Zero-Sum Constants Related to the Jacobi Symbol

Santanu Mondal, Krishnendu Paul, and Shameek Paul School of Mathematical Sciences
Ramakrishna Mission Vivekananda Educational and Research Institute
West Bengal 711202
India
santanu.mondal.math18@gm.rkmvu.ac.in
krishnendu.p.math18@gm.rkmvu.ac.in
shameek.paul@rkmvu.ac.in

Abstract

Let $A \subseteq \mathbb{Z}_{n}$ be a subset. A sequence $S=\left(x_{1}, \ldots, x_{k}\right)$ is said to be an A-weighted zero-sum sequence if there exist $a_{1}, \ldots, a_{k} \in A$ such that $a_{1} x_{1}+\cdots+a_{k} x_{k}=0$. We refer to A as a weight-set. The A-weighted Davenport constant D_{A} is defined to be the smallest natural number k such that every sequence of k elements in \mathbb{Z}_{n} has an A weighted zero-sum subsequence. The constant C_{A} is defined to be the smallest natural number k such that every sequence of k elements in \mathbb{Z}_{n} has an A-weighted zero-sum subsequence having consecutive terms.

When n is odd, let $S(n)$ be the set of all units in \mathbb{Z}_{n} whose Jacobi symbol with respect to n is 1 . We compute the constants $C_{S(n)}$ and $D_{S(n)}$. For a prime divisor p of n, we also compute these constants for a related weight-set $L(n ; p)$. This is the set of all units x in \mathbb{Z}_{n} such that the Jacobi symbol of x with respect to n is the same as the Legendre symbol of x with respect to p. We show that even though these weight-sets A may have half the size of $U(n)$ (which is the set of units of \mathbb{Z}_{n}), the corresponding A-weighted constants are the same as those for the weight-set $U(n)$.

1 Introduction

For $a, b \in \mathbb{Z}$, we denote the set $\{x \in \mathbb{Z}: a \leq x \leq b\}$ by $[a, b]$. Let $U(n)$ denote the group of units in the ring \mathbb{Z}_{n}, and $U(n)^{2}=\left\{x^{2}: x \in U(n)\right\}$. For an odd prime p, let Q_{p} denote the
set $U(p)^{2}$. For $n=p_{1} p_{2} \cdots p_{k}$ where p_{i} is a prime for each $i \in[1, k]$, we define $\Omega(n)=k$.
Definition 1. Let $A \subseteq \mathbb{Z}_{n}$ be a subset. A sequence $S=\left(x_{1}, \ldots, x_{k}\right)$ is said to be an A weighted zero-sum sequence if there exist $a_{1}, \ldots, a_{k} \in A$ such that $a_{1} x_{1}+\cdots+a_{k} x_{k}=0$. We refer to A as a weight-set.

Definition 2. For a weight-set $A \subseteq \mathbb{Z}_{n}$, the A-weighted Davenport constant D_{A} is defined to be the least positive integer k, such that every sequence in \mathbb{Z}_{n} of length k has an A-weighted zero-sum subsequence.

Adhikari and Rath [4] gave the previous definition. Chintamani and Moriya [5] showed that $D_{U(n)^{2}}=2 \Omega(n)+1$ when every prime divisor of n is at least seven. Grynkiewicz and Hennecart [7] generalized this by showing that $D_{U(n)^{2}} \geq 2 \Omega(n)+\min \left\{v_{3}(n), v_{5}(n)\right\}+1$ when n is odd, with equality if either $3 \nmid n$ or $v_{3}(n) \geq v_{5}(n)$. Mazumdar and Sinha [10] made suitable modifications in the method of Griffiths [6] to consider the case when n is an even integer. (However, their result cannot be used to determine $D_{U(n)^{2}}$ when n is even.) Adhikari et al. [1, Lem. 2.1] showed that $D_{\{1,-1\}}=\left\lfloor\log _{2} n\right\rfloor+1$ for every positive integer n.

Mondal, Paul, and Paul [11] gave the following definition.
Definition 3. For a weight-set $A \subseteq \mathbb{Z}_{n}$, the A-weighted constant C_{A} is defined to be the least positive integer k, such that every sequence in \mathbb{Z}_{n} of length k has an A-weighted zero-sum subsequence of consecutive terms.

Mondal, Paul, and Paul [11, Cor. 3, Cor. 6] showed that $C_{U(n)^{2}}=3^{\Omega(n)}$ when every prime divisor of n is at least seven and $C_{\{1,-1\}}=n$ when n is a power of two. Mondal, Paul, and Paul [12] showed the next result.
Theorem 4. For every positive integer n we have $D_{U(n)}=\Omega(n)+1$ and $C_{U(n)}=2^{\Omega(n)}$.
When p is an odd prime such that $p \equiv 2(\bmod 3)$, we can show that $U(p)^{3}=U(p)$. Mondal, Paul, and Paul [11, Thm. 7, Lem. 2] showed that when $p \neq 7$ is a prime such that $p \equiv 1(\bmod 3)$, we have $D_{U(p)^{3}}=C_{U(p)^{3}}=3$, and also that $D_{U(7)^{3}}=3$ and $C_{U(7)^{3}}=4$. Adhikari and Rath [4, Thm. 2], and Mondal, Paul, and Paul [11, Thm. 4] showed the next result.

