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Abstract

Let A ⊆ Zn be a subset. A sequence S = (x1, . . . , xk) in Zn is said to be an A-
weighted zero-sum sequence if there exist a1, . . . , ak ∈ A such that a1x1+· · ·+akxk = 0.
By a square, we mean a non-zero square in Zn. We determine the smallest natural
number k, such that every sequence in Zn whose length is k has a square-weighted
zero-sum subsequence. We also determine the smallest natural number k, such that
every sequence in Zn whose length is k has a square-weighted zero-sum subsequence
whose terms are consecutive terms of the given sequence.

1 Introduction

For a finite set A, we let |A| denote the number of elements of A. For a, b ∈ Z with a ≤ b,
we let [a, b] denote the set {x ∈ Z : a ≤ x ≤ b}.

Let R be a commutative ring with unity, M be an R-module, and A ⊆ R. A subsequence
T of a sequence S = (x1, x2, . . . , xk) in M is called an A-weighted zero-sum subsequence if
the set J = {i : xi ∈ T} is non-empty, and for every i ∈ J there exists ai ∈ A such that
∑

i∈J aixi = 0 where 0 is the identity element of M .
For a finite R-module M and A ⊆ R, the A-weighted Davenport constant of M denoted

by DA is defined to be the least positive integer k, such that every sequence in M whose
length is k, has an A-weighted zero-sum subsequence.

Adhikari and Chen [1] introduced this constant for the ring R = Z, i.e., for abelian groups.
We define the constant CA to be the least positive integer k, such that every sequence in
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M whose length is k, has an A-weighted zero-sum subsequence whose terms are consecutive
terms.

Remark 1. It is easy to observe that DA ≤ CA ≤ |M |.

We also denote the ring Z/nZ by Zn. Let U(n) denote the group of units in Zn and U(n)2

denote the set {x2 : x ∈ U(n)}. For a divisor m of n, the homomorphism fn,m : Zn → Zm is
given by fn,m(a + nZ) = a +mZ. Mondal et al. [7, Lem. 7] showed that the image of U(n)
under fn,m is U(m).

Let p be a prime divisor of n. We say that vp(n) = r if pr | n and pr+1 ∤ n. Suppose
r = vp(n). For every x ∈ Zn we denote the image of x under fn, pr by x(p). Given a sequence
S = (x1, . . . , xl) in Zn, we get a sequence

S(p) = (x
(p)
1 , . . . , x

(p)
l ) in Zpr .

From this point onwards, we will only consider the case when M = R = Zn.
Adhikari and Rath [3] showed that DU(p)2 = 3 when p is an odd prime. Let Ω(n) denote

the number of prime factors of n counted with multiplicity. Grynkiewicz and Hennecart [5]
showed that DU(n)2 ≥ 2Ω(n) + min{v3(n), v5(n)} + 1 when n is odd, with equality if either
3 ∤ n or v3(n) ≥ v5(n). This extends a result of Chintamani and Moriya [4], and another of
Adhikari, David, and Urroz [2].

These results lead quite naturally to the question of determining the value of DS(n) where

S(n) = {x2 : x ∈ Zn} \ {0}.

For an odd prime p we observe that S(p) = U(p)2. We determine the value of DS(n) for
every n and show that it depends on the parity of n when n is a square, and on the parity
of v2(n) when n is not a square. We also investigate the value of CS(n).

We show that CU(25)2 = 9, adding to the results which were obtained by Mondal et al.
[8]. Using this fact, we get that CS(n) ≤ 9 when n is an odd square. The values of DS(n)

for all n ∈ [2, 37] are given in the following table. When p is an odd prime, we see that
S(p) = U(p)2 and so the value of DS(p) had been determined in Adhikari and Rath [3].

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
DS(n) 2 3 4 3 2 3 2 5 2 3 3 3 2 3 4 3 2 3

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
DS(n) 3 3 2 3 2 5 2 3 3 3 2 3 2 3 2 3 4 3

Table 1: Values of DS(n) for all n ∈ [2, 37].

The only values of n in the set [2, 37] for which CS(n) differs from DS(n) are 9 and 25.
The smallest n for which we have not been able to determine CS(n) is 81. In this article, we
have obtained the following results:
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• We determine the size of S(n) for every n.

• When n is a square, we get that DS(n) = 4 or 5 when n is even or odd respectively.

• When n is not a square, we get that DS(n) = 2 or 3 when v2(n) is odd or even
respectively.

• When n is not a square of an odd number, we get that CS(n) = DS(n).

• When n is a square of an odd, squarefree number, we get that CS(n) = 9.

• When n is a square of an odd number m such that m is divisible by p2 where p is a
prime which is at least seven, we get that CS(n) = DS(n).

2 The size of S(n)

Observation 2. Let n = pr11 · · · prss where the pi’s are distinct primes. By the Chinese
remainder theorem we get an isomorphism

ϕ : Z/nZ → Z/pr11 Z× · · · × Z/prss Z

given by ϕ(a) = (a(p1), . . . , a(ps)). As ϕ is an isomorphism, we have that a ∈ S(n) if and
only if for every prime divisor q of n, we have that a(q) is a square and there exists a prime
divisor p of n such that a(p) 6= 0.

