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Abstract

We study the relationship of the integer sequence A214048 with the Lambert W

function and the left factorial numbers A003422.

1 Notation and Introduction

We use the following notation [7]:

• N: the set of positive integers.

• N0: the set of non-negative integers.

• Z
−
0 : the set of negative integers and zero.

• R: the set of real numbers.
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• R
+: the set of real positive numbers.

• C: the set of complex numbers.

• Lm: the m’th Lucas number [6, A000032].

• Fm: the m’th Fibonacci number [6, A000045].

• AMm: the m’th associated Mersenne number [6, A001350].

• ϕ: the golden ratio, ϕ = 1+
√
5

2
.

• ⌊·⌋: the floor function of a real number, which is the largest integer not exceeding that
real number.

• W (·): the Lambert W function [4] is the solution to the equation xex = z for z ∈ C.

• Re(·): the real part of the complex number.

• Γ(·): the gamma function, defined by [8, p. 1]

Γ(z) =

∫ +∞

0

e−ttz−1dt (Re(z) > 0).

• ψ(m)(·): the polygamma function of order m, [8, p. 22], defined by

ψ(m)(z) =
∂m

∂zm
ψ(z) =

∂m+1

∂zm+1
ln
(

Γ(z)
)

,

ψ(0)(z) = ψ(z) =
Γ′(z)

Γ(z)
(m ∈ N0, z ∈ C\Z−

0 ).

• arg(·): the argument of the complex number.

• γ(·, ·): the incomplete gamma function, [8, p. 11], defined by

γ(s, a) =

∫ a

0

e−tts−1dt (Re(s) > 0, | arg(a)| < π).

Next, let us define the function

!z(x) =

∫ x

0

e−t t
z − 1

t− 1
dt (x ∈ R, z ∈ C).

On the basis of known properties of the Lambert W function and the sequence [6, A214048],
we determine x ∈ R so that

!n(x) < !n < !n(x) + 1 (n ∈ N).
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2 Connection to the Lambert W function

As a multi-valued function, W (z) has infinitely many complex branches and two real branches
[3, p. 2]:

W0 : [−1/e,∞) → [−1,∞),

W−1 : [−1/e, 0) → (−∞,−1].

In what follows, we consider only the real branch W−1(z) of the Lambert W function. The
function W−1(z) strictly decreases on (−1/e, 0) and W−1(−1/e) = −1. We also have the
following well-known inequality [3, p. 3] for the function W−1(z):

e ln(−x)

e− 1
≤ W−1(x) ≤ ln(−x) − ln(− ln(−x)) (x ∈ [−1/e, 0)). (1)

In proving one of the main results of the paper, the polygamma function of order m plays
a key role. The polygamma function satisfies the inequality

(m− 1)!

xm
+

m!

2xm+1
≤ (−1)(m+1)ψ(m)(x) ≤

(m− 1)!

xm
+

m!

xm+1
(m ≥ 1, x > 0). (2)

2.1 The real sequence (an)n≥4

We have − 1
n−1

(4/7)
1

n−1 ∈
(

−1
e
, 0
)

, (4 ≤ n ∈ N). Hence the equation xex = − 1
n−1

(4/7)
1

n−1

has two real solutions, namely x = W0

(

− 1
n−1

(4/7)
1

n−1

)

and x = W−1

(

− 1
n−1

(4/7)
1

n−1

)

. Let
us define the sequence of real positive numbers (an)n≥4 as follows:

an = −(n− 1)W−1

(

−
1

n− 1
(4/7)

1

n−1

)

(an ∈ R
+). (3)

Remark 1. Note that the sequence an is strictly increasing. We have

a−(n−1)
n ean = a−n

n+1e
an+1 and an+1 = an + ln

(

an+1

(

an+1

an

)n−1)

.

2.2 The golden sequence (αn)n≥1

In 2012, Kimberling [6] defined the golden sequence (αn)n≥1 [6, A214048] by

αn = m⇐⇒ ϕm−1 ≤ n! ≤ ϕm (m ∈ N), (4)

or
α1 = 1, αn = m⇐⇒ Lm−1 ≤ n! <  Lm (1 < n ∈ N).

Definition (4) produces the following lemma:
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Lemma 2. The following inequalities hold:

αn−1 +

⌊

lnn

lnϕ

⌋

≤ αn ≤ αn−1 +

⌊

lnn

lnϕ

⌋

+ 1 (1 < n ∈ N).