Theorem 5. Let p be an odd prime. Then $C_{Q_{p}}=D_{Q_{p}}=3$.
Let m be a divisor of n. We refer to the ring homomorphism $f_{n, m}: \mathbb{Z}_{n} \rightarrow \mathbb{Z}_{m}$ given by $a+n \mathbb{Z} \mapsto a+m \mathbb{Z}$ as the natural map. As this map sends units to units, we get a group homomorphism $U(n) \rightarrow U(m)$, which we also refer to as the natural map. When n is odd and $x \in \mathbb{Z}_{n}$, the Jacobi symbol $\left(\frac{x}{n}\right)$ is defined in Section 2.

The following are some of the results in this paper. We assume that n is an odd, squarefree number whose every prime divisor is at least seven.

- Let $S(n)=\left\{x \in U(n):\left(\frac{x}{n}\right)=1\right\}$.

If n is prime, then $D_{S(n)}=3$, and $D_{S(n)}=\Omega(n)+1$ otherwise.
If n is prime, then $C_{S(n)}=3$, and $C_{S(n)}=2^{\Omega(n)}$ otherwise.

- Let $L(n ; p)=\left\{x \in U(n):\left(\frac{x}{n}\right)=\left(\frac{x}{p}\right)\right\}$ where p is a prime divisor of n.

If $\Omega(n)=2$, then $D_{L(n ; p)}=4$, and $D_{L(n ; p)}=\Omega(n)+1$ otherwise.
If $\Omega(n)=2$, then $C_{L(n ; p)}=6$, and $C_{L(n ; p)}=2^{\Omega(n)}$ otherwise.
Remark 6. Adhikari and Hegde [3] showed that if $A=\mathbb{Z}_{n} \backslash\{0\}$ and $B=\{1,2, \ldots,\lceil n / 2\rceil\}$, we have $D_{A}=D_{B}$. We make a similar observation in this paper. In Proposition 11, we show that $S(n)$ is a subgroup of $U(n)$ having index two when n is not a square. Theorem 4 shows that, when n is odd, we have $D_{U(n)}=\Omega(n)+1$ and $C_{U(n)}=2^{\Omega(n)}$. In addition, if n is not a prime, Theorems 23 and 24 show that $D_{S(n)}=D_{U(n)}$ and $C_{S(n)}=C_{U(n)}$. Thus, even though these weight-sets may have different sizes, they can have the same constants. If $\Omega(n) \neq 2$, Theorems 33 and 35 show that $D_{L(n ; p)}=D_{U(n)}$ and $C_{L(n ; p)}=C_{U(n)}$.

If p is a prime divisor of n, we use the notation $v_{p}(n)=r$ to mean that $p^{r} \mid n$ and $p^{r+1} \nmid n$. Let p be a prime divisor of n and $v_{p}(n)=r$. We denote the image in $U\left(p^{r}\right)$ of $x \in U(n)$ under $f_{n, p^{r}}$ by $x^{(p)}$. For a sequence $S=\left(x_{1}, \ldots, x_{l}\right)$ in \mathbb{Z}_{n}, let $S^{(p)}$ denote the sequence $\left(x_{1}^{(p)}, \ldots, x_{l}^{(p)}\right)$ in $\mathbb{Z}_{p^{r}}$, which is the image of S under $f_{n, p^{r}}$. Griffiths [6, Obs. 2.2] made the following observation.

Observation 7. Let $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ where the p_{i} 's are distinct primes and $S=\left(x_{1}, \ldots, x_{l}\right)$ be a sequence in \mathbb{Z}_{n}. Suppose for every $i \in[1, k]$ there exist $c_{i, 1}, \ldots, c_{i, j}, \ldots, c_{i, l} \in U\left(p_{i}^{r_{i}}\right)$ such that $c_{i, 1} x_{1}^{\left(p_{i}\right)}+\cdots+c_{i, j} x_{j}^{\left(p_{i}\right)}+\cdots+c_{i, l} x_{l}^{\left(p_{i}\right)}=0$. Then there exist $a_{1}, \ldots, a_{j}, \ldots, a_{l} \in U(n)$ such that for every $(i, j) \in[1, k] \times[1, l]$ we have $a_{j}^{\left(p_{i}\right)}=c_{i, j}$ and $a_{1} x_{1}+\cdots+a_{j} x_{j}+\cdots+a_{l} x_{l}=0$.

Proof. Let $j \in[1, l]$. By the Chinese remainder theorem, there exists $a_{j} \in U(n)$ such that for every $i \in[1, k]$ we have that $a_{j}^{\left(p_{i}\right)}=c_{i, j}$. Let $x=a_{1} x_{1}+\cdots+a_{j} x_{j}+\cdots+a_{l} x_{l}$. For each $i \in[1, k]$ we see that $f_{n, p_{i}^{r_{i}}}(x)=x^{\left(p_{i}\right)}=c_{i, 1} x_{1}^{\left(p_{i}\right)}+\cdots+c_{i, j} x_{j}^{\left(p_{i}\right)}+\cdots+c_{i, l} x_{l}^{\left(p_{i}\right)}=0$. So by using the Chinese remainder theorem once again, we see that $x=0$.

Mondal, Paul, and Paul [11, Lem. 3] showed the next result, which will be used in Theorem 36. In the next two results, for a subset A of \mathbb{Z}_{n}, we use the notation $C_{A}(n)$ and $D_{A}(n)$ for the constants C_{A} and D_{A} respectively.