Hence, it follows that

|S(n)|+ 1 =
(

|S(pr11 )|+ 1
)

· · ·
(

|S(prss )|+ 1
)

.

Thus, it is enough to determine the size of S(pr) where p is a prime and r is a positive
integer.

Observation 3. Let p be a prime, r be a positive integer, and a ∈ Zpr \ {0}. Then there
exists a unique k ∈ [0, r − 1] such that a = pku where u is a unit.

For a real number x, we let ⌊x⌋ denote the greatest integer which is at most equal to x.

Lemma 4. Let p be a prime, r be a positive integer, and l = ⌊(r − 1)/2⌋. Then we have

that S(pr) =
⋃

k∈[0, l] p
2kU(pr)2. Also, this is a disjoint union.

Proof. Let a ∈ S(pr). Then there exists u ∈ U(pr) and k ∈ [0, r − 1] such that a = p2ku2.
As a 6= 0, by Observation 3 we see that 2k ∈ [0, r − 1] and so k ∈ [0, l].

We omit the proof of the next result.

Lemma 5. Let p be a prime, r be a natural number, and l = ⌊(r − 1)/2⌋. Then for every

k ∈ [0, l] we have that | p2k U(pr)2 | = |U(pr−2k)2 |.
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The next result follows from Lemmas 4 and 5.

Theorem 6. If r is even

|S(pr)| = |U(pr)2|+ |U(pr−2)2|+ · · ·+ |U(p4)2|+ |U(p2)2|

and if r is odd

|S(pr)| = |U(pr)2|+ |U(pr−2)2|+ · · ·+ |U(p3)2|+ |U(p)2|.

It remains to determine the size of U(n)2 when n is a prime power. Let n = pr where p
is an odd prime and r is a positive integer. Ireland and Rosen [6, Thm. 2, p. 43] have shown
that U(n) is a cyclic group. So there is exactly one element of order two in U(n). Thus, the
kernel of the onto map U(n) → U(n)2 given by x 7→ x2 has order two. Hence, we see that
U(n)2 has index two in U(n). So it follows that

|U(n)2| = |U(n)|/2 = pr−1(p− 1)/2.

We have that U(4)2 = U(2)2 = {1}. Let n = 2r where r is at least three. Ireland and
Rosen [6, Thm. 2′, p. 43] have shown that U(n) ≃ Z2 × Z2r−2 . So there are exactly three
elements of order two in U(n). Thus, the kernel of the onto map U(n) → U(n)2 given by
x 7→ x2 has order four. Hence, we see that U(n)2 has index four in U(n). So it follows that

|U(n)2| = |U(n)|/4 = 2r−1/4 = 2r−3.

3 Some general results

Lemma 7. Let S be a sequence in Zn and p be a prime divisor of n such that vp(n) = r.
Suppose the sequence S(p) is an S(pr)-weighted zero-sum sequence. Then the sequence S is

an S(n)-weighted zero-sum sequence.

Proof. Let S = (x1, . . . , xl). As S
(p) = (x

(p)
1 , . . . , x

(p)
l ), there exist b1, . . . , bl ∈ S(pr) such that

b1x
(p)
1 + · · ·+ blx

(p)
l = 0.

By Observation 2 we see that for every i ∈ [1, l] there exists ai ∈ S(n) such that a
(p)
i = bi

and for each prime divisor q of n/pr we have a
(q)
i = 0. Let ϕ be the isomorphism given by

the Chinese remainder theorem as in Observation 2. Since we get ϕ(a1x1 + · · · + alxl) = 0,
it follows that a1x1 + · · · + alxl = 0. Hence, we see that S is an S(n)-weighted zero-sum
sequence.

Corollary 8. Let p be a prime divisor of n and r = vp(n). Then we have that CS(n) ≤ CS(pr).
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Proof. Let m = pr. Suppose S is a sequence in Zn having length CS(m). As S(p) is a
sequence in Zm having length CS(m), it follows that there exists a subsequence T of S
having consecutive terms such that T (p) is an S(m)-weighted zero-sum sequence. So from
Lemma 7 we see that T is an S(n)-weighted zero-sum sequence. Hence, it follows that
CS(n) ≤ CS(m).

We will apply the next result later in the case when p is a prime.

Lemma 9. Let p be an integer which is at least two, r be an odd number, and T be a sequence

in Zpr . Suppose the image of T under fpr, p is an S(p)-weighted zero-sum sequence. Then T
is an S(pr)-weighted zero-sum sequence.

Proof. Let T = (x1, . . . , xk) be a sequence in Zpr and T ′ = (x′
1, . . . , x

′
k) be the image of T

under fpr, p. For each i ∈ [1, k] there exist a′i ∈ S(p) such that

a′1x
′
1 + · · ·+ a′kx

′
k = 0.

