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Abstract

Let A C Z, be a subset. A sequence S = (x1,...,x) in Z, is said to be an A-
weighted zero-sum sequence if there exist a1, ..., ar € A such that a1z1+- - -+agxr = 0.
By a square, we mean a non-zero square in Z,. We determine the smallest natural
number k, such that every sequence in Z, whose length is k£ has a square-weighted
zero-sum subsequence. We also determine the smallest natural number k, such that
every sequence in Z, whose length is k£ has a square-weighted zero-sum subsequence
whose terms are consecutive terms of the given sequence.

1 Introduction

For a finite set A, we let |A| denote the number of elements of A. For a,b € Z with a < b,
we let [a,b] denote the set {x € Z :a < x < b}.

Let R be a commutative ring with unity, M be an R-module, and A C R. A subsequence
T of a sequence S = (x1,xs,...,2,) in M is called an A-weighted zero-sum subsequence if
the set J = {i : x; € T} is non-empty, and for every i € J there exists a; € A such that
> ics @ir; = 0 where 0 is the identity element of M.

For a finite R-module M and A C R, the A-weighted Davenport constant of M denoted
by D, is defined to be the least positive integer k, such that every sequence in M whose
length is k, has an A-weighted zero-sum subsequence.

Adhikari and Chen [1] introduced this constant for the ring R = Z, i.e., for abelian groups.
We define the constant C'y to be the least positive integer k, such that every sequence in
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M whose length is k, has an A-weighted zero-sum subsequence whose terms are consecutive
terms.

Remark 1. 1t is easy to observe that Dy < Cy < |M|.

We also denote the ring Z/nZ by Z,. Let U(n) denote the group of units in Z,, and U(n)?
denote the set {z? : x € U(n)}. For a divisor m of n, the homomorphism f,, ,, : Z, — Zy, is
given by f,m(a 4+ nZ) = a+ mZ. Mondal et al. [7, Lem. 7] showed that the image of U(n)
under f, , is U(m).

Let p be a prime divisor of n. We say that v,(n) = r if p" | n and p"*' { n. Suppose
r = vy(n). For every x € Z,, we denote the image of x under f,, ,» by 2P Given a sequence
S = (x1,...,7;) in Z,, we get a sequence

Sw — (xgp), . ,xl(p)) in Zyr.

From this point onwards, we will only consider the case when M = R = Z,,.

Adhikari and Rath [3] showed that Dy )2 = 3 when p is an odd prime. Let €2(n) denote
the number of prime factors of n counted with multiplicity. Grynkiewicz and Hennecart [5]
showed that D2 > 2Q(n) + min{vs(n), vs(n)} + 1 when n is odd, with equality if either
31 n or vz(n) > wvs(n). This extends a result of Chintamani and Moriya [4], and another of
Adhikari, David, and Urroz [2].

These results lead quite naturally to the question of determining the value of Dg(,) where

S(n)={2*:2€Z,}\{0}.

For an odd prime p we observe that S(p) = U(p)®. We determine the value of Dg,) for

every n and show that it depends on the parity of n when n is a square, and on the parity
of v5(n) when n is not a square. We also investigate the value of Cg().

We show that Cy(as52 = 9, adding to the results which were obtained by Mondal et al.
[8]. Using this fact, we get that Cs(,y < 9 when n is an odd square. The values of Dg,
for all n € [2,37] are given in the following table. When p is an odd prime, we see that
S(p) = U(p)? and so the value of Dg(, had been determined in Adhikari and Rath [3].

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Dspwy |2 3 4 3 2 3 2 5 2 3 3 3 2 3 4 3 2 3

n 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Dspwy |3 3 2 3 2 5 2 3 3 3 2 3 2 3 2 3 4 3

Table 1: Values of Dg,) for all n € [2,37].

The only values of n in the set [2,37] for which Cg,) differs from Dg,) are 9 and 25.
The smallest n for which we have not been able to determine Cg(,) is 81. In this article, we
have obtained the following results:



e We determine the size of S(n) for every n.
e When n is a square, we get that Dg(,) =4 or 5 when n is even or odd respectively.

e When n is not a square, we get that Dgy) = 2 or 3 when vy(n) is odd or even
respectively.

e When n is not a square of an odd number, we get that Cg,) = Dg(y).
e When n is a square of an odd, squarefree number, we get that Cgq,) = 9.

e When n is a square of an odd number m such that m is divisible by p? where p is a
prime which is at least seven, we get that Cg(,) = Dg(y).