Lemma 8. Let $n=m q$. Let A, B, C be subsets of $\mathbb{Z}_{n}, \mathbb{Z}_{m}, \mathbb{Z}_{q}$ respectively. Suppose $f_{n, m}(A) \subseteq$ B and $f_{n, q}(A) \subseteq C$. Then we have $C_{A}(n) \geq C_{B}(m) C_{C}(q)$.

We now prove a similar result for the weighted Davenport constant, which we will use in Theorem 34. Grynkiewicz, Marchan, and Ordaz [8, Lem. 3.1] proved a generalization of this result for abelian groups.

Lemma 9. Let $n=m q$. Let A, B, C be subsets of $\mathbb{Z}_{n}, \mathbb{Z}_{m}, \mathbb{Z}_{q}$ respectively. Suppose $f_{n, m}(A) \subseteq$ B and $f_{n, q}(A) \subseteq C$. Then we have $D_{A}(n) \geq D_{B}(m)+D_{C}(q)-1$.

Proof. Let $D_{B}(m)=k$ and $D_{C}(q)=l$. If $k=1$, we let S_{1}^{\prime} be the empty sequence, and if $l=1$, we let S_{2}^{\prime} be the empty sequence. Otherwise, there exists a sequence $S_{1}^{\prime}=\left(u_{1}, \ldots, u_{k-1}\right)$ of length $k-1$ in \mathbb{Z}_{m}, which has no B-weighted zero-sum subsequence, and there exists a sequence $S_{2}^{\prime}=\left(v_{1}, \ldots, v_{l-1}\right)$ of length $l-1$ in \mathbb{Z}_{q}, which has no C-weighted zero-sum subsequence.

As $f_{n, m}$ is onto, for every $i \in[1, k-1]$ there exists $x_{i} \in \mathbb{Z}_{n}$ such that $f_{n, m}\left(x_{i}\right)=u_{i}$. As $f_{n, q}$ is onto, for every $j \in[1, l-1]$ there exists $y_{j} \in \mathbb{Z}_{n}$ such that $f_{n, q}\left(y_{j}\right)=v_{j}$. Consider the following sequence of length $k+l-2$ in \mathbb{Z}_{n} :

$$
S=\left(q x_{1}, \ldots, q x_{k-1}, y_{1}, \ldots, y_{l-1}\right)
$$

Let $S_{1}=\left(q x_{1}, \ldots, q x_{k-1}\right)$ and $S_{2}=\left(y_{1}, \ldots, y_{l-1}\right)$. Suppose S has an A-weighted zerosum subsequence T. If the sequence T contains some term of S_{2}, by taking the image of T under $f_{n, q}$ we get the contradiction that S_{2}^{\prime} has a C-weighted zero-sum subsequence, as $f_{n, q}\left(q x_{i}\right)=0$ and as $f_{n, q}(A) \subseteq C$.

Thus, no term of S_{2} is a term of T, and so T is a subsequence of S_{1}. Let T^{\prime} be the subsequence of S_{1}^{\prime}, such that u_{i} is a term of T^{\prime} if and only if $q x_{i}$ is a term of T. As $f_{n, m}(A) \subseteq B$, by dividing the A-weighted zero-sum which is obtained from T by q and by taking the image under $f_{n, m}$ we get the contradiction that T^{\prime} is a B-weighted zero-sum subsequence of $S_{1}^{\prime \prime}$.

Hence, we see that S does not have a A-weighted zero-sum subsequence. As S has length $k+l-2$, it follows that $D_{A}(n) \geq k+l-1$.

2 Some results about the weight-set $S(n)$

From this point onwards, we will assume that n is odd.
Definition 10. For an odd prime p and $a \in U(p)$, the symbol $\left(\frac{a}{p}\right)$ is the Legendre symbol with respect to p, which is defined as follows:

$$
\left(\frac{a}{p}\right)= \begin{cases}1, & \text { if } a \in Q_{p} \\ -1, & \text { if } a \notin Q_{p}\end{cases}
$$

For a prime divisor p of n, we use the notation $\left(\frac{a}{p}\right)$ to denote $\left(\frac{f_{n, p}(a)}{p}\right)$ where $a \in U(n)$. Let $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ where the p_{i} 's are distinct primes.

For $a \in U(n)$, we define the Jacobi symbol $\left(\frac{a}{n}\right)$ to be $\left(\frac{a}{p_{1}}\right)^{r_{1}} \cdots\left(\frac{a}{p_{k}}\right)^{r_{k}}$. Observe that we have $\left(\frac{a}{n}\right)=\left(\frac{a^{\left(p_{1}\right)}}{p_{1}^{r_{1}}}\right) \cdots\left(\frac{a^{\left(p_{k}\right)}}{p_{k}^{r_{k}}}\right)$.

Let $S(n)$ denote the kernel of the homomorphism $U(n) \rightarrow\{1,-1\}$ given by $a \mapsto\left(\frac{a}{n}\right)$.
Adhikari, David, and Urroz [2, Sec. 3] considered the set $S(n)$ as a weight-set.
Proposition 11. $S(n)$ is a subgroup having index two in $U(n)$ when n is a non-square, and $S(n)=U(n)$ when n is a square.