Mondal et al. [7, Lem. 7] showed that the image of U(pr)2 under fpr, p is S(p). So for each
i ∈ [1, k] there exists ai ∈ U(pr)2 such that fpr, p(ai) = a′i. Let x = a1x1 + · · ·+ akxk. As

fpr, p(x) = a′1x
′
1 + · · ·+ a′kx

′
k = 0,

it follows that p divides x. We see that c = pr−1 = (p(r−1)/2)2 ∈ S(pr). As p divides x, we
see that cx = 0. Thus, it follows that (c a1)x1 + · · ·+ (c ak)xk = 0. For each i ∈ [1, k] we see
that c ai ∈ S(pr). Hence, it follows that T is an S(pr)-weighted zero-sum sequence.

4 CS(n) and DS(n) when n is an even square

The next two results will be used to determine the value of DS(n) when n is an even square.
As the image of U(2r)2 under f2r, 4 is U(4)2 = {1} and the sequence (1, 1, 1) in Z4 does
not have any zero-sum subsequence, it follows that S does not have any U(2r)2-weighted
zero-sum subsequence.

Lemma 10. Let r be a non-zero even number. Let S = (x1, x2, x3) be a sequence in U(2r)
whose image under f2r , 4 is the sequence (1, 1, 1). Then S does not have any S(2r)-weighted
zero-sum subsequence.

Proof. Suppose T is an S(2r)-weighted zero-sum subsequence of S. Let

I = {i ∈ [1, 3] : xi is a term of T}.

For each i ∈ I there exists ai ∈ S(2r) such that
∑

i∈I aixi = 0. By Lemma 4 for each i ∈ I
we see that ai = 2riui where ri is an even number which is at most r − 2 and ui ∈ U(2r)2.
So we get that

∑

i∈I

2riuixi = 0.
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Let r′ be the minimum of the set {ri : i ∈ I}, let J = {i ∈ I : ri = r′}, and let f = f2r , 4.
As r′ ≤ r − 2 we see that four divides

∑

i∈J ui xi and hence

0 =
∑

i∈J

f(ui)f(xi) =
∑

i∈J

1.

So we get the contradiction that the sequence (1, 1, 1) in Z4 has a zero-sum subsequence.
Hence, it follows that S does not have any S(2r)-weighted zero-sum subsequence.

Lemma 11. Let p be a prime and r be a non-zero even number. Let (z1, z2) be a sequence

in U(p2) whose image under fp2, p is not an S(p)-weighted zero-sum sequence. Suppose there

exists a sequence S = (x1, x2, y1) in U(pr) whose image under fpr, p2 is the sequence (z1, z2, p).
Then the sequence S does not have any S(pr)-weighted zero-sum subsequence.

Proof. Suppose the sequence S has an S(pr)-weighted zero-sum subsequence T . Let

I = {i ∈ [1, 2] : xi is a term of T}.

Let J = {1} if y1 is a term of T and let J = ∅ if y1 is not a term of T . Then for every i ∈ I
and j ∈ J there exist ai, bj ∈ S(pr) such that

∑

i∈I

aixi +
∑

j∈J

bjyj = 0.

As y1 maps to p under fpr, p2 there exists w1 ∈ U(pr) such that y1 = pw1. By Lemma 4, for
each i ∈ I and j ∈ J we see that ai = priui and bj = psjvj where ri, sj ∈ [0, r − 2] are even
and ui, vj ∈ U(pr)2. So we get that

∑

i∈I

priui xi +
∑

j∈J

psj+1vjwj = 0. (1)

Consider the set L = {ri : i ∈ I} ∪ {sj + 1 : j ∈ J}. Let r′ be the minimum of L. As
r ≥ 2 is even and s1 is even, it follows that r′ ≤ r − 1. Suppose there exists i ∈ I such that
ri = r′.

We claim that I = {1, 2} and r1 = r2 = r′. If not, from (1) we get that pr
′+1 divides pr

′

w
where w is a unit. As r′ ≤ r − 1 we get the contradiction that p divides w. By a similar
argument, we see that s1 +1 6= r′. As r′ ≤ r− 1, from (1) we see that p divides u1x1 + u2x2.
Let f = fpr, p. We get that

f(u1)f(x1) + f(u2)f(x2) = 0.

As u1, u2 ∈ U(pr)2, it follows that f(u1), f(u2) ∈ S(p). So the sequence
(

f(x1), f(x2)
)

is
an S(p)-weighted zero-sum sequence. Thus, we get the contradiction that the image of the
sequence (z1, z2) under fp2, p is an S(p)-weighted zero-sum sequence. Hence, it follows that
S does not have any S(pr)-weighted zero-sum subsequence.
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Theorem 12. Let n be an even square. Then we have that DS(n) ≥ 4.

Proof. Mondal et al. [7, Cor. 2, Lem. 7] have shown that for every odd prime p we can
find a sequence (up, vp) in U(p2) whose image under fp2, p is not an S(p)-weighted zero-sum
sequence. Consider the sequence (up, vp, p) in Zp2 .