Consider the numbers ⌊ lnn
lnϕ

⌋ [6, A371672]. For this purpose, we consider the integer

sequence (dm)m≥0 [6, A181716] (see also [6, A098600]) which we define as follows:

dm = dm−1 + dm−2 + (−1)m, d0 = 0, d1 = 1.

The following equalities hold [6]:

dm = Fm−2 + Fm + (−1)m = AMm−1 +1 (1 < m ∈ N).

Lemma 3. The number dm is the number of natural numbers n for which the equality

⌊

lnn

lnϕ

⌋

= m (m ∈ N)

holds.

Proof. The proof presented here is due to J. Shallit. If we want to count the number
of n for which

⌊

lnn
lnϕ

⌋

= m, this is the same as counting the number of integers n such

that m ≤ lnn
lnϕ

< m + 1, which by rearrangement is the number of integers n such that

ϕm ≤ n < ϕm+1. However, we know from the Binet form of the Lucas numbers that

⌊

ϕm
⌋

=

{

Lm − 1, if m is even;

Lm, if m is odd,

so now trivially we get dm = Lm−1 + 1 if m is even and dm = Lm−1 − 1 if m is odd, that is,

dm = Lm−1 + (−1)m (m ∈ N). (5)

n 1 2 3 4 5 6 7 8 9 10 11 12 13
⌊

lnn
lnϕ

⌋

0 1 2 2 3 3 4 4 4 4 4 5 5

Table 1: The numbers
⌊

lnn
lnϕ

⌋

for n = 1, 2, . . . , 13.

Remark 4. Equality (5) was first stated without proof by G. C. Greubel in [6, A181716]. We
do not use Lemma 2 and Lemma 3 when proving the new results.
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Example 5. We have
⌊

lnn

lnϕ

⌋

= 1 for n = 2 ⇒ d1 = 1,

⌊

lnn

lnϕ

⌋

= 2 for n = 3, 4 ⇒ d2 = 2,

⌊

lnn

lnϕ

⌋

= 3 for n = 5, 6 ⇒ d3 = 2,

⌊

lnn

lnϕ

⌋

= 4 for n = 7, 8, 9, 10, 11 ⇒ d4 = 5.

2.3 The main result

We give our main result in the following theorem:

Theorem 6. The following inequality holds:

αn > an (4 < n ∈ N).

Proof. The inequality is easily checked for 4 ≤ n ≤ 78. We prove that it holds for n > 78.
Since ϕαn > n!, we have αn >

lnn!
lnϕ

> 2 ln(n!). Inequality (1) produces

−(n− 1)
e

e− 1
ln

(

1

n− 1
(4/7)

1

n−1

)

≥ an.

Therefore we have to prove 2 ln(n!) > an, or, equivalently

2 ln(n!) > −(n− 1)
e

e− 1
ln

(

1

n− 1
(4/7)

1

n−1

)

. (6)

The last inequality holds for n = 79. Let us define the function

ω(x) = 2 ln
(

Γ(x+ 1)
)

+ (x− 1)
e

e− 1
ln

(

1

x− 1
(4/7)

1

x−1

)

.

Therefore we need to prove that the first derivative of the function ω(x) is higher than 0 for
79 ≤ x ∈ R. It is easy to check that

ω′(x) = 2ψ(x+ 1) +
e

e− 1

(

ln

(

1

x− 1
(4/7)

1

x−1

)

− 1 +
ln 7/4

x− 1

)

> 0 (x = 38).

Further, it is necessary to show that ω′(x) is an increasing function for 79 ≤ x ∈ R. We need
to prove the following inequality:

∂2

∂x2
ω(x) = 2ψ(1)(x+ 1) −

e

(e− 1)(x− 1)
> 0 (79 ≤ x ∈ R).
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Hence using Inequality (2) it is sufficient to show that

2

(

1

x+ 1
+

1

2(x+ 1)2

)

>
e

(e− 1)(x− 1)
.

Equivalently, it suffices to show that

2x2 + x− 3 > (x+ 1)2
16

10
> (x+ 1)2

e

(e− 1)
.

It follows straightforwardly that

2x2 + x− 3 > (x+ 1)2
16

10

holds for x ≥ 8, which completes our proof.

3 The left factorial

In 1971, Kurepa [1] defined the function left factorial [6, A003422] for natural numbers !n by

!0 = 0, !n =
n−1
∑

k=0

k! (n ∈ N).