2 The size of S(n)

Observation 2. Let n = pi'---pls where the p;’s are distinct primes. By the Chinese
remainder theorem we get an isomorphism

0 LInL — L]p7* L X -+ - X L] pe

given by ¢(a) = (a®,... a)). As ¢ is an isomorphism, we have that a € S(n) if and
only if for every prime divisor ¢ of n, we have that a(? is a square and there exists a prime
divisor p of n such that a® # 0.

Hence, it follows that
[S(n)] + 1= (1S +1) - (1Swy)

Thus, it is enough to determine the size of S(p") where p is a prime and r is a positive
integer.

+1).

Observation 3. Let p be a prime, r be a positive integer, and a € Z, \ {0}. Then there
exists a unique k € [0, — 1] such that a = p*u where u is a unit.

For a real number z, we let || denote the greatest integer which is at most equal to .

Lemma 4. Let p be a prime, r be a positive integer, and | = |(r — 1)/2]. Then we have
that S(p") = U repo.g p*U(p")%. Also, this is a disjoint union.

Proof. Let a € S(p"). Then there exists u € U(p") and k € [0,7 — 1] such that a = p*u?.
As a # 0, by Observation 3 we see that 2k € [0, — 1] and so k € [0, 1]. O

We omit the proof of the next result.

Lemma 5. Let p be a prime, r be a natural number, and | = |(r — 1)/2|. Then for every
k € [0,1] we have that |p* U(p")?| = |U(p"~%)? .
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The next result follows from Lemmas 4 and 5.

Theorem 6. If r is even

1SE =10@)? [+ U@+ + U@ +U@*)*]
and if r is odd

[SE =1U@) [ +[U@ )+ + U@+ UP)°.

It remains to determine the size of U(n)? when n is a prime power. Let n = p” where p
is an odd prime and r is a positive integer. Ireland and Rosen [6, Thm. 2, p. 43| have shown
that U(n) is a cyclic group. So there is exactly one element of order two in U(n). Thus, the
kernel of the onto map U(n) — U(n)? given by x + 2 has order two. Hence, we see that
U(n)? has index two in U(n). So it follows that

U’ =1Um)|/2=p""(p—1)/2

We have that U(4)? = U(2)? = {1}. Let n = 2" where r is at least three. Ireland and
Rosen [6, Thm. 2', p. 43] have shown that U(n) o~ Zs X Zyr—2. So there are exactly three
elements of order two in U(n). Thus, the kernel of the onto map U(n) — U(n)? given by
x — 2% has order four. Hence, we see that U(n)? has index four in U(n). So it follows that

U’ =Um)|/4=2"""/4=2""".

3 Some general results

Lemma 7. Let S be a sequence in Z,, and p be a prime divisor of n such that v,(n) = r.
Suppose the sequence SP) is an S(p")-weighted zero-sum sequence. Then the sequence S is
an S(n)-weighted zero-sum sequence.

Proof. Let S = (x1,...,1;). As S® = (x§p), . ,xl(p)), there exist by, ..., b € S(p") such that
b1x§p)+---+blx§p) =0.

By Observation 2 we see that for every ¢ € [1,[] there exists a; € S(n) such that al(-p —
and for each prime divisor ¢ of n/p"” we have agq) = 0. Let ¢ be the isomorphism given by
the Chinese remainder theorem as in Observation 2. Since we get p(a1x; + -+ + qx;) = 0,
it follows that a;xy + --- + aq; = 0. Hence, we see that S is an S(n)-weighted zero-sum

sequence. O

Corollary 8. Let p be a prime divisor of n and r = v,(n). Then we have that Csmy < Cspry-



Proof. Let m = p". Suppose S is a sequence in Z, having length Cg(,). As S is a
sequence in Zp,, having length Cg), it follows that there exists a subsequence 1" of S
having consecutive terms such that 7 is an S (m)-weighted zero-sum sequence. So from
Lemma 7 we see that T is an S(n)-weighted zero-sum sequence. Hence, it follows that
Csm) < Csmy- O

We will apply the next result later in the case when p is a prime.

Lemma 9. Let p be an integer which is at least two, r be an odd number, and T be a sequence
in Zyr. Suppose the image of T under fyr , is an S(p)-weighted zero-sum sequence. Then T
is an S(p")-weighted zero-sum sequence.

Proof. Let T = (z1,...,7x) be a sequence in Z, and 7" = (z},...,2},) be the image of T
under f,r ,. For each i € [1, k] there exist a} € S(p) such that

A !