For each prime divisor p of n, the map fpvp(n), p2 is onto. So by the Chinese remainder
theorem we can find a sequence S = (x1, x2, x3) in Zn such that, for every prime divisor p of
n, the image of S under fn, p2 is (up, vp, p) when p is odd, and the image of S under fn, 4 is
(1, 1, 1).

For every prime divisor p of n, we see that the sequence S(p) in Zpr has the form as in the
statement of Lemma 10 if p = 2, or of Lemma 11 if p is odd. So for every prime divisor p of
n, if r = vp(n), it follows that the sequence S(p) does not have any S(pr)-weighted zero-sum
subsequence.

Suppose T is an S(n)-weighted zero-sum subsequence of S. Let x be a term of T and
a ∈ S(n) be the coefficient of x in an S(n)-weighted zero-sum which is obtained from T . As
a 6= 0, there is a prime divisor p of n such that a(p) 6= 0. So we get the contradiction that
the sequence S(p) in Zpr has an S(pr)-weighted zero-sum subsequence where r = vp(n).

Thus, it follows that the sequence S does not have any S(n)-weighted zero-sum subse-
quence. Hence, we see that DS(n) ≥ 4.

Lemma 13. Let r be a non-zero even number and p be an integer which is at least two.

Suppose T is a sequence in Zpr whose image under fpr, p2 is a U(p2)2-weighted zero-sum

sequence. Then the sequence T is an S(pr)-weighted zero-sum sequence.

Proof. The proof of this result is similar to the proof of Lemma 9. We need to use the facts
that fpr, p2

(

U(pr)2
)

= U(p2)2 and that pr−2 = (p(r−2)/2)2 ∈ S(pr).

The next result follows immediately from Lemma 13.

Corollary 14. Let r be a non-zero even number and p be a positive integer. Then we have

that DS(pr) ≤ DU(p2)2 and CS(pr) ≤ CU(p2)2.

Theorem 15. Let r be a non-zero even number. Then we have CS(2r) ≤ 4.

Proof. Mondal et al. [8, Cor. 1] have shown that C{1} = 4. As U(4)2 = {1}, from Corollary
14 it follows that CS(2r) ≤ 4.

Corollary 16. Let n be an even square. Then we have DS(n) = CS(n) = 4.

Proof. From Theorem 12 we have DS(n) ≥ 4. By Theorem 15 and Corollary 8 we have
CS(n) ≤ 4. As DA(n) ≤ CA(n) for every A ⊆ Zn, it follows that DS(n) = CS(n) = 4.
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5 CS(n) and DS(n) when n is not a square

Proposition 17. Let n be odd. We can find a sequence S = (u, v) in U(n) such that for each

prime divisor p of n, the image of S under fn, p does not have any S(p)-weighted zero-sum

subsequence.

Proof. Let p be a prime divisor of n and vp(n) = r. By [7, Cor. 2] there exist up, vp ∈ U(p)
such that the sequence (up, vp) does not have any S(p)-weighted zero-sum subsequence. As
the image of U(pr) under fpr, p is U(p), there exist u′

p, v
′
p ∈ U(pr) such that the image of the

sequence (u′
p, v

′
p) under fpr, p is (up, vp).

By the Chinese remainder theorem, there exist u, v ∈ U(n) such that for each prime
divisor p of n if np = pvp(n), then the image of the sequence S = (u, v) under fn,np

is (u′
p, v

′
p).

It follows that the image of S under fn, p is (up, vp) which is the same as the image of (u′
p, v

′
p)

under the map fnp, p.

Lemma 18. Let p be an odd prime and r be a positive integer. Suppose S = (v1, v2) is a

sequence in U(pr) such that the image of S under fpr, p is not an S(p)-weighted zero-sum

sequence. Then the sequence S does not have any S(pr)-weighted zero-sum subsequence.

Proof. Suppose the sequence S is an S(pr)-weighted zero-sum sequence. Then there exist
a1, a2 ∈ S(pr) such that a1v1+a2v2 = 0. By Lemma 4 we see that there exist u1, u2 ∈ U(pr)2

and even r1, r2 ∈ [0, r − 1] such that a1 = pr1u1 and a2 = pr2u2. So we get that

pr1u1v1 + pr2u2v2 = 0.

By Observation 3 we see that r1 = r2 and so pr1(u1v1 + u2v2) = 0. As r1 < r, it follows that
p divides u1v1 + u2v2. If f is the map fpr, p, then we see that

f(u1)f(v1) + f(u2)f(v2) = 0.

As u1, u2 ∈ U(pr)2, it follows that f(u1), f(u2) ∈ S(p). Thus, we get the contradiction that
the image of S under fpr, p is an S(p)-weighted zero-sum sequence. Hence, it follows that S
is not an S(pr)-weighted zero-sum sequence. As v1, v2 ∈ U(pr), we see that S does not have
any S(pr)-weighted zero-sum subsequence of length one.

Theorem 19. Let n be an odd number. Then we have that DS(n) ≥ 3.

Proof. By Proposition 17 there exists a sequence S = (u, v) in U(n) such that for each
prime divisor p of n, the image of S under fn, p does not have any S(p)-weighted zero-sum
subsequence.