Proof. Let $n=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$ where the p_{i} 's are distinct primes. If n is a square, then all the r_{i} are even, and so $S(n)=U(n)$. If n is not a square, there exists j such that r_{j} is odd. As for every $i \in[1, k]$ the map $f_{p_{i} r_{i}, p_{i}}$ is onto, by the Chinese Remainder theorem we see that there is a unit $b \in U(n)$ such that $\left(\frac{b}{p_{i}}\right)=1$ when $i \neq j$, and $\left(\frac{b}{p_{j}}\right)=-1$. It follows that $\left(\frac{b}{n}\right)=-1$ and so the homomorphism $U(n) \rightarrow\{1,-1\}$ given by $a \mapsto\left(\frac{a}{n}\right)$ is onto. Hence, we see that $S(n)$ has index two in $U(n)$.

Remark 12. In particular, if n is squarefree, then $S(n)$ has index two in $U(n)$. It follows that when p is an odd prime we have $S(p)=Q_{p}$.

Observation 13. Let $n=p_{1} \cdots p_{k}$ where the p_{i} 's are distinct prime numbers. For $a \in U(n)$, let $\mu(a)$ denote the cardinality of $\left\{j \in[1, k]: f_{n, p_{j}}(a)=a^{\left(p_{j}\right)} \notin Q_{p_{j}}\right\}$. As we have that

$$
\left(\frac{a}{n}\right)=\left(\frac{a^{\left(p_{1}\right)}}{p_{1}}\right) \cdots\left(\frac{a^{\left(p_{j}\right)}}{p_{j}}\right) \cdots\left(\frac{a^{\left(p_{k}\right)}}{p_{k}}\right),
$$

it follows that $a \in S(n)$ if and only if $\mu(a)$ is even.
Lemma 14. Let d be a proper divisor of n such that d is not a square. Suppose d is coprime with n^{\prime} where $n^{\prime}=n / d$. Then we have that $U\left(n^{\prime}\right) \subseteq f_{n, n^{\prime}}(S(n))$.

Proof. Let $a^{\prime} \in U\left(n^{\prime}\right)$. By the Chinese remainder theorem, there is an isomorphism ψ : $U(n) \rightarrow U\left(n^{\prime}\right) \times U(d)$. As d is not a square, by Proposition 11 there exists $b \in U(d)$ such that $b \notin S(d)$. If $a^{\prime} \in S\left(n^{\prime}\right)$, let $a \in U(n)$ be a unit such that $\psi(a)=\left(a^{\prime}, 1\right)$. If $a^{\prime} \notin S\left(n^{\prime}\right)$, let $a \in U(n)$ be a unit such that $\psi(a)=\left(a^{\prime}, b\right)$. Then we have $a \in S(n)$ and $f_{n, n^{\prime}}(a)=a^{\prime}$.

Lemma 15. Let S be a sequence in \mathbb{Z}_{n} and d be a proper divisor of n which divides every term of S. Let $n^{\prime}=n / d$ and d be coprime with n^{\prime}. Let S^{\prime} be the sequence in $\mathbb{Z}_{n^{\prime}}$ which is the image of the sequence S under $f_{n, n^{\prime}}$. Let $A \subseteq \mathbb{Z}_{n}$ and $A^{\prime} \subseteq \mathbb{Z}_{n^{\prime}}$ be subsets such that $A^{\prime} \subseteq f_{n, n^{\prime}}(A)$. Suppose S^{\prime} is an A^{\prime}-weighted zero-sum sequence. Then S is an A-weighted zero-sum sequence.

Proof. Let $S=\left(x_{1}, \ldots, x_{k}\right)$ be a sequence in \mathbb{Z}_{n} and $S^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ where $x_{i}^{\prime}=f_{n, n^{\prime}}\left(x_{i}\right)$ for every $i \in[1, k]$. Suppose S^{\prime} is an A^{\prime}-weighted zero-sum sequence. Then for every $i \in[1, k]$ there exist $a_{i}^{\prime} \in A^{\prime}$ such that $a_{1}^{\prime} x_{1}^{\prime}+\cdots+a_{k}^{\prime} x_{k}^{\prime}=0$. Since $A^{\prime} \subseteq f_{n, n^{\prime}}(A)$, for every $i \in[1, k]$ there exist $a_{i} \in A$ such that $f_{n, n^{\prime}}\left(a_{i}\right)=a_{i}^{\prime}$. As $a_{1}^{\prime} x_{1}^{\prime}+\cdots+a_{k}^{\prime} x_{k}^{\prime}=0$ in $\mathbb{Z}_{n^{\prime}}$, it follows that
$f_{n, n^{\prime}}\left(a_{1} x_{1}+\cdots+a_{k} x_{k}\right)=0$. Let $x=a_{1} x_{1}+\cdots+a_{k} x_{k} \in \mathbb{Z}_{n}$. As $f_{n, n^{\prime}}(x)=0$, we see that $n^{\prime} \mid x$, and as every term of S is divisible by d, we see that $d \mid x$. As d is coprime with n^{\prime}, it follows that x is divisible by $n=n^{\prime} d$, and so $x=0$. Thus, we see that S is an A-weighted zero-sum sequence.

Griffiths [6, Lem. 2.1] proved the next result, which we restate here using our terminology.
Lemma 16. Let p be an odd prime. If a sequence S in $\mathbb{Z}_{p^{r}}$ has at least two terms coprime to p, then S is a $U\left(p^{r}\right)$-weighted zero-sum sequence.