Mondal et al. [7, Lem. 7] showed that the image of U(p")? under f, , is S(p). So for each
i € [1,k] there exists a; € U(p")? such that f,r ,(a;) = al. Let © = ayxq + -+ - + agxy. As

forp(x) = do) + - + ajx), = 0,

it follows that p divides z. We see that ¢ = p~t = (pU=V/%)2 ¢ S(p"). As p divides x, we
see that cx = 0. Thus, it follows that (cay)zy + -+ -+ (cax)zr = 0. For each i € [1, k] we see
that ca;, € S(p”). Hence, it follows that 7" is an S(p")-weighted zero-sum sequence. O

4 (g and Dg(,) when n is an even square

The next two results will be used to determine the value of Dg(,) when n is an even square.
As the image of U(2")? under for 4 is U(4)? = {1} and the sequence (1,1,1) in Z4 does
not have any zero-sum subsequence, it follows that S does not have any U(2")?-weighted
zero-sum subsequence.

Lemma 10. Let r be a non-zero even number. Let S = (x1,x2,23) be a sequence in U(2")
whose image under for 4 is the sequence (1,1,1). Then S does not have any S(2")-weighted
zero-sum subsequence.

Proof. Suppose T' is an S(2")-weighted zero-sum subsequence of S. Let
I'={ie[1,3]:;is a term of T'}.

For each i € I there exists a; € S(2") such that )., a;z; = 0. By Lemma 4 for each i € [
we see that a; = 2"u; where r; is an even number which is at most r — 2 and u; € U(2")2.

So we get that

el



Let 7' be the minimum of the set {r; : i € I}, let J={i € [:r; =71"}, and let [ = for 4.

As ' <r — 2 we see that four divides Zie 5 u; r; and hence

0= flu)f(w:)=> 1.

ieJ icJ

So we get the contradiction that the sequence (1,1,1) in Z4 has a zero-sum subsequence.
Hence, it follows that S does not have any S(2")-weighted zero-sum subsequence. m

Lemma 11. Let p be a prime and r be a non-zero even number. Let (z1,29) be a sequence
in U(p*) whose image under fy2 , is not an S(p)-weighted zero-sum sequence. Suppose there
exists a sequence S = (x1,xa,y1) 1 U(p") whose image under f,r 2 is the sequence (21, 22, p).
Then the sequence S does not have any S(p")-weighted zero-sum subsequence.

Proof. Suppose the sequence S has an S(p")-weighted zero-sum subsequence T'. Let
I'={ie[1,2]:;is a term of T'}.

Let J = {1} if y; is a term of T" and let J = () if y; is not a term of 7. Then for every i € T
and j € J there exist a;,b; € S(p") such that

Z a;xr; + Z bjyj =0.

iel jed

As y; maps to p under f,- ,2 there exists wy € U(p") such that y; = pw;. By Lemma 4, for
each i € I and j € J we see that a; = p"u; and b; = p*v; where r;,s; € [0,7 — 2] are even
and wu;, v; € U(p")?. So we get that

D puii+ Y p o, = 0. (1)

iel jed

Consider the set L = {r; :i € I} U{s; +1:j € J}. Let 7' be the minimum of L. As
r > 21is even and s is even, it follows that " < r — 1. Suppose there exists i € I such that
r; =1

We claim that I = {1,2} and 7, = 7y = ¢, If not, from (1) we get that p” *! divides p" w
where w is a unit. As 7’ < r — 1 we get the contradiction that p divides w. By a similar
argument, we see that s; +1 #1'. Asr’ <r —1, from (1) we see that p divides u;x; + ugws.
Let f = fy,. We get that

fur) f () + flug) fzs) = 0.

As ug,up € U(p")?% it follows that f(uy), f(us) € S(p). So the sequence (f(z1), f(z2)) is
an S(p)-weighted zero-sum sequence. Thus, we get the contradiction that the image of the
sequence (z1, 22) under fy2 , is an S(p)-weighted zero-sum sequence. Hence, it follows that
S does not have any S(p”)-weighted zero-sum subsequence. O
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Theorem 12. Let n be an even square. Then we have that Dg, > 4.

Proof. Mondal et al. [7, Cor. 2, Lem. 7] have shown that for every odd prime p we can
find a sequence (uy,v,) in U(p?) whose image under f,2 , is not an S(p)-weighted zero-sum
sequence. Consider the sequence (u,, vy, p) in Zye.

For each prime divisor p of n, the map f,m ,2 is onto. So by the Chinese remainder
theorem we can find a sequence S = (1, x2, z3) in Z, such that, for every prime divisor p of
n, the image of S under f, ,2 is (up, vy, p) when p is odd, and the image of S under f, 4 is
(1,1,1).

For every prime divisor p of n, we see that the sequence S® in Zyr has the form as in the
statement of Lemma 10 if p = 2, or of Lemma 11 if p is odd. So for every prime divisor p of
n, if = v,(n), it follows that the sequence S does not have any S(p")-weighted zero-sum
subsequence.