Suppose T is an S(n)-weighted zero-sum subsequence of S. As the terms of S are in
U(n), we see that T must be S. Thus, there exist a, b ∈ S(n) such that au + bv = 0. As
a 6= 0, there exists a prime divisor p of n such that a(p) 6= 0. Let k = vp(n) and (up, vp) be
the image of S under fn, pk .
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It follows that the sequence (up, vp) in Zpk has an S(pk)-weighted zero-sum subsequence.
As the image of S = (u, v) under fn, p is the same as the image of (up, vp) under fpk, p, it follows
that (up, vp) is a sequence in Zpk whose image under fpk, p does not have any S(p)-weighted
zero-sum subsequence.

So by Lemma 18 we get the contradiction that the sequence (up, vp) does not have any
S(pk)-weighted zero-sum subsequence. Thus, we see that S does not have any S(n)-weighted
zero-sum subsequence. Hence, it follows that DS(n) ≥ 3.

Theorem 20. We have that DS(n) ≥ 3 when v2(n) is even and at least two.

Proof. By the results by Mondal et al. [7, Cor. 2, Lem. 7] and by the Chinese remainder
theorem, we can find a sequence S = (v1, v2) in U(n) (by a similar method as in Proposition
17) such that for every odd prime divisor p of n the image of S under fn, p is not an S(p)-
weighted zero-sum sequence and the image of S under fn, 4 is (1, 1).

Suppose T is an S(n)-weighted zero-sum subsequence of S. As the terms of S are in
U(n), we see that T must be S. Thus, there exists a, b ∈ S(n) such that au + bv = 0. As
a 6= 0, there is a prime divisor q of n such that a(q) 6= 0. We now use a similar argument as
in the proof of Theorem 19, where we use Lemma 10 in addition to Lemma 18.

Theorem 21. Let p be an odd prime and r be odd. Then we have CS(pr) ≤ 3.

Proof. Let S = (x, y, z) be a sequence in Zpr and let S ′ be the image of S under fpr, p.
Mondal et al. [8, Thm. 4] showed that for an odd prime p we have CS(p) = 3. Thus, we can
find a subsequence T whose terms are consecutive terms of S such that the image of T under
fpr, p is an S(p)-weighted zero-sum subsequence of S ′. So by Lemma 9 we see that T is an
S(pr)-weighted zero-sum sequence. Hence, it follows that CS(pr) ≤ 3.

Corollary 22. Suppose n is not a square and v2(n) is a non-negative, even integer. Then

we have that DS(n) = CS(n) = 3.

Proof. By Theorem 20 we haveDS(n) ≥ 3. From the assumptions on n, we see that there is an
odd prime divisor p of n such that vp(n) is odd. Thus, by Corollary 8 and Theorem 21 we have
that CS(n) ≤ 3. As DA(n) ≤ CA(n) for every A ⊆ Zn, it follows that DS(n) = CS(n) = 3.

Theorem 23. We have that CS(2r) ≤ 2 where r is an odd number.

Proof. Let S = (x, y) be a sequence in Z2r and S ′ = (x′, y′) be the image of S under f2r, 2. We
can find a subsequence T of S such that the image of T under f2r, 2 is a zero-sum sequence.
So by Lemma 9 we see that T is an S(2r)-weighted zero-sum sequence. Hence, it follows
that CS(2r) ≤ 2.

Corollary 24. Suppose n is an even positive integer such that v2(n) is odd. Then we have

that DS(n) = CS(n) = 2.

Proof. It is easy to see that DS(n) ≥ 2. From Corollary 8 and Theorem 23, we get that
CS(n) ≤ 2. For every A ⊆ Zn as DA(n) ≤ CA(n), it follows that DS(n) = CS(n) = 2.
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6 DS(n) when n is an odd square

Lemma 25. Let p be a prime and r be a non-zero even number. Suppose (w1, w2) is a

sequence in U(pr) whose image under fpr, p is not an S(p)-weighted zero-sum sequence. Let

u ∈ U(pr) and
S = (uw1, uw2, p w1, p w2).

Then the sequence S in Zpr does not have any S(pr)-weighted zero-sum subsequence.

Proof. Suppose T is an S(pr)-weighted zero-sum subsequence of S. Let

I = {i ∈ [1, 2] : uwi is a term of T} and J = {j ∈ [1, 2] : pwj is a term of T}.

