,k x
k+1 (x+ 1)n−2(k+1), for n ≥ 2. (13)

Moreover, note that every product An1(x)An2(x) · · ·Ani
(x) of Eulerian polynomials is a

gamma-nonnegative polynomial of degree n1 + n2 + · · ·+ ni − i. More precisely, we have

An1(x)An2(x) · · ·Ani
(x) =

⌊n−i
2

⌋
∑

k=0

γn1,n2,...,ni;k x
k (x+ 1)n−i−2k,

where n := n1 + n2 + · · ·+ ni and

γn1,n2,...,ni;k =
∑

j1+j2+···+ji=k

γn1,j1γn2,j2 · · · γni,ji . (14)

Theorem 4. Each polynomial γn,k(q, t) in (12) has nonnegative integer coefficients.

Proof. From (10) and (13) it follows that

Pn(q, t; x) =
∑

π∈Πn

q|π|tsing(π)x|π|−sing(π)(x+ 1)sing(π)
∏

S∈π

A|S|−1(x).

As
∏

S∈π A|S|−1(x) is a gamma-nonnegative polynomial of degree

nπ := n− 2|π|+ sing(π),

there exist nonnegative integers γπ,i satisfying

∏

S∈π

A|S|−1(x) =

⌊nπ
2
⌋

∑

i=0

γπ,i x
i (x+ 1)nπ−2i.

Hence, we have

Pn(q, t; x) =
∑

π∈Πn

q|π|tsing(π)
⌊nπ

2
⌋

∑

i=0

γπ,i x
i+|π|−sing(π) (x+ 1)n−2(i+|π|−sing(π)),

which ensures us that γn,k(q, t) is a polynomial in q, t with nonnegative integer coefficients.

Since gamma-nonnegativity implies unimodality, the following result directly follows from
Theorem 4.

Corollary 5. If q, t are nonnegative integers, then Pn(q, t; x) is a unimodal polynomial in x.
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Remark 6. Thanks to the “transformation fondamentale” [8], the Eulerian polynomial An(x)
can be defined in the equivalent way

An(x) =
∑

w∈Sn

xasc(w),

where asc(w) :=
∣

∣{i |wi < wi+1, 1 ≤ i ≤ n − 1}
∣

∣ is the number of ascents in w =
w1w2 · · ·wn. Now, let Cn := C({1, 2, . . . , n}). For all w = (a1, a2, . . . , an−1, n) ∈ Cn, set
w′ := a1a2 · · · an−1 ∈ Sn−1. As w 7→ w′ is bijective, we have

Cn(x) =
∑

w∈Cn

xexc(w) =
∑

w′∈Sn−1

x1+asc(w) = xAn−1(x),

and a bijective proof of (13) is obtained.

4 A combinatorial description of gamma coefficients

Given w ∈ Sn and i ∈ {1, 2, . . . , n}, we say that i is a double excedance for w if and only
if we have w−1(i) < i < w(i). Let dexc(w) denote the number of double excedances of w.
Moreover, let Dn ⊂ Sn denote the set of derangements (permutations with no fixed points)
in Sn, and consider the expansion of the derangement polynomial dn(x) in terms of the
gamma basis [3]:

dn(x) :=
∑

w∈Dn

xexc(w) =

⌊n
2
⌋

∑

k=0

ξn,kx
k(x+ 1)n−2k.

By means of “valley-hopping”, Athanasiadis and Savvidou [4] obtained the following neat
combinatorial interpretation of ξn,k:

ξn,k =
∣

∣{w |w ∈ Dn, exc(w) = k, dexc(w) = 0}
∣

∣. (15)

This last result plainly extends to the q-derangement polynomial dn(q; x), for which we
have [3, 15]

dn(q; x) :=
∑

w∈Dn

qcyc(w)xexc(w) =

⌊n
2
⌋

∑

k=0

ξn,k(q)x
k(x+ 1)n−2k,

where

ξn,k(q) =
∑

w∈Dn
exc(w)=k, dexc(w)=0

qcyc(w) =
n

∑

i=1

ξn,k,iq
i,

and
ξn,k,i =

∣

∣{w |w ∈ Dn, exc(w) = k, dexc(w) = 0, cyc(w) = i}
∣

∣. (16)

With this established, a combinatorial description of γn,k(q) can be easily carried out.
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Theorem 7. We have