In the aforementioned paper [1, p. 151] Kurepa extended left factorial function to the complex
half-plane Re(z) > 0 as

!z =

∫ +∞

0

e−t t
z − 1

t− 1
dt.

We can also extend such function analytically to the whole complex plane [2] by

!z = !(z + 1) − Γ(z + 1).

Remark 7. In [1, p. 149], Kurepa proposed the conjecture for the left factorial as follows:

If 1 < n ∈ N, then gcd(!n, n!) = 2.

Over the past fifty years there have been many attempts to find a solution to Kurepa’s
conjecture. The problem remains open. For more details, see [5].

3.1 The left factorial and the Lambert W function

Let us define the sequence of real positive numbers (bn)n≥4 as follows:

bn =

∫ an

0

e−xx
n − 1

x− 1
dx =

n−1
∑

k=0

γ(k + 1, an) (bn ∈ R
+).

The sequence an is given by (3).
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n 4 5 6 7 8 9
an 5.87 9.61 13.62 17.85 22.29 26.90
bn 8.86 33.01 153.08 873.12 5913.15 46233.17
!n 10 34 154 874 5914 46234

Table 2: The numbers an, bn and !n for n = 4, 5, 6, 7, 8, 9.

Lemma 8. We have

2n− 4 <
3

4
an (4 ≤ n ∈ N).

Proof. Applying Remark 1, we have

an+1 > an + ln an+1 (4 ≤ n ∈ N)

> an + 2.8 > an +
8

3
(ln a6+1 > 2.88).

Hence by induction on n we obtain our inequality.

Lemma 9. The following inequality holds:

k
∑

t=0

atn
t!
<

ak+1
n

(k + 1)!
(5 ≤ n ∈ N, n− 2 > k ∈ N0).

Proof. We prove the lemma by induction on k. For k = 0 we have 1 < an, which is valid.
Assume that the statement holds for k − 1 < n− 3, i.e.,

k−1
∑

t=0

atn
t!
<
akn
k!
.

Then
k

∑

t=0

atn
t!

=
akn
k!

+
k−1
∑

t=0

atn
t!
< 2

akn
k!
.

Hence Lemma 8 produces

2
akn
k!

<
ak+1
n

(k + 1)!
(k < n− 2),

which completes the proof.

Theorem 10. The following inequalities hold:

bn < !n < bn + 1 (5 ≤ n ∈ N).
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Proof. The claim holds for 5 ≤ n ≤ 9. Since

e−xx
n − 1

x− 1
> 0,

the left side of the inequality holds. Furthermore, we have

∫ an

0

e−xx
n − 1

x− 1
dx = !n− e−an

n−1
∑

t=0

!n−!t

t!
atn. (7)

To prove the right side of the inequality, we use Equation (7). It suffices to show

n−1
∑

t=0

!n−!t

t!
atn < ean .

Firstly, by induction on n we have the proof of the following inequality:

2n+ 1 <
3

4
an (9 ≤ n ∈ N). (8)

Next, we have

n−1
∑

t=0

!n−!t

t!
atn = an−1

n + nan−2
n +

n−3
∑

t=0

!n−!t

t!
atn < an−1

n + nan−2
n + !n

n−3
∑

t=0

atn
t!

< an−1
n + nan−2

n + !n
an−2
n

(n− 2)!
(Lemma 9 for k = n− 3)

< an−1
n + nan−2

n + (n+ 1)an−2
n

(

!(n− 2)

(n− 2)!
< 1

)

<
7

4
an−1
n . (Equation (8)).

Since one real solution to the equation

ex −
7

4
xn−1 = 0

is an, we have
n−1
∑

t=0

!n−!t

t!
atn <

7

4
an−1
n = ean ,

which proves our theorem.

Remark 11. If we replace the constant 4
7

with numbers
4+ 1

31

7
or

4− 1

31

7
in Definition (3), then

Lemma 9 and Inequality (8) hold for the sequence (an)n≥4 defined in this way. We conclude
that our constant 4

7
is not optimal. We do not deal with this issue in this paper.
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3.2 The left factorial and the golden sequence

Let us define the sequence of real numbers (βn)n≥1 as follows:

βn =

∫ αn

0

e−xx
n − 1

x− 1
dx (βn ∈ R).

The sequence αn is given by (4).

n 1 2 3 4 5 6 7 8
αn 1 2 4 7 10 14 18 23
βn 0.63 1.46 3.13 9.44 33.23 153.29 873.21 5913.49
!n 1 2 4 10 34 154 874 5914

Table 3: The numbers !n, αn and βn for n = 1, 2, . . . , 8.

Theorem 12. The following inequalities hold:

βn < !n < βn + 1 (n ∈ N).

Proof. Let us define the family of functions fn(x) as follows:

fn(x) = x− (n− 1) ln x− ln
7

4
(0 < x ∈ R, 3 < n ∈ N).

Then

∂

∂x
fn(x) = f ′

n(x) = 1 −
n− 1

x
,

∂2

∂x2
fn(x) =

n− 1

x2
, f ′

n(n− 1) = 0, fn(n− 1) < 0.

For the equation fn(x) = 0, we have the real solution x = an. On the interval (0,+∞) the
function fn(x) has the minimum for x = n− 1. The function fn(x) increases on the interval
(0,+∞). For the sequence (αn)n≥5 the analogs of Lemma 9 and Inequality (8) are valid.
Hence Theorem 6 produces

βn < !n < βn + 1.

Remark 13. If Lemma 9 and Inequality (8) hold for the positive real sequence (cn)n≥n0
, and

if cn ≥ an, (n ≥ n0 ≥ 5), then

∫ cn

0

e−xx
n − 1

x− 1
dx < !n <

∫ cn

0

e−xx
n − 1

x− 1
dx+ 1 (n ≥ n0).
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3.3 Generalization

Let us define two-dimensional real sequences (An,m)n≥5,m≥1 and (Bn,m)n≥5,m≥1 as follows:

An,m = −(n− 1)W−1

(

−
1

n− 1

(

4

7m

)
1

n−1
)

,

Bn,m =

∫ An,m

0

e−xx
n − 1

x− 1
dx.

n 5 6 7 8 9
Bn,1 33.01 153.08 873.12 5913.15 46233.17
Bn,2 33.53 153.56 873.57 5913.58 46233.60
Bn,3 33.70 153.71 873.72 5913.73 46233.70
Bn,4 33.78 153.79 873.79 5913.80 46233.80
Bn,5 33.82 153.83 873.83 5913.84 46233.84
!n 34 154 874 5914 46234

Table 4: The numbers Bn,m and !n for n = 5, 6, 7, 8, 9 and m = 1, 2, 3, 4, 5.

Theorem 14. The following inequalities hold:

Bn,m < !n < Bn,m +
1

m
(5 ≤ n ∈ N, m ∈ N).

Proof. The Theorem 14 follows from the application of the procedures used in the proof of
Theorem 10 and Remark 13.

Corollary 15. The following equalities hold:

!n = ⌊βn⌋ + 1 (n ∈ N)

= ⌊bn⌋ + 1 =

⌊

Bn,m +
1

m

⌋

(4 < n ∈ N).
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Kurepa’s hypothesis for left factorial, Axioms 12 (8) (2023), Article 785.

[6] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2024. Available
at https://oeis.org.

[7] S. T. Somu and D. V. K. Tran, On sums of practical numbers and polygonal numbers,
J. Integer Sequences 27 (2024), Article 24.5.1.

[8] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions,
Kluwer Academic Publishers, 2001.

2020 Mathematics Subject Classification: Primary 11B83; Secondary 11B39.

Keywords: golden ratio, Fibonacci number, Lucas number, associated Mersenne number,
Lambert W function, left factorial, Kurepa hypothesis.

(Concerned with sequences A000032, A000045, A001350, A003422, A098600, A181716, A214048
and A371672.)

Received April 4 2024; revised versions received April 5 2024; May 4 2024; May 5 2024; May
7 2024; May 15 2024. Published in Journal of Integer Sequences, June 3 2024.

Return to Journal of Integer Sequences home page.

11

https://oeis.org
https://cs.uwaterloo.ca/journals/JIS/VOL27/Somu/somu5.pdf
https://oeis.org/A000032
https://oeis.org/A000045
https://oeis.org/A001350
https://oeis.org/A003422
https://oeis.org/A098600
https://oeis.org/A181716
https://oeis.org/A214048
https://oeis.org/A371672
https://cs.uwaterloo.ca/journals/JIS/

	Notation and Introduction
	Connection to the Lambert W function
	The real sequence (an)n4
	The golden sequence (n)n1
	The main result

	The left factorial
	The left factorial and the Lambert W function
	The left factorial and the golden sequence
	Generalization

	Acknowledgment