As T is an S(pr)-weighted zero-sum sequence, for each i ∈ I there exists ai ∈ S(pr) and for
each j ∈ J there exists bj ∈ S(pr) such that

∑

i∈I aiuwi +
∑

j∈J bj pwj = 0. From Lemma

4, for each i ∈ I we have ai = priui for some even ri < r and ui ∈ U(pr)2 and for each j ∈ J
we have bj = psjvj for some even sj < r and vj ∈ U(pr)2. So we have

u
∑

i∈I

priui wi +
∑

j∈J

psj+1vjwj = 0. (2)

Consider the set L = {ri : i ∈ I} ∪ {sj + 1 : j ∈ J}. Let r′ be the minimum of
L. As r is even and sj is even for each j ∈ J , it follows that r′ ≤ r − 1. Observe that
{ri : i ∈ I} ∩ {sj + 1 : j ∈ J} = ∅ as the ri’s and sj’s are even. Suppose there exists i ∈ I
such that ri = r′. We claim that I = {1, 2} and r1 = r2 = r′. If not, from (2) we get that
pr

′+1 divides pr
′

w where w is a unit. As r′ ≤ r − 1 we get the contradiction that p divides
w. By a similar argument if there exists j ∈ J such that sj + 1 = r′, then J = {1, 2} and
s1 + 1 = s2 + 1 = r′.

Suppose I = {1, 2} and r1 = r2 = r′. As r′ ≤ r − 1, from (2) we see that p divides
u (u1w1 + u2w2). As u ∈ U(pr), it follows that f(u) ∈ U(p) where f = fpr, p. So we get that

f(u1)f(w1) + f(u2)f(w2) = 0.

As u1, u2 ∈ U(pr)2, it follows that f(u1), f(u2) ∈ S(p). Thus, we get the contradiction that
the image of the sequence (w1, w2) under fpr, p is an S(p)-weighted zero-sum sequence. We
will get the same contradiction if J = {1, 2} and s1 + 1 = s2 + 1 = r′. Thus, it follows that
S does not have any S(pr)-weighted zero-sum subsequence.

Theorem 26. Let n be an odd square. Then we have that DS(n) ≥ 5.

Proof. Let m be the radical of n, i.e., the largest squarefree divisor of n. By Proposition 17
there exists a sequence (u, v) in U(n) such that for each prime divisor p of n, the image of
the sequence (u, v) under fn, p does not have any S(p)-weighted zero-sum subsequence. Let

S = (u, v,mu,mv).
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We claim that this sequence S does not have any S(n)-weighted zero-sum subsequence. From
this it follows that DS(n) ≥ 5.

Suppose T is an S(n)-weighted zero-sum subsequence of S. Let x be a term of T and
a ∈ S(n) be the coefficient of x in an S(n)-weighted zero-sum which we obtain from T . As
a 6= 0, there exists a prime divisor p of n such that a(p) 6= 0. Let r = vp(n). It follows that
the sequence S(p) has an S(pr)-weighted zero-sum subsequence.

The image of the sequence (u(p), v(p)) under fpr, p does not have any S(p)-weighted zero-
sum subsequence. As m is the largest squarefree divisor of n, it follows that m(p) = pw where
w ∈ U(pr). It follows that S(p) is a sequence in Zpr which has the form as in the statement
of Lemma 25. As n is a square, we see that r is a non-zero even number. So by Lemma
25 we arrive at the contradiction that the sequence S(p) does not have any S(pr)-weighted
zero-sum subsequence. Hence, our claim must be true.

We get the next result from the proof of [2, Thm. 7].

Lemma 27. Let p be an odd prime, r be a positive integer, and A = U(pr)2. Suppose we

are given y1, y2, y3 ∈ U(pr). Then we have that

Ay1 + (Ay2 ∪ {0} ) + (Ay3 ∪ {0} ) = Zpr .

Theorem 28. Let r be a non-zero even number and p be an odd prime. Then we have that

DS(pr) ≤ 5.

Proof. Suppose S = (x1, . . . , x5) is a sequence in Zpr . If p
2 divides some term xi of S, then

pr−2xi = 0. As r is even, we see that pr−2 = (p(r−2)/2)2 ∈ S(n). So we see that T = (xi) is
an S(pr)-weighted zero-sum subsequence of S of length one. Thus, we may assume that p2

does not divide any term of S.
It follows that each term of S is either a unit or a unit multiple of p. If at least three

terms of S are units or at least three terms of S are unit multiples of p, by using Lemma 27
we get an S(pr)-weighted zero-sum subsequence of S. Thus, we see that DS(pr) ≤ 5.

Corollary 29. Let n be an odd square. Then we have that DS(n) = 5.

Proof. From Theorem 26 we see that DS(n) ≥ 5 when n is an odd square. Since every prime
divisor p of n is odd and vp(n) is even, by using Corollary 8 and Theorem 28 we see that
DS(n) ≤ 5. Thus, it follows that DS(n) = 5.

7 CS(n) when n is an odd square

We will use the following notation.
If T is a subsequence of S, then S − T denotes the subsequence which is obtained by

removing the terms of T from S. The concatenation of the sequences S − T and T gives us
a sequence whose terms are a permutation of the terms of the sequence S.
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If S is a sequence in Zn and d ∈ Zn such that all the terms of S are divisible by d, then
S/d denotes the sequence in Zn whose terms are obtained by dividing the corresponding
terms of S by d.

Theorem 30. We have that CU(25)2 = 9.

Proof. Let S = (x1, . . . , x9) be a sequence in Z25. We may assume that all the terms of S
are non-zero.

Suppose at least four terms of S are units. From [4, Lem. 2] it follows that S is a
U(25)2-weighted zero-sum sequence. Let

S1 = (x1, x2, x3), S2 = (x4, x5, x6), and S3 = (x7, x8, x9).

Suppose at most two terms of S are units. Then we see that there exists i ∈ [1, 3] such
that all the terms of Si are divisible by 5. Let S ′

i denote the sequence in Z5 which is the
image of Si/5 under f25,5. From [8, Thm. 4] we have that CQ5 = 3. Thus, the sequence
S ′
i has a Q5-weighted zero-sum subsequence having consecutive terms. By [7, Lem. 5] it

follows that the sequence Si (and hence the sequence S) has a U(25)2-weighted zero-sum
subsequence having consecutive terms.

So we may assume that exactly three terms of S are units. If at least three consecutive
terms of S are non-units, by a similar argument as in the previous paragraph we get a
U(25)2-weighted zero-sum subsequence of S having consecutive terms. So it follows that for
each i ∈ [1, 3] there is exactly one term yi in the sequence Si which is a unit.

As CQ5 = 3 we see that the sequence (y1, y2, y3) has a subsequence S4 having consecutive
terms whose image S ′

4 under f25,5 is a Q5-weighted zero-sum sequence. As f25,5 is onto, it
follows that there exists k ∈ Z25 such that a U(25)2-weighted sum of the terms of S4 is −5k.
We will use this observation a bit later in this proof. Let

J = {i ∈ [1, 3] : yi is a term of S4}.

Let T be the concatenation of the sequences Si where i ∈ J . It follows that T is a subsequence
of S having consecutive terms. We claim that T is a U(25)2-weighted zero-sum sequence.
Let T1 = T − S4. As all the terms of S are non-zero, all the terms of T1 are of the form 5u
where u ∈ U(25).

Let T ′
1 denote the image of T1/5 under f25,5. Chintamani and Moriya [4, Lem. 2] showed

that f25,5(k) ∈ Z5 is a Q5-weighted sum of the terms of T ′
1. Mondal et al. [7, Lem. 5]

showed that 5k is a U(25)2-weighted sum of the terms of T1. As we have seen that −5k is
a U(25)2-weighted sum of the terms of S4, it follows that T is a U(25)2-weighted zero-sum
sequence.

Thus, every sequence in Z25 having length nine has a U(25)2-weighted zero-sum sub-
sequence whose terms are consecutive terms of the given sequence. So it follows that
CU(25)2 ≤ 9. Mondal et al. [8, Cor. 5] showed that CU(25)2 ≥ 9. Hence, it follows that
CU(25)2 = 9.
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Theorem 31. Let n be an odd square. Then we have that CS(n) ≤ 9.

Proof. Mondal et al. [8, Cor. 6] showed that CU(p2)2 = 9 when p is a prime which is at least
seven. From Remark 1 we see that CU(9)2 ≤ 9 and from Theorem 30 we see that CU(25)2 ≤ 9.
Thus, from Corollaries 8 and 14 it follows that CS(n) ≤ 9.

Chintamani and Moriya [4, Lem. 1] showed the next result.

Lemma 32. Let p be a prime which is at least seven and A = U(pr)2. Then for every

x1, x2, x3 ∈ U(pr) we have that Ax1 + Ax2 + Ax3 = Zpr .

Mondal et al. [8, Lem. 7] showed the next result, which follows easily from Lemma 32.

Lemma 33. Let p be a prime which is at least seven and S = (x1, . . . , xk) be a sequence

in Zpr . Suppose at least three terms of S are units. Then S is a U(pr)2-weighted zero-sum

sequence.

Theorem 34. Let p be a prime which is at least seven and r be an even number which is at

least four. Then we have that CS(pr) ≤ 5.

Proof. Let S = (x1, . . . , x5) be a sequence in Zpr . As r is even, we see that pr−2 = (p(r−2)/2)2

and hence pr−2 ∈ S(pr). If p2 divides some term x of S, then it follows that pr−2x = 0 and
so S has an S(pr)-weighted zero-sum subsequence of length one. Thus, we may assume that
p2 does not divide any term of S. So every term of S is either a unit or of the form p u where
u is a unit.

If at least three terms of S are units, by Lemma 33 we see that S is an S(pr)-weighted
zero-sum sequence. Thus, we may assume that at most two terms of S are units. Then
at least three terms of S are of the form p u where u is a unit. We may assume that
x1 = pu1, x2 = pu2, x3 = pu3 where u1, u2, u3 ∈ U(pr). Consider the sequence

S ′ = (u1, u2, u3, px4, px5).

By Lemma 33 we see that S ′ is a U(pr)2-weighted zero-sum sequence. So there exist ai’s in
U(pr)2 such that

a1u1 + a2u2 + a3u3 + a4px4 + a5px5 = 0.

Thus, it follows that

a1x1 + a2x2 + a3x3 + p2a4x4 + p2a5x5 = 0.

As r ≥ 4, we see that p2 6= 0. Hence, it follows that S is an S(pr)-weighted zero-sum
sequence.

Corollary 35. Let n be an odd square which is divisible by p4 where p is a prime which is

at least seven. Then we have that CS(n) = 5.
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Proof. As n is a square, it follows that vp(n) is even. So from Corollary 8 and Theorem 34
we have CS(n) ≤ 5. As we have that DA(n) ≤ CA(n) for every A ⊆ Zn, from Theorem 26 it
follows that CS(n) = 5.

The next result follows easily from a result by Chintamani and Moriya [4, Lem. 2].

Lemma 36. Let r be a positive integer and S be a sequence in Z5r . Suppose at least four

terms of S are units. Then S is a U(5r)2-weighted zero-sum sequence.

Theorem 37. We have that CS(5r) ≤ 7 when r is an even number which is at least four.

Proof. We use a similar argument as in the proof of Theorem 34. The only change is that
we replace Lemma 33 with Lemma 36.

Corollary 38. Let n be a square which is divisible by 54. Then we have that CS(n) ≤ 7.

Proof. As n is a square, it follows that v5(n) is even. Also, we have that v5(n) ≥ 4. So from
Corollary 8 and Theorem 37 we get that CS(n) ≤ 7.

Theorem 39. Let n be a square of an odd squarefree number. Then we have that CS(n) = 9.

Proof. By Theorem 31 we get that CS(n) ≤ 9. We will construct a sequence S of length eight
in Zn which has no S(n)-weighted zero-sum subsequence having consecutive terms. Hence,
it will follow that CS(n) = 9.

By Proposition 17 there exists a sequence S ′ = (u, v) in U(n) such that for every prime
divisor p of n, the image (up, vp) of S

′ under fn, p does not have any S(p)-weighted zero-sum
subsequence. By the Chinese remainder theorem there exist x, y ∈ Zn such that for each
prime divisor p of n we have that x(p) = p u(p) and y(p) = p v(p). In this proof, for every
c ∈ Zn we will denote fn, p(c) by cp. So it follows that xp = yp = 0. Consider the sequence
S in Zn defined as follows:

S = (x, y, u, x, y, v, x, y).

Suppose there exists a subsequence T of S having consecutive terms which is an S(n)-
weighted zero-sum sequence.

Case 1: Either u or v is a term of T .
Without loss of generality, we may assume that u is a term of T .
Let a ∈ S(n) be the coefficient of u in the S(n)-weighted zero-sum which is obtained

from T . As a 6= 0, there exists a prime divisor p of n such that a(p) 6= 0. As n is the square
of a squarefree number, it follows that vp(n) = 2. So we see that a(p) ∈ S(p2). As every
non-zero term of Zp2 is either a unit or a unit multiple of p, we see that S(p2) = U(p2)2. As
a(p) ∈ U(p2)2, it follows that fp2, p

(

a(p)
)

∈ S(p) and so ap ∈ S(p).

We claim that the sequence (up, vp) has an S(p)-weighted zero-sum subsequence.

Suppose v is a term of T . Let b ∈ S(n) be the coefficient of v in the S(n)-weighted zero-
sum which is obtained from T . As b ∈ S(n), it follows that bp ∈ S(p) ∪ {0}. So we get
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that apup + bpvp = 0. If v is not a term of T then apup = 0. This proves our claim which
contradicts our choice of the sequence (up, vp).

Case 2: Neither u nor v is a term of T .
As T is a subsequence of consecutive terms, it follows that T is a subsequence of the

sequence (x, y). Suppose x is a term of T . Let a ∈ S(n) be the coefficient of x in the
S(n)-weighted zero-sum which is obtained from T . By a similar argument as in the previous
case, we see that there is a prime divisor p of n such that ap ∈ S(p).

We claim that the sequence (up, vp) has an S(p)-weighted zero-sum subsequence.

Suppose y is a term of T . Then there exists b ∈ S(n) such that ax+ by = 0. As b ∈ S(n),
it follows that bp ∈ S(p) ∪ {0}. As ax + by = 0, it follows that a(p)x(p) + b(p)y(p) = 0 in Zp2 .
Thus, we get that

p
(

a(p)u(p) + b(p)v(p)
)

= 0

and so a(p)u(p)+ b(p)v(p) is divisible by p. Hence, it follows that apup+ bpvp = 0. By a similar
argument, we see that if y is not a term of T then apup = 0. This proves our claim which
contradicts our choice of the sequence (up, vp).

Hence, it follows that the sequence S does not have any S(n)-weighted zero-sum subse-
quence of consecutive terms.

8 Concluding remarks

We have been unable to determine the constants CS(3r) and CS(5r) where r is an even number
which is at least four. For every such r we have shown that CS(3r) ∈ [5, 9] and CS(5r) ∈ [5, 7].
If the values of these constants are known, we can determine the value of CS(n) for every n.

We can try to characterize the sequences in Zn of length CS(n) − 1 which do not have
any S(n)-weighted zero-sum subsequence having consecutive terms. We can also try to
characterize sequences in Zn of length DS(n) − 1 which do not have any S(n)-weighted zero-
sum subsequence.
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