G\ Journal of Integer Sequences, Vol. 27 (2024),

COSd Article 2457
92 a0

The Golden Ratio, Factorials, and the
Lambert W Function

Aleksandar Petojevi¢, Marjana Gorjanac Ranitovi¢, Dragan Rastovac, and
Milinko Mandi¢
University in Novi Sad
Faculty of Education in Sombor
Podgoricka 4
25000 Sombor
Serbia
apetoje@uns.ac.rs
ranitovicm@uns.ac.rs
rastovacd@gmail.com
milinmand@gmail.com

Abstract

We study the relationship of the integer sequence A214048 with the Lambert W
function and the left factorial numbers A003422.

1 Notation and Introduction

We use the following notation [7]:
e N: the set of positive integers.
e Nj: the set of non-negative integers.
e Z: the set of negative integers and zero.

e R: the set of real numbers.
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e RT: the set of real positive numbers.

e C: the set of complex numbers.

e L,,: the m’th Lucas number [6, A000032].

e F,,: the m’th Fibonacci number [6, A000045].

e AM,,: the m’th associated Mersenne number [6, A001350].
e : the golden ratio, ¢ = 1+T\£

e |-|: the floor function of a real number, which is the largest integer not exceeding that
real number.

e W (-): the Lambert W function [4] is the solution to the equation ze® = z for z € C.
e Re(-): the real part of the complex number.

e I'(-): the gamma function, defined by [8, p. 1]

['(z) = /0+00 e 't*'dt (Re(z) > 0).

e (™ (.): the polygamma function of order m, [8, p. 22|, defined by

0 = Lpe) = L ().
PO (2) = Y(2) = FF/<(;> (m e Ny, z € C\Z).

e arg(-): the argument of the complex number.

e 7(+,-): the incomplete gamma function, [8, p. 11], defined by
v(s,a) = / e 't"71dt  (Re(s) > 0, |arg(a)| < 7).
0

Next, let us define the function

o tr=1
lz(x) —/ e’ dt (zeR,zeC).
A

On the basis of known properties of the Lambert W function and the sequence [6, A214048],
we determine z € R so that

In(z) <In<In(z)+1 (ne€N).
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2 Connection to the Lambert 1V function

As a multi-valued function, W (z) has infinitely many complex branches and two real branches
3, p- 2J:

Wy : [—1/e,00) = [—1, 00),
W_i:[-1/e,0) = (—o0, —1].

In what follows, we consider only the real branch W_;(z) of the Lambert W function. The
function W_(z) strictly decreases on (—1/e,0) and W_;(—1/e) = —1. We also have the
following well-known inequality [3, p. 3] for the function W_;(z):

eln(—x)

P <W_i(z) <In(—z) —In(—In(—2z)) (z € [-1/e,0)). (1)

In proving one of the main results of the paper, the polygamma function of order m plays
a key role. The polygamma function satisfies the inequality

m—1)! m!
xm + xm—l—l

o < (1) ) < |

o + il = (m>1,z>0). (2)

2.1 The real sequence (a,);>4

We have —ﬁ(él/?)ﬁ € (—1,0), (4 <n € N). Hence the equation ze® = ——1-(4

has two real solutions, namely = = WO(—ﬁ(él/?)ﬁ) and © = W_y (—25(4/7)7
us define the sequence of real positive numbers (ay,),>4 as follows:

1

an = —(n— 1)W_, (‘ﬁ

<4/7>nl—1) (4, € RY), 3)

Remark 1. Note that the sequence a,, is strictly increasing. We have

n—1
—(n— _ An41
a/n (ﬂ 1)ean — ani‘lean+l and an+1 — an —|— 11’1 <an+1 ( .

2.2 The golden sequence («;),>1
In 2012, Kimberling [6] defined the golden sequence (a,)n>1 [6, A214048] by
ap=m =" <nl <™ (meN), (4)

or
=1, a,=m<= L, 1 <nl <L, (I1<neN).

Definition (4) produces the following lemma:
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Lemma 2. The following inequalities hold:

n Inn
Qp-1 + {—J <ap <o+ {—J +1 (I1<neN).
Inp

Consider the numbers HE—ZJ [6, A371672]. For this purpose, we consider the integer

sequence (d,,)m>o [0, AL81716] (see also [6, A098600]) which we define as follows:
= dop 1+ dops + (—1), dy=0, dy = 1.
The following equalities hold [6]:
= Fps + Fyot (1) = AMyu_1 +1 (1 <m € N).

Lemma 3. The number d,, is the number of natural numbers n for which the equality

holds.