Suppose T is an S(n)-weighted zero-sum subsequence of S. Let x be a term of T and
a € S(n) be the coefficient of « in an S(n)-weighted zero-sum which is obtained from 7'. As
a # 0, there is a prime divisor p of n such that a® # 0. So we get the contradiction that
the sequence S in Z, has an S(p")-weighted zero-sum subsequence where r = v,(n).

Thus, it follows that the sequence S does not have any S(n)-weighted zero-sum subse-
quence. Hence, we see that Dg,) > 4. O

Lemma 13. Let r be a non-zero even number and p be an integer which is at least two.
Suppose T is a sequence in Ly whose image under fyr 2 is a U(p*)*-weighted zero-sum
sequence. Then the sequence T is an S(p")-weighted zero-sum sequence.

Proof. The proof of this result is similar to the proof of Lemma 9. We need to use the facts
that f,r ,2(U(p")?) = U(p*)? and that p2 = (p"=2/2)% € S(p"). O

The next result follows immediately from Lemma 13.

Corollary 14. Let r be a non-zero even number and p be a positive integer. Then we have
that Ds(pr) S DU(p2)2 and Cs(pr) S CU(pQ)Q'

Theorem 15. Let r be a non-zero even number. Then we have Cgary < 4.

Proof. Mondal et al. [8, Cor. 1] have shown that Cyy = 4. As U(4)? = {1}, from Corollary
14 it follows that Cgory < 4. O]

Corollary 16. Let n be an even square. Then we have Dgg,y = Cs(,) = 4.

Proof. From Theorem 12 we have Dg(, > 4. By Theorem 15 and Corollary 8 we have
Csny < 4. As Dy(n) < Ca(n) for every A C Z,, it follows that Dgq,) = Cg(n) = 4. O



5 (g and Dg(,) when n is not a square

Proposition 17. Let n be odd. We can find a sequence S = (u,v) in U(n) such that for each
prime divisor p of n, the image of S under f, , does not have any S(p)-weighted zero-sum
subsequence.

Proof. Let p be a prime divisor of n and v,(n) = r. By [7, Cor. 2] there exist u,,v, € U(p)
such that the sequence (u,,v,) does not have any S(p)-weighted zero-sum subsequence. As
the image of U(p") under f,- , is U(p), there exist u;, v, € U(p") such that the image of the
sequence (u,,v,) under fyr , is (up, vp).

By the Chinese remainder theorem, there exist u,v € U(n) such that for each prime
divisor p of n if n, = p*»" then the image of the sequence S = (u,v) under f,,, is (u),v)).

p Up
It follows that the image of S under f,, , is (up, v,) which is the same as the image of (u;,, v;)
under the map f,, p. O

Lemma 18. Let p be an odd prime and r be a positive integer. Suppose S = (v1,v2) is a
sequence in U(p") such that the image of S under f,r , is not an S(p)-weighted zero-sum
sequence. Then the sequence S does not have any S(p")-weighted zero-sum subsequence.

Proof. Suppose the sequence S is an S(p")-weighted zero-sum sequence. Then there exist
ai,as € S(p") such that ayv; +asvy = 0. By Lemma 4 we see that there exist uy, uy € U(p")?
and even ry, 1y € [0,7 — 1] such that a; = p™uy and as = p™uy. So we get that

P ruvr + prPusvy = 0.

By Observation 3 we see that 71 = o and so p™ (u1v1 + ugvy) = 0. As 1y < r, it follows that
p divides ujvy 4 ugve. If f is the map fyr ,, then we see that

Fu) f(vr) + f(u2) f(ve) = 0.

As uy,uz € U(p")?, it follows that f(uy), f(uz) € S(p). Thus, we get the contradiction that
the image of S under f,- , is an S(p)-weighted zero-sum sequence. Hence, it follows that S
is not an S(p”)-weighted zero-sum sequence. As vy, vy € U(p"), we see that S does not have
any S(p")-weighted zero-sum subsequence of length one. O

Theorem 19. Let n be an odd number. Then we have that Dgg, > 3.

Proof. By Proposition 17 there exists a sequence S = (u,v) in U(n) such that for each
prime divisor p of n, the image of S under f, , does not have any S(p)-weighted zero-sum
subsequence.

Suppose T' is an S(n)-weighted zero-sum subsequence of S. As the terms of S are in
U(n), we see that T" must be S. Thus, there exist a,b € S(n) such that au + bv = 0. As
a # 0, there exists a prime divisor p of n such that a” # 0. Let k = v,(n) and (u,,v,) be
the image of S under f, .