γn,k(q, t) =
∑

w∈Sn
exc(w)=k, dexc(w)=0

qcyc(w)tfix(w) =
n

∑

i,j=0

γn,k,i,jq
itj, (17)

where

γn,k,i,j =
∣

∣{w |w ∈ Sn, exc(w) = k, dexc(w) = 0, cyc(w) = i, fix(w) = j}
∣

∣. (18)

Proof. From (4) we obtain

Pn(q, t; x) =
n

∑

j=0

(

n

j

)

tjqj(x+ 1)jdn−j(q; x),

then

γn,k(q, t) =
n

∑

j=0

(

n

j

)

tjqjξn−j,k(q). (19)

On the other hand, it is easily seen that

γn,k,i,j =

(

n

j

)

ξn−j,k,i−j.

Indeed, for every positive integer i, and for every F ⊆ {1, 2, . . . , n} such that |F | = j, there
are exactly ξn−j,k,i−j permutations w ∈ Sn with i cycles, k excedances, no double excedances,
and with the set F of fixed points. Hence, we may write

n
∑

i,j=0

γn,k,i,jq
itj =

n
∑

j=0

(

n

j

)

qjtjξn−j,k(q). (20)

Finally, comparing (19) and (20), we obtain (17).

Corollary 8. We have P2n+1(q, t;−1) = 0 and

(−1)nP2n(q, t;−1) =
∑

w∈D2n

qcyc(w)(−1)n−exc(w) (21)

=
∑

w∈D2n
exc(w)=n, dexc(w)=0

qcyc(w). (22)

Proof. Setting x = −1 and y = 1 in (9), we get (21). Analogously, setting x = −1 and y = 1
in (12), we obtain P2n+1(q, t;−1) = 0 and

P2n(q, t;−1) = (−1)nγ2n,n(q, t).
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Besides, from (17) we have

P2n(q, t;−1) = (−1)n
∑

w∈S2n
exc(w)=n, dexc(w)=0

qcyc(w)tfix(w). (23)

Now, given w ∈ S2n such that exc(w) = n and dexc(w) = 0, we have that i is an excedance
for w if and only if i < w(i) > w2(i). So, w2(i) is an excedance for w−1, and exc(w−1) = n.
Finally, as exc(w)+ exc(w−1)+ fix(w) = 2n, we deduce that fix(w) = 0, and we may replace
S2n with D2n in (23) to obtain (22).

Note that the permutations w ∈ S2n satisfying exc(w) = n and dexc(w) = 0 bijec-
tively correspond to the alternating permutations via the “transformation fondamentale” [8].
For instance, starting from the standard representation of w = (5, 1, 4, 2)(8, 3, 7, 6) ∈ S8

(with exc(w) = 4 and dexc(w) = 0), via the “transformation fondamentale”we obtain
ŵ = 51428376, which in fact is an alternating permutation. So, (22) can be seen as a
q-analogue of the classical identity A2n+1(−1) = (−1)nE2n+1 relating Eulerian polynomials
to the Euler numbers En.

5 Some special cases and new results on Eulerian poly-

nomials

The polynomial Pn(q, t; x, y) reduces to well-known gamma-nonnegative polynomials once
that the parameters q, t, y are suitably specialized. For each of these special cases, (9)
provides the corresponding interpretation in terms of enumeration of permutations, while
(17) and (18) lead to the combinatorial description of the associated gamma vector.

5.1 Powers of the binomial

From (4) we have

lim
q→0

Pn

(

q,
t

q
; x, y

)

= tn(x+ y)n.

In this case, the identity permutation e is the unique w ∈ Sn providing a nonzero contribu-
tion in (9). In particular, we have cyc(e) = fix(e) = n and dexc(e) = exc(e) = 0.

5.2 Derangement polynomials and their q-analogues

This case was essentially discussed in the previous section. We recall that we have

dn(q; x) = Pn(q, 0; x, 1). (24)
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By virtue of (4), the corresponding generating function is

∑

n≥0

dn(q; x)
zn

n!
=

(

x− 1

xez − exz

)q

. (25)

The combinatorial expansion obtained from (9) is

dn(q; x) =
∑

w∈Dn

qcyc(w)xexc(w).

Of course, for the gamma vector we recover the known expression [3, 4, 15]

γn,k(q, 0) = ξn,k(q).

The derangement polynomial arises as dn(x) = dn(1; x), for which we have

γn,k(1, 0) = ξn,k.