Chintamani and Moriya [5, Lem. 1] proved the next result.
Lemma 17. Let $A=U(n)^{2}$ where $n=p^{r}$ and p is a prime which is at least seven. Suppose we have elements $x_{1}, x_{2}, x_{3} \in U(n)$. Then we get that $A x_{1}+A x_{2}+A x_{3}=\mathbb{Z}_{n}$.

We will use the next result in Lemma 22.
Lemma 18. Let $n=p^{r}$ where p is a prime which is at least seven. Let $A_{1}=U(n)^{2}$ and $A_{2}=U(n) \backslash U(n)^{2}$. Suppose $x_{1}, x_{2}, x_{3} \in U(n)$ and $f:\{1,2,3\} \rightarrow\{1,2\}$ is a function. Then $A_{f(1)} x_{1}+A_{f(2)} x_{2}+A_{f(3)} x_{3}=\mathbb{Z}_{n}$.

Proof. From [9, Thm. 2, p. 43] we see that when n is a power of an odd prime, the group $U(n)$ is cyclic. So it follows that -1 is the unique element in $U(n)$ of order 2. Thus, the map $U(n) \rightarrow U(n)$ given by $x \mapsto x^{2}$ has kernel $\{1,-1\}$. Hence, the image of this map is a subgroup of $U(n)$ having index 2 and so there exists $c \in U(n)$ such that $A_{2}=c A_{1}$.

For every $i \in[1,3]$ let

$$
y_{i}= \begin{cases}x_{i}, & \text { if } f(i)=1 \\ c x_{i}, & \text { if } f(i)=2\end{cases}
$$

Let $x \in \mathbb{Z}_{n}$. By Lemma 17 there exist $b_{1}, b_{2}, b_{3} \in U(n)^{2}$ with $x=b_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3}$.
For every $i \in[1,3]$ let

$$
a_{i}= \begin{cases}b_{i}, & \text { if } f(i)=1 \\ b_{i} c, & \text { if } f(i)=2\end{cases}
$$

For every $i \in[1,3]$ it follows that $a_{i} \in A_{f(i)}$ and $b_{i} y_{i}=a_{i} x_{i}$. Thus, we see that $x=$ $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}$.

The next result follows immediately from Lemma 18.
Corollary 19. Let $n=p^{r}$ where p is a prime which is at least seven. Suppose S is a sequence in \mathbb{Z}_{n} such that at least three terms of S are in $U(n)$. Then S is a $U(n)^{2}$-weighted zero-sum sequence.

Remark 20. The conclusion of Corollary 19 may not hold when $p \leq 5$. One can check that the sequence $(1,1,1)$ in \mathbb{Z}_{n} is not a $U(n)^{2}$-weighted zero-sum sequence when $n=2,5$. Also, the sequence $(1,2,1)$ in \mathbb{Z}_{3} is not a $U(3)^{2}$-weighted zero-sum sequence.

3 The constants $D_{S(n)}$ and $C_{S(n)}$

Lemma 21. Let n be squarefree and $S=\left(x_{1}, \ldots, x_{l}\right)$ be a sequence in \mathbb{Z}_{n}. Suppose for every prime divisor p of n, at least two terms of S are coprime to p. If at most one term of S is a unit, then S is an $S(n)$-weighted zero-sum sequence.

Proof. As we have assumed that n is odd and for every prime divisor p of n at least two terms of S are coprime to p, by Lemma 16 we see that for every prime divisor p of n the sequence $S^{(p)}=\left(x_{1}^{(p)}, \ldots, x_{j}^{(p)}, \ldots, x_{l}^{(p)}\right)$ is a $U(p)$-weighted zero-sum sequence. Let $n=p_{1} \cdots p_{i} \cdots p_{k}$ where the p_{i} 's are distinct primes. For every $i \in[1, k]$ there exist $c_{i, 1}, \ldots, c_{i, j}, \ldots, c_{i, l} \in U\left(p_{i}\right)$ such that $c_{i, 1} x_{1}^{\left(p_{i}\right)}+\cdots+c_{i, j} x_{j}^{\left(p_{i}\right)}+\cdots+c_{i, l} x_{l}^{\left(p_{i}\right)}=0$. We will refer to this $U\left(p_{i}\right)$-weighted zero-sum in $\mathbb{Z}_{p_{i}}$ as the $i^{\text {th }}$ sum.

By Observation 7 we see that for every $j \in[1, l]$ there exists $a_{j} \in U(n)$ such that