It follows that the sequence (u,,v,) in Z,. has an S(p*)-weighted zero-sum subsequence.
As the image of S = (u, v) under f, , is the same as the image of (u,, v,) under f, ,, it follows
that (up,vp) is a sequence in Z,» whose image under f,s , does not have any S(p)-weighted
zero-sum subsequence.

So by Lemma 18 we get the contradiction that the sequence (u,,v,) does not have any
S(p*)-weighted zero-sum subsequence. Thus, we see that S does not have any S(n)-weighted
zero-sum subsequence. Hence, it follows that Dg,) > 3. O

Theorem 20. We have that Dg(,y > 3 when vy(n) is even and at least two.

Proof. By the results by Mondal et al. [7, Cor. 2, Lem. 7] and by the Chinese remainder
theorem, we can find a sequence S = (vy,v9) in U(n) (by a similar method as in Proposition
17) such that for every odd prime divisor p of n the image of S under f, , is not an S(p)-
weighted zero-sum sequence and the image of S under f,, 4 is (1,1).

Suppose T is an S(n)-weighted zero-sum subsequence of S. As the terms of S are in
U(n), we see that T" must be S. Thus, there exists a,b € S(n) such that au + bv = 0. As
a # 0, there is a prime divisor ¢ of n such that a(? # 0. We now use a similar argument as
in the proof of Theorem 19, where we use Lemma 10 in addition to Lemma 18. O]

Theorem 21. Let p be an odd prime and r be odd. Then we have Cgry < 3.

Proof. Let S = (z,y,2) be a sequence in Z, and let S’ be the image of S under f,r ,.
Mondal et al. [8, Thm. 4] showed that for an odd prime p we have Cg(,) = 3. Thus, we can
find a subsequence 7" whose terms are consecutive terms of S such that the image of 7" under
fpr.p is an S(p)-weighted zero-sum subsequence of S’. So by Lemma 9 we see that 7" is an
S(p")-weighted zero-sum sequence. Hence, it follows that Cgqry < 3. m

Corollary 22. Suppose n is not a square and ve(n) is a non-negative, even integer. Then
we have that Dg(,) = Cgm) = 3.

Proof. By Theorem 20 we have Dg(,) > 3. From the assumptions on n, we see that there is an
odd prime divisor p of n such that v,(n) is odd. Thus, by Corollary 8 and Theorem 21 we have
that Cg(ny < 3. As Dy(n) < Ca(n) for every A C Zy, it follows that Dgp,y = Cgpmy = 3. O

Theorem 23. We have that Cgory < 2 where 1 is an odd number.

Proof. Let S = (z,y) be a sequence in Zyr and " = (2, 3/') be the image of S under for 5. We
can find a subsequence 1" of S such that the image of 7" under for 5 is a zero-sum sequence.
So by Lemma 9 we see that T is an S(2")-weighted zero-sum sequence. Hence, it follows
that CS(QT) < 2. ]

Corollary 24. Suppose n is an even positive integer such that vo(n) is odd. Then we have
that Dgny = Cs(ny = 2.

Proof. It is easy to see that Dg) > 2. From Corollary 8 and Theorem 23, we get that
Cs(ny < 2. For every A C Z,, as Da(n) < Ca(n), it follows that Dgq,) = Cs(n) = 2. O
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6 Dg(,) when n is an odd square

Lemma 25. Let p be a prime and r be a non-zero even number. Suppose (wi,ws) is a
sequence in U(p") whose image under fyr , is not an S(p)-weighted zero-sum sequence. Let
ueU(p") and

S = (uwq, uws, pwy, pws).

Then the sequence S in Z, does not have any S(p")-weighted zero-sum subsequence.

Proof. Suppose T' is an S(p")-weighted zero-sum subsequence of S. Let
I={ie[l,2] :uw;is aterm of T} and J = {j € [1,2] : pw; is a term of T'}.

As T is an S(p")-weighted zero-sum sequence, for each i € I there exists a; € S(p”) and for
each j € J there exists b; € S(p") such that >, ; a;uw; + 3, ;bjpw; = 0. From Lemma
4, for each 7 € I we have a; = p"iu; for some even r; < r and u; € U(pr)2 and for each j € J
we have b; = p*v; for some even s; < r and v; € U(p")%. So we have

u Zp”ui w; + ZpstijJj = 0. (2)

iel jed

Consider the set L = {r; : 1 € I} U{s; +1 : j € J}. Let r’ be the minimum of
L. As r is even and s; is even for each j € J, it follows that " < r — 1. Observe that
{ri:iel}n{s;+1:j¢€ J} =0 asther’s and s,’s are even. Suppose there exists i € I
such that r; = r’. We claim that I = {1,2} and r; = ro =/, If not, from (2) we get that
p" 1 divides p”'w where w is a unit. As ' < r — 1 we get the contradiction that p divides
w. By a similar argument if there exists j € J such that s; +1 =7/, then J = {1,2} and
81+1:SQ—|—1I7”/.