Proof. The proof presented here is due to J. Shallit. If we want to count the number

of n for which H;I—ZJ = m, this is the same as counting the number of integers n such

that m < E—Z < m + 1, which by rearrangement is the number of integers n such that

™ < n < ™ However, we know from the Binet form of the Lucas numbers that

L mJ _ J Ly —1, if mis even;
7 L,,. if m is odd,

so now trivially we get d,,, = L,,_1 + 1 if m is even and d,,, = L,,,_1 — 1 if m is odd, that is,

dpy = Lyp—y + (=1)™  (m € N). (5)

O
n 1 3 4 5 6 7 8 9 10 11 12 13
o] 1 2 2 3 3 4 4 4 4 4 5 5

Table 1: The numbers HE—ZJ forn=1,2,...,13.

Remark 4. Equality (5) was first stated without proof by G. C. Greubel in [6, A181716]. We
do not use Lemma 2 and Lemma 3 when proving the new results.
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Example 5. We have

Inn

— | =1forn=2 =d, =1,
[ Inp ]

1

an =2 forn=3,4 = dy = 2,
[ Ingp |

1

2 S forn =56 = dy =2,
[ Ingp |

1

B A forn =7,8,9,10,11 = d, = 5.
[ Ingp |

2.3 The main result
We give our main result in the following theorem:
Theorem 6. The following inequality holds:

a, >a, (4<neN).

Proof. The inequality is easily checked for 4 < n < 78. We prove that it holds for n > 78.
Since ¢ > n!, we have a,, > 2% > 21n(n!). Inequality (1) produces

Ine

(-1 ln(n ! 1(4/7>n11) > .

Therefore we have to prove 2In(n!) > a,, or, equivalently

e

2n(nt) > ~(n — 1) ln(ni 1(4/7)715). (6)

e —

The last inequality holds for n = 79. Let us define the function

(&

w(z) =2mn(l(z+1)) + (z — 1)6 — 1n<xi1(4/7)£1).

Therefore we need to prove that the first derivative of the function w(x) is higher than 0 for
79 <z € R. It is easy to check that

W(z) = 2(x +1) + —2 (m(m i 1(4/7)2:11) 1+ ln7/4) >0 (z=38).

e—1 rx—1

Further, it is necessary to show that w'(x) is an increasing function for 79 < x € R. We need
to prove the following inequality:
82

0x? w

() —2¢<1>(x+1)—m >0 (79<z€eR).
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Hence using Inequality (2) it is sufficient to show that

1 1 e
2 > .
(x+1+2(x—|—1)2> (e—=1)(z—1)
Equivalently, it suffices to show that

16
272 —-3> 12— > 1) .
v @+ > ey

It follows straightforwardly that

16
2x2+x—3>(x+1)21—0

holds for x > 8, which completes our proof. m

3 The left factorial
In 1971, Kurepa [1] defined the function left factorial [6, A003422] for natural numbers !n by

n—1
10=0, ln=> k (neN)

In the aforementioned paper [1, p. 151] Kurepa extended left factorial function to the complex

half-plane Re(z) > 0 as
+oo —ttz -1
lz = e dt.
; t—1

We can also extend such function analytically to the whole complex plane [2] by

lz=1(z+1)—-T(z+1).

Remark 7. In [1, p. 149], Kurepa proposed the conjecture for the left factorial as follows:
If 1 <neN, then ged(In,n!) = 2.

Over the past fifty years there have been many attempts to find a solution to Kurepa’s
conjecture. The problem remains open. For more details, see [5].

3.1 The left factorial and the Lambert W function

Let us define the sequence of real positive numbers (b,,),>4 as follows:

n—1

an n o__ 1
bn:/ e . dx:ZV(k—l—l,an) (b, € RT).
0 e k=0

The sequence a,, is given by (3).
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n 4 ) 6 7 8 9
an, 2.87 9.61 13.62 17.85 22.29 26.90
b, 8.86 33.01 153.08 873.12 5913.15 46233.17
In 10 34 154 874 5914 46234

Table 2: The numbers a,,, b, and n for n =4,5,6,7,8,9.
Lemma 8. We have 3
2n —4 < 1% (4<neN).
Proof. Applying Remark 1, we have
Upi1 > Qp + 1N, (4<neN)
> a, +2.8>a, + 2 (Inagyr > 2.88).