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{j} x_{j}+\cdots+a_{l} x_{l}=0 \tag{1}
\end{equation*}
$$

and for every $i \in[1, k]$ we have $\left(a_{1}^{\left(p_{i}\right)}, \ldots, a_{j}^{\left(p_{i}\right)}, \ldots, a_{l}^{\left(p_{i}\right)}\right)=\left(c_{i, 1}, \ldots, c_{i, j}, \ldots, c_{i, l}\right)$. We observe that for some $i \in[1, k]$, a different choice for the $i^{\text {th }}$ sum will give us a different l-tuple $\left(a_{1}, \ldots, a_{l}\right)$ in (1). For example, if for some $i \in[1, k]$ there exists $j \in[1, l]$ such that $x_{j}^{\left(p_{i}\right)}$ is zero, we can make an arbitrary choice for $c_{i, j}$ in the $i^{\text {th }}$ sum. For every $i \in[1, k]$ we want to choose the $i^{\text {th }}$ sum so that all the a_{j} 's in (1) are in $S(n)$. Consider the following matrices:

$$
C=\left(\begin{array}{ccccc}
c_{1,1} & \cdots & c_{1, j} & \cdots & c_{1, l} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{i, 1} & \cdots & c_{i, j} & \cdots & c_{i, l} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{k, 1} & \cdots & c_{k, j} & \cdots & c_{k, l}
\end{array}\right) \quad \text { and } \quad X=\left(\begin{array}{ccccc}
x_{1}^{\left(p_{1}\right)} & \cdots & x_{j}^{\left(p_{1}\right)} & \cdots & x_{l}^{\left(p_{1}\right)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{1}^{\left(p_{i}\right)} & \cdots & x_{j}^{\left(p_{i}\right)} & \cdots & x_{l}^{\left(p_{i}\right)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
x_{1}^{\left(p_{k}\right)} & \cdots & x_{j}^{\left(p_{k}\right)} & \cdots & x_{l}^{\left(p_{k}\right)}
\end{array}\right) .
$$

Suppose some entry $x_{j}^{\left(p_{i}\right)}$ of X is 0 . From Proposition 11 and Observation 13 we see that by making a suitable choice for $c_{i, j}$ we can ensure that in (1) we have $a_{j} \in S(n)$. Thus, if the $j^{t h}$ column of X has a zero, we can get a $U(n)$-weighted zero-sum (1) in which $a_{j} \in S(n)$.

We observe that a term x_{j} of S is a unit if and only if the $j^{\text {th }}$ column of X does not have a zero. Hence, if no term of S is a unit, then every column of X has a zero. So in this case S is an $S(n)$-weighted zero-sum sequence.

Suppose exactly one term of S is a unit, say $x_{j_{0}}$. Then the $j_{0}^{\text {th }}$ column of X does not have a zero and there is a zero in all the other columns of X. By multiplying the $1^{\text {st }}$ row of C by a suitable element of $U\left(p_{1}\right)$, we can modify $c_{1, j_{0}}$ so that $a_{j_{0}} \in S(n)$. As the other columns of X have a zero, we can modify those columns of C suitably so that $a_{j} \in S(n)$ for $j \neq j_{0}$. Thus, it follows that S is an $S(n)$-weighted zero-sum sequence.

Lemma 22. Let n be a squarefree integer with every prime divisor of n at least seven. Let $S=\left(x_{1}, \ldots, x_{l}\right)$ be a sequence in \mathbb{Z}_{n} such that, for every prime divisor of n, at least two
terms of S are coprime to $i t$. Suppose there is a prime divisor p of n such that at least three terms of S are coprime to p. Then S is an $S(n)$-weighted zero-sum sequence.

Proof. If $\Omega(n)=1$, then n is a prime say p. As at least three terms of S are coprime to p, Corollary 19 implies S is a Q_{p}-weighted zero-sum sequence with $Q_{p}=S(p)$.

Suppose $\Omega(n) \geq 2$. Let $n=p_{1} \cdots p_{k}$ where the p_{i} 's are distinct primes. By Lemma 16 for every $i \in[1, k]$ there exist $c_{i, 1}, \ldots, c_{i, l} \in U\left(p_{i}\right)$ such that $c_{i, 1} x_{1}^{\left(p_{i}\right)}+\cdots+c_{i, l} x_{l}^{\left(p_{i}\right)}=0$. By Observation 7 there exist $a_{1}, \ldots, a_{l} \in U(n)$ such that

$$
\begin{equation*}
a_{1} x_{1}+\cdots+a_{l} x_{l}=0 \tag{2}
\end{equation*}
$$

Assume that $p=p_{1}$ and that $x_{1}^{(p)}, x_{2}^{(p)}$, and $x_{3}^{(p)}$ are units. A similar argument will work in the general case. Let us denote $c_{1,1}, \ldots, c_{1, l} \in U\left(p_{1}\right)$ by b_{1}, \ldots, b_{l}. We want to choose the b_{i} 's in $U(p)$ so that the corresponding a_{i} 's in (2) are in $S(n)$.

Using Observation 13 we can choose $b_{4}, \ldots, b_{l} \in U(p)$ so that $a_{4}, \ldots, a_{l} \in S(n)$. Let $y=$ $-\left(b_{4} x_{4}^{(p)}+\cdots+b_{l} x_{l}^{(p)}\right)$. By using Observation 13 and Lemma 18 we can choose $b_{1}, b_{2}, b_{3} \in U(p)$ so that $a_{1}, a_{2}, a_{3} \in S(n)$ and $b_{1} x_{1}^{(p)}+b_{2} x_{2}^{(p)}+b_{3} x_{3}^{(p)}=y$. Thus, S is an $S(n)$-weighted zero-sum sequence.

Theorem 23. Let n be squarefree. If n is prime we have $D_{S(n)}=3$. If n is not a prime and every prime divisor of n is at least seven, we have $D_{S(n)}=\Omega(n)+1$.