Suppose I = {1,2} and 1 = ro = r'. As ' < r — 1, from (2) we see that p divides
u (ujwy + ugws). As u € U(p"), it follows that f(u) € U(p) where f = f,r ,. So we get that

fur) f(wr) + f(ug) f(wa) = 0.

As uy,up € U(p")?, it follows that f(uy), f(uz) € S(p). Thus, we get the contradiction that
the image of the sequence (wy,wsy) under f,r , is an S(p)-weighted zero-sum sequence. We
will get the same contradiction if J = {1,2} and s; + 1 = sy + 1 = r/. Thus, it follows that
S does not have any S(p")-weighted zero-sum subsequence. O]

Theorem 26. Let n be an odd square. Then we have that Dgg,y > 5.

Proof. Let m be the radical of n, i.e., the largest squarefree divisor of n. By Proposition 17
there exists a sequence (u,v) in U(n) such that for each prime divisor p of n, the image of
the sequence (u,v) under f, , does not have any S(p)-weighted zero-sum subsequence. Let

S = (u,v, mu, mv).
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We claim that this sequence S does not have any S(n)-weighted zero-sum subsequence. From
this it follows that Dg(,) > 5.

Suppose T' is an S(n)-weighted zero-sum subsequence of S. Let x be a term of 7" and
a € S(n) be the coefficient of z in an S(n)-weighted zero-sum which we obtain from 7. As
a # 0, there exists a prime divisor p of n such that a® # 0. Let r = v,(n). It follows that
the sequence S has an S(p")-weighted zero-sum subsequence.

The image of the sequence (u®,v®)) under f,- , does not have any S(p)-weighted zero-
sum subsequence. As m is the largest squarefree divisor of n, it follows that m® = pw where
w € U(p"). Tt follows that S® is a sequence in Z, which has the form as in the statement
of Lemma 25. As n is a square, we see that r is a non-zero even number. So by Lemma
25 we arrive at the contradiction that the sequence S does not have any S(p")-weighted
zero-sum subsequence. Hence, our claim must be true. O

We get the next result from the proof of [2, Thm. 7).

Lemma 27. Let p be an odd prime, v be a positive integer, and A = U(p")%. Suppose we
are given yy,y2,ys € U(p"). Then we have that

Ayr + (Aya U {0} ) + (Ays U{0}) = Zyr.

Theorem 28. Let r be a non-zero even number and p be an odd prime. Then we have that
DS(pT) S 5

Proof. Suppose S = (z1,...,25) is a sequence in Z,-. If p* divides some term x; of S, then
p'2z; = 0. As r is even, we see that p'~2 = (p"=2/2)2 € S(n). So we see that T = (z;) is
an S(p")-weighted zero-sum subsequence of S of length one. Thus, we may assume that p?
does not divide any term of S.

It follows that each term of S is either a unit or a unit multiple of p. If at least three
terms of S are units or at least three terms of S are unit multiples of p, by using Lemma 27
we get an S(p”)-weighted zero-sum subsequence of S. Thus, we see that Dg(,r) < 5. O]

Corollary 29. Let n be an odd square. Then we have that Dgg,y = 5.

Proof. From Theorem 26 we see that Dg(,) > 5 when n is an odd square. Since every prime
divisor p of n is odd and v,(n) is even, by using Corollary 8 and Theorem 28 we see that
Dgmy < 5. Thus, it follows that Dg,) = 5. O]

7 Cg@) when n is an odd square

We will use the following notation.

If T is a subsequence of S, then S — T denotes the subsequence which is obtained by
removing the terms of T" from S. The concatenation of the sequences S — T and T gives us
a sequence whose terms are a permutation of the terms of the sequence S.

11



If S is a sequence in Z, and d € Z,, such that all the terms of S are divisible by d, then
S/d denotes the sequence in Z, whose terms are obtained by dividing the corresponding
terms of S by d.

Theorem 30. We have that Cya52 = 9.

Proof. Let S = (x1,...,29) be a sequence in Zys. We may assume that all the terms of S
are noON-zero.

Suppose at least four terms of S are units. From [4, Lem. 2] it follows that S is a
U(25)*-weighted zero-sum sequence. Let

S1 = (1, 22,23), S2 = (w4, 25,26), and S5 = (27, x5, Tg).