5.3 Binomial Eulerian polynomials

Set
Ãn(x) := Pn(1, 1; x) =

∑

w∈Sn

xexc(w)(x+ 1)fix(w). (26)

From (3), (4), and (5) we recover

∑

n≥0

Ãn(x)
zn

n!
=

x− 1

xez − exz
e(x+1)z = A(x; z) exz = ez + x

(

A(x; z)− 1
)

ez,

then

Ãn(x) =
n

∑

k=0

(

n

k

)

xn−kAk(x) = 1 + x
n

∑

k=1

(

n

k

)

Ak(x), (27)

where A0(x) := 1. This says that Ãn(x) is a binomial Eulerian polynomials [3]. For these
polynomials, (17) and (18) lead to the known interpretation of the gamma vector γ̃n,k:

γ̃n,k = γn,k(1, 1) =
∣

∣{w ∈ Sn | exc(w) = k, dexc(w) = 0}
∣

∣.

5.4 Eulerian polynomials

Classical Eulerian polynomials arise by means of a less obvious specialization. In fact, (4)
and (5) give

d

dz
A(x, z) =

(

x− 1

xez − exz

)2

e(x+1)z = P(2, 1/2; x, 1; z),
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from which it follows that

An+1(x) = Pn(2, 1/2; x, 1), for n ≥ 1.

Now, (9) leads to the following alternative combinatorial interpretation of the Eulerian poly-
nomial An(x):

An(x) =
∑

w∈Sn−1

2cyc(w)−fix(w)xexc(w)(x+ 1)fix(w). (28)

Moreover, from (17) and (18) we obtain a new description of the gamma vector of An(x):

γn,k = γn,k(2, 1/2) =
∑

w∈Sn−1
exc(w)=k, dexc(w)=0

2cyc(w)−fix(w). (29)

Finally, from (28) we get the following identity relating the derangements of S2n to the
alternating permutations of S2n+1:

∑

w∈D2n

2cyc(w)(−1)exc(w) = (−1)nE2n+1. (30)

An analogous relation involving the derangements and the alternating permutations of S2n

was stated by Roselle [14]:
∑

w∈D2n

(−1)exc(w) = (−1)nE2n.

It would be interesting to achieve neat bijective proofs of (28), (29), and (30).

5.5 A q,t-analogue of Eulerian polynomials

A very natural generalization of the Eulerian polynomial An(x) is given by

Qn(q, t; x) :=
∑

w∈Sn

qcyc(w)tfix(w)xexc(w) = Pn(q, t/(x+ 1); x). (31)

This polynomial reduces to An(x) when q = t = 1. Also, Qn(q, t; x) gives the q-derangement
polynomial dn(q; x) when t = 0, and the derangement polynomial dn(x) when q = 1 and
t = 0. Combinatorial properties of Qn(q, t; x) have been studied by G. Kasavrelof and J.
Zeng [10], and by S.-M. Ma [11]. Moreover, by setting t = 1 in (31) we obtain the polynomial
An(x, q) = xQn(q, 1; x) introduced by Brenti [7]. It is easily seen that Qn(q, t; x) is not
palindromic in x, hence there is no gamma vector associated with Qn(q, t; x). Nevertheless,
by comparing (31) with (3) and (4) we recover

∑

n≥0

Pn(q, t; x)
zn

n!
= exqtz

∑

n≥0

Qn(q, t; x)
zn

n!
.

11



So, we obtain

Pn(q, t; x) =
n

∑

k=0

(

n

k

)

(qtx)n−kQk(q, t; x), (32)

which is a generalization of the first identity in (27). In fact, the first part of (27) comes
from (32) by setting q = t = 1.
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Lecture Notes in Math., Vol. 138, Springer-Verlag, 1970.

[9] D. Foata and V. Strehl, Rearrangements of the symmetric group and enumerative prop-
erties of the tangent and secant numbers, Math. Z. 137 (1974), 257–64.

[10] G. Kasavrelof and J. Zeng, Two involutions for signed excedance numbers, Sém. Lothar.

Combin. 49 (2003), Article B49e.

[11] S.-M. Ma, Counting permutations by number of excedances, fixed points and cycles,
Bull. Aust. Math. Soc. 85 (2012), 415–421.

[12] T. K. Petersen, Eulerian Numbers, Birkhäuser Advanced Texts, Birkhäuser, 2015.
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