Proof. From Theorem 4 we have $D_{U(n)}=\Omega(n)+1$. As $S(n) \subseteq U(n)$ it follows that $D_{S(n)} \geq$ $D_{U(n)}$ and so $D_{S(n)} \geq \Omega(n)+1$. If $\Omega(n)=1$, then n is a prime and $S(n)=Q_{n}$. So by Theorem 5, we have $D_{S(n)}=3$.

Suppose $\Omega(n) \geq 2$. We claim that $D_{S(n)} \leq \Omega(n)+1$. Let $S=\left(x_{1}, \ldots, x_{l}\right)$ be a sequence in \mathbb{Z}_{n} of length $l=k+1$ where $k=\Omega(n)$. We have to show that S has an $S(n)$-weighted zero-sum subsequence. If at least one term of S is zero, then that term will give us an $S(n)$-weighted zero-sum subsequence of length 1 .

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
Let us assume without loss of generality that x_{i} is divisible by p for every $i \in[2, l]$. Let T denote the subsequence $\left(x_{2}, \ldots, x_{l}\right)$ of S. Let $n^{\prime}=n / p$ and let T^{\prime} be the sequence in $\mathbb{Z}_{n^{\prime}}$ which is the image of T under $f_{n, n^{\prime}}$. From Theorem 4, we see that $D_{U\left(n^{\prime}\right)}=\Omega\left(n^{\prime}\right)+1$. As T^{\prime} has length $l-1=\Omega(n)=\Omega\left(n^{\prime}\right)+1$, it follows that T^{\prime} has a $U\left(n^{\prime}\right)$-weighted zero-sum subsequence. As n is squarefree, p is coprime to n^{\prime}. Thus, by Lemmas 14 and 15 we see that S has an $S(n)$-weighted zero-sum subsequence.

Case 2: For every prime divisor p of n, exactly two terms of S are coprime to p.
Suppose S has at most one unit. By Lemma 21, we see that S is an $S(n)$-weighted zero-sum sequence. So we can assume that S has at least two units. By the assumption in this subcase, we see that S will have exactly two units and the other terms of S will be zero. As S has length $k+1$ and as $k \geq 2$, some term of S is zero.

Case 3: For every prime divisor p of n at least two terms of S are coprime to p, and there is a prime divisor p^{\prime} of n such that at least three terms of S are coprime to p^{\prime}.

In this case, we are done by Lemma 22.
Theorem 24. Let n be squarefree. If n is a prime, then $C_{S(n)}=3$. If n is not a prime and every prime divisor of n is at least seven, then $C_{S(n)}=2^{\Omega(n)}$.

Proof. If $n=p$ where p is a prime, then $S(n)=Q_{p}$. As p is odd, from Theorem 5 we get that $C_{S(n)}=3$. Let $n=p_{1} \cdots p_{k}$ where $k \geq 2$. As $S(n) \subseteq U(n)$, it follows that $C_{S(n)} \geq C_{U(n)}$. As n is odd, from Theorem 4 we have $C_{S(n)} \geq 2^{k}$.

Let $S=\left(x_{1}, \ldots, x_{l}\right)$ be a sequence in \mathbb{Z}_{n} of length $l=2^{k}$. If we show that S has an $S(n)$-weighted zero-sum subsequence of consecutive terms, it will follow that $C_{S(n)} \leq 2^{k}$. If at least one term of S is zero, we get an $S(n)$-weighted zero-sum subsequence of S of length 1.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
We will get a subsequence T of consecutive terms of S of length $l / 2$ with all its terms divisible by p. Let $n^{\prime}=n / p$ and let T^{\prime} be the image of T under $f_{n, n^{\prime}}$. From Theorem 4, we have $C_{U\left(n^{\prime}\right)}=2^{\Omega\left(n^{\prime}\right)}$. As the length of T^{\prime} is $2^{\Omega\left(n^{\prime}\right)}$, it follows that T^{\prime} has a $U\left(n^{\prime}\right)$-weighted zero-sum subsequence of consecutive terms. As n^{\prime} is coprime with p, by Lemmas 14 and 15 we get that T (and hence S) has an $S(n)$-weighted zero-sum subsequence of consecutive terms.

Case 2: For every prime divisor p of n exactly two terms of S are coprime to p.
In this case, as $\Omega(n)=k$, there are at most $2 k$ non-zero terms in S. Suppose $k \geq 3$. As S has length 2^{k} and as $2^{k}>2 k$, some term of S is zero and we are done. Now assume that $k=2$. Then S has length four. If S has at most one unit, by Lemma 21 this sequence S is an $S(n)$-weighted zero-sum sequence. So we can assume that S has at least two units. By the assumption in this subcase, we see that S has exactly two units and so the other two terms of S are zero.

Case 3: For every prime divisor p of n at least two terms of S are coprime to p, and there is a prime divisor p^{\prime} of n such that at least three terms of S are coprime to p^{\prime}.

In this case, we are done by Lemma 22.

4 Some results about the weight-set $L(n ; p)$

To determine the constant $D_{S(n)}$ for some non-squarefree n, we consider the following subset of \mathbb{Z}_{n} as a weight-set.

Definition 25. Let p be a prime divisor of n where n is odd. We define

$$
L(n ; p)=\left\{a \in U(n):\left(\frac{a}{n}\right)=\left(\frac{a}{p}\right)\right\} .
$$

Consider the homomorphism $\varphi: U(n) \rightarrow\{1,-1\}$ given by $\varphi(a)=\left(\frac{a}{n}\right)\left(\frac{a}{p}\right)$. Then the kernel of φ is $L(n ; p)$. It follows that $L(n ; p)$ is a subgroup having an index at most two in $U(n)$.