Suppose at most two terms of S are units. Then we see that there exists ¢ € [1,3] such
that all the terms of S; are divisible by 5. Let S/ denote the sequence in Z; which is the
image of S;/5 under fy55. From [8, Thm. 4] we have that Cg, = 3. Thus, the sequence
S! has a @Qs-weighted zero-sum subsequence having consecutive terms. By [7, Lem. 5] it
follows that the sequence S; (and hence the sequence S) has a U(25)*-weighted zero-sum
subsequence having consecutive terms.

So we may assume that exactly three terms of S are units. If at least three consecutive
terms of S are non-units, by a similar argument as in the previous paragraph we get a
U(25)%-weighted zero-sum subsequence of S having consecutive terms. So it follows that for
each i € [1,3] there is exactly one term y; in the sequence S; which is a unit.

As Cg, = 3 we see that the sequence (yi, y2, y3) has a subsequence S, having consecutive
terms whose image S} under fos5 is a (Q5-weighted zero-sum sequence. As fo5 5 is onto, it
follows that there exists k € Zas such that a U(25)*weighted sum of the terms of Sy is —5k.
We will use this observation a bit later in this proof. Let

J={ie€[l,3]:y; is a term of S,}.

Let T be the concatenation of the sequences S; where i« € J. It follows that 7' is a subsequence
of S having consecutive terms. We claim that T is a U(25)%*weighted zero-sum sequence.
Let Ty =T — S;. As all the terms of S are non-zero, all the terms of T are of the form 5u
where u € U(25).

Let T} denote the image of 7} /5 under fa5 5. Chintamani and Moriya [4, Lem. 2] showed
that fos5(k) € Zs is a Qs-weighted sum of the terms of 7. Mondal et al. [7, Lem. 5]
showed that 5k is a U(25)*-weighted sum of the terms of T;. As we have seen that —5k is
a U(25)%-weighted sum of the terms of S, it follows that 7" is a U(25)*-weighted zero-sum
sequence.

Thus, every sequence in Zys; having length nine has a U(25)%*-weighted zero-sum sub-
sequence whose terms are consecutive terms of the given sequence. So it follows that
Cues: < 9. Mondal et al. [8, Cor. 5] showed that Cyas2 > 9. Hence, it follows that
Cugasy = 9. 0

12



Theorem 31. Let n be an odd square. Then we have that Cg(,) < 9.

Proof. Mondal et al. [8, Cor. 6] showed that Cp(2)2 =9 when p is a prime which is at least
seven. From Remark 1 we see that Cyg)2 < 9 and from Theorem 30 we see that Crras)2 < 9.
Thus, from Corollaries 8 and 14 it follows that Cg(,) < 9. O

Chintamani and Moriya [4, Lem. 1] showed the next result.

Lemma 32. Let p be a prime which is at least seven and A = U(p")%. Then for every
x1, X9, 23 € U(P") we have that Axy + Axg + Axg = Zyr.

Mondal et al. [8, Lem. 7] showed the next result, which follows easily from Lemma 32.

Lemma 33. Let p be a prime which is at least seven and S = (x1,...,x) be a sequence
in Zyr. Suppose at least three terms of S are units. Then S is a U(p")*-weighted zero-sum
sequence.

Theorem 34. Let p be a prime which is at least seven and r be an even number which is at
least four. Then we have that Cgry < 5.

Proof. Let S = (xy,...,75) be a sequence in Z,-. As r is even, we see that p'=2 = (p{r=2)/2)2
and hence p"~2 € S(p"). If p? divides some term x of S, then it follows that p" 2z = 0 and
so S has an S(p")-weighted zero-sum subsequence of length one. Thus, we may assume that
p? does not divide any term of S. So every term of S is either a unit or of the form pu where
u is a unit.

If at least three terms of S are units, by Lemma 33 we see that S is an S(p”)-weighted
zero-sum sequence. Thus, we may assume that at most two terms of S are units. Then
at least three terms of S are of the form pu where u is a unit. We may assume that
1 = puy, Ty = puy, T3 = pug where uy, us, uz € U(p"). Consider the sequence

!
S = (ula Uz, U3,p$4,p$5)-

By Lemma 33 we see that S’ is a U(p")*-weighted zero-sum sequence. So there exist a;’s in
U(p")? such that
a1U1 + Ao + aslz + aspry + asPrs = 0.

Thus, it follows that
a1y + Ty + azxs + pPagxy + prasrs = 0.

As r > 4, we see that p* # 0. Hence, it follows that S is an S(p")-weighted zero-sum
sequence. L]

Corollary 35. Let n be an odd square which is divisible by p* where p is a prime which is
at least seven. Then we have that Cg,y = 5.