Hence by induction on n we obtain our inequality. O]
Lemma 9. The following inequality holds:

k k+1

@ 5<neN,n—2>keN
Z_!<(k;+1)! b<neN,n—-2>FkeNy).

t=0

Proof. We prove the lemma by induction on k. For k£ = 0 we have 1 < a,, which is valid.
Assume that the statement holds for k — 1 < n — 3, i.e.,

at  a*
ETI R
t=0
Then
SR Y RN
>Am A<
t=0 t=0
Hence Lemma 8 produces
ok okt .
21 < —=2 <n-—2),
kl (kE+1)! ( )
which completes the proof. O]

Theorem 10. The following inequalities hold:

by <n<b,+1 (5<neN).



Proof. The claim holds for 5 <n < 9. Since

n
et =1

e > 0,

r—1
the left side of the inequality holds. Furthermore, we have

n—1

an " —1 In—It
e der =In—e al. 7
/0 x—1 ; " 9
To prove the right side of the inequality, we use Equation (7). It suffices to show
2 In—lt . u
Z a, <em.
t!

t=0

Firstly, by induction on n we have the proof of the following inequality:

3
2n+1<1an (9 <neN). (8)
Next, we have
n—1 n—3 n—3
In—It In—t t
Z nt! al =a" ' 4 na? + Z nt! al, < a '+ na’?+ In a_?
t=0 =0 =0
n—1 n—2 a2_2
<ap " +na, "+ In——— (Lemma 9 for k =n — 3)
(n—2)!
l(n—2
<art+nal 7+ (n+ 1)al? Mn=2) <1
(n—2)!
7 n—1

< Za”_ . (Equation (8)).

Since one real solution to the equation

7

T n—1
e! —-x"" =0
4
is a,,, we have
n—1
In—It 7
n—t g ~1 "
Z i an<zlaz = e,
t=0 ’
which proves our theorem. O

1

1 a1
Remark 11. If we replace the constant 7 with numbers H% or 4% in Definition (3), then
Lemma 9 and Inequality (8) hold for the sequence (ay,),>4 defined in this way. We conclude

that our constant % is not optimal. We do not deal with this issue in this paper.
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3.2 The left factorial and the golden sequence

Let us define the sequence of real numbers (f,),>1 as follows:

z—1

Br = /0% Ly (B, €R).

The sequence «, is given by (4).

n 1 2 3 4 5 6 7 8
Qlpy 1 2 4 7 10 14 18 23
Bn 0.63 1.46 3.13 9.44 33.23 153.29 873.21 5913.49
n 1 2 4 10 34 154 874 5914
Table 3: The numbers !n, «,, and g, forn =1,2,...,8.
Theorem 12. The following inequalities hold:
fn<In<pB,+1 (neN).
Proof. Let us define the family of functions f,(z) as follows:
7
fn(x):x—(n—l)lnx—lnz (0<zeR,3<neN).
Then
0 n—1 0? n—1
D fa) = fia) =1~ fuln 1) <0

T T

For the equation f,(z) = 0, we have the real solution = a,. On the interval (0,+o00) the
function f,(x) has the minimum for x = n — 1. The function f,(z) increases on the interval
(0,400). For the sequence (a;,),>5 the analogs of Lemma 9 and Inequality (8) are valid.

Hence Theorem 6 produces
B <In<pB,+ 1.

Remark 13. If Lemma 9 and Inequality (8) hold for the positive real sequence (¢,)n>n,, and

if ¢, > a,, (n > ng > 5), then

Cn Tl_l Cn TL_1
/ e_xm dr < !n</ e_xx dr + 1
0 1 0

T — r—1

) @fn(l’) = o f’r/L(n - 1) = OJ

(n > ngp).




3.3 Generalization

Let us define two-dimensional real sequences (A, )n>5m>1 and (B m)n>5m>1 as follows:

1 [ 4\m1
e (G ().

A
n,m n o __ 1
B, m :/ e_xx dx.
0 r—1

n 5 6 7 8 9
B,a 33.01 153.08 873.12 5913.15 46233.17
B, 33.53 153.56 873.57 0913.58 46233.60
B, 33.70 153.71 873.72 5913.73 46233.70
B4 33.78 153.79 873.79 5913.80 46233.80
B, s 33.82 153.83 873.83 5913.84 46233.84

In 34 154 874 2914 46234

Table 4: The numbers B, ,, and n for n =5,6,7,8,9 and m = 1,2, 3,4, 5.

Theorem 14. The following inequalities hold:
1
Bym <In<B,n,+— (5<neN, meN).
m

Proof. The Theorem 14 follows from the application of the procedures used in the proof of
Theorem 10 and Remark 13. ]

Corollary 15. The following equalities hold:

= [bn] +1= {Bn,m+%J (4 <neN).
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