Proposition 26. Let p be a prime divisor of n. Then $L(n ; p)$ has index two in $U(n)$ unless p is the unique prime divisor of n such that $v_{p}(n)$ is odd.

Proof. Let $n=p^{r} m$ where m is coprime to p. Let $\psi: U(n) \rightarrow U\left(p^{r}\right) \times U(m)$ be the isomorphism that is given by the Chinese remainder theorem. If we show that -1 is in the image of the homomorphism $\varphi: U(n) \rightarrow\{1,-1\}$ which was defined above, then the kernel of φ will be a subgroup of index two in $U(n)$.

Case 1: r is odd.
Suppose m is a square. For every $a \in U(n)$, we have $\varphi(a)=\left(\frac{a}{m}\right)\left(\frac{a}{p^{r+1}}\right)=1$. Thus, φ is the trivial map, and so $L(n ; p)=U(n)$.

Suppose m is not a square. By Proposition 11 we see that $S(m)$ has index two in $U(m)$. For $c \in U(m) \backslash S(m)$, there exists $a \in U(n)$ such that $\psi(a)=(1, c)$. Thus $\left(\frac{a}{p}\right)=\left(\frac{1}{p}\right)=1$ and so $\varphi(a)=\left(\frac{a}{n}\right)=\left(\frac{a}{m}\right)=\left(\frac{c}{m}\right)=-1$.

Case 2: r is even.
Suppose $m=1$. Then $\left(\frac{a}{n}\right)=\left(\frac{a}{p}\right)^{r}=1$ and so $\varphi(a)=\left(\frac{a}{p}\right)$. Let $b \in U(p) \backslash Q_{p}$. There exists $a \in U(n)$ such that $f_{n, p}(a)=b$. Thus $\varphi(a)=\left(\frac{b}{p}\right)=-1$.

Suppose $m>1$. Let $b \in U(p) \backslash Q_{p}$. There exists $b^{\prime} \in U\left(p^{r}\right)$ such that $f_{p^{r}, p}\left(b^{\prime}\right)=b$. For $c \in S(m)$, there exists $a \in U(n)$ such that $\psi(a)=\left(b^{\prime}, c\right)$. Thus $\left(\frac{a}{n}\right)=\left(\frac{b}{p}\right)^{r}\left(\frac{c}{m}\right)=1$ and so $\varphi(a)=\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)=-1$.
Remark 27. In particular, if n is a prime p, then $L(n ; p)=U(p)$.
The remaining results in this section are technical results, which will be used in the next section.

Lemma 28. Let p and p^{\prime} be prime divisors of n such that p is coprime with $n^{\prime}=n / p$. Then $S\left(n^{\prime}\right) \subseteq f_{n, n^{\prime}}\left(L\left(n ; p^{\prime}\right)\right)$.

Proof. Let $b \in S\left(n^{\prime}\right)$ where $n^{\prime}=n / p$. As p is coprime with n^{\prime}, by the Chinese remainder theorem we have an isomorphism $\psi: U(n) \rightarrow U\left(n^{\prime}\right) \times U(p)$.

Suppose $p=p^{\prime}$. Let $a \in U(n)$ be a unit such that $\psi(a)=(b, 1)$. Thus $f_{n, n^{\prime}}(a)=b$. We have $a \in L\left(n ; p^{\prime}\right)$ as

$$
\left(\frac{a}{n}\right)=\left(\frac{b}{n^{\prime}}\right)\left(\frac{1}{p}\right)=\left(\frac{1}{p}\right)=\left(\frac{a}{p}\right)=\left(\frac{a}{p^{\prime}}\right) .
$$

Suppose $p \neq p^{\prime}$. Then p^{\prime} divides n^{\prime}. Let $c \in U(p)$ be a unit such that $\left(\frac{c}{p}\right)=\left(\frac{b}{p^{\prime}}\right)$. Let $a \in U(n)$ be a unit such that $\psi(a)=(b, c)$. Thus $f_{n, n^{\prime}}(a)=b$. We have $a \in L\left(n ; p^{\prime}\right)$ as

$$
\left(\frac{a}{n}\right)=\left(\frac{b}{n^{\prime}}\right)\left(\frac{c}{p}\right)=\left(\frac{c}{p}\right)=\left(\frac{b}{p^{\prime}}\right)=\left(\frac{a}{p^{\prime}}\right) .
$$

Lemma 29. Let p^{\prime} be a prime divisor of n which is coprime to $n^{\prime}=n / p^{\prime}$. Then we have that $U\left(p^{\prime}\right) \subseteq f_{n, p^{\prime}}\left(L\left(n ; p^{\prime}\right)\right)$.

Proof. Let $b \in U\left(p^{\prime}\right)$. As $n^{\prime}=n / p^{\prime}$ is coprime to p^{\prime}, by the Chinese remainder theorem we have an isomorphism $\psi: U(n) \rightarrow U\left(n^{\prime}\right) \times U\left(p^{\prime}\right)$. There exists $a \in U(n)$ such that $\psi(a)=(1, b)$. Thus $f_{n, p^{\prime}}(a)=b$. We have $a \in L\left(n ; p^{\prime}\right)$ as

$$