13



Proof. As n is a square, it follows that v,(n) is even. So from Corollary 8 and Theorem 34
we have Cg) < 5. As we have that Dy(n) < Cy(n) for every A C Z,, from Theorem 26 it
follows that Cg(,) = 5. O

The next result follows easily from a result by Chintamani and Moriya [4, Lem. 2].

Lemma 36. Let r be a positive integer and S be a sequence in Zs-. Suppose at least four
terms of S are units. Then S is a U(5")*-weighted zero-sum sequence.

Theorem 37. We have that Cgsry < 7 when r is an even number which is at least four.

Proof. We use a similar argument as in the proof of Theorem 34. The only change is that
we replace Lemma 33 with Lemma 36. O

Corollary 38. Let n be a square which is divisible by 5*. Then we have that Csmy < 7.

Proof. As n is a square, it follows that vs(n) is even. Also, we have that vs(n) > 4. So from
Corollary 8 and Theorem 37 we get that Cg,) < 7. O]

Theorem 39. Let n be a square of an odd squarefree number. Then we have that Cgpy = 9.

Proof. By Theorem 31 we get that Cgq,) < 9. We will construct a sequence S of length eight
in Z,, which has no S(n)-weighted zero-sum subsequence having consecutive terms. Hence,
it will follow that Cg(n) =9.

By Proposition 17 there exists a sequence S" = (u,v) in U(n) such that for every prime
divisor p of n, the image (u,, v,) of S" under f,, , does not have any S(p)-weighted zero-sum
subsequence. By the Chinese remainder theorem there exist z,y € Z, such that for each
prime divisor p of n we have that z® = pu® and y® = pv® . In this proof, for every
¢ € Z,, we will denote f,, ,(c) by ¢,. So it follows that =, = y, = 0. Consider the sequence
S in 7Z,, defined as follows:

S = (z,y,u,x,y,v,2,Y).

Suppose there exists a subsequence T of S having consecutive terms which is an S(n)-
weighted zero-sum sequence.

Case 1: Either u or v is a term of 7.

Without loss of generality, we may assume that u is a term of T

Let a € S(n) be the coefficient of u in the S(n)-weighted zero-sum which is obtained
from T. As a # 0, there exists a prime divisor p of n such that a® # 0. As n is the square
of a squarefree number, it follows that v,(n) = 2. So we see that a® € S(p?). As every
non-zero term of Z,2 is either a unit or a unit multiple of p, we see that S(p?) = U(p?)*. As
a®) € U(p?)?, it follows that f, ,(a'?) € S(p) and so a, € S(p).

We claim that the sequence (uy,,v,) has an S(p)-weighted zero-sum subsequence.

Suppose v is a term of 7. Let b € S(n) be the coefficient of v in the S(n)-weighted zero-
sum which is obtained from 7. As b € S(n), it follows that b, € S(p) U{0}. So we get
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that a,u, + b,v, = 0. If v is not a term of T" then ayu, = 0. This proves our claim which
contradicts our choice of the sequence (u,, v,).

Case 2: Neither u nor v is a term of 7.

As T is a subsequence of consecutive terms, it follows that T is a subsequence of the
sequence (z,y). Suppose z is a term of T. Let a € S(n) be the coefficient of x in the
S(n)-weighted zero-sum which is obtained from 7. By a similar argument as in the previous
case, we see that there is a prime divisor p of n such that a, € S(p).

We claim that the sequence (u,,v,) has an S(p)-weighted zero-sum subsequence.

Suppose y is a term of T'. Then there exists b € S(n) such that az+by = 0. As b € S(n),
it follows that b, € S(p) U {0}. As ax + by = 0, it follows that aPz®) + bPyP) =0 in Z,:.
Thus, we get that
P (a(p)u(p) + b(p)v(p)) -0

and so aPu®) + pPlyP) is divisible by p. Hence, it follows that ayu, + byv, = 0. By a similar
argument, we see that if y is not a term of 7" then a,u, = 0. This proves our claim which
contradicts our choice of the sequence (uy, v,).

Hence, it follows that the sequence S does not have any S(n)-weighted zero-sum subse-
quence of consecutive terms. O

8 Concluding remarks

We have been unable to determine the constants Cgsry and Cg(sr) where 7 is an even number
which is at least four. For every such r we have shown that Cgs € [5,9] and Cgr) € [5,7].
If the values of these constants are known, we can determine the value of Cg(,) for every n.

We can try to characterize the sequences in Z, of length Cg(,) — 1 which do not have
any S(n)-weighted zero-sum subsequence having consecutive terms. We can also try to
characterize sequences in Z,, of length Dg,y — 1 which do not have any S(n)-weighted zero-
sum subsequence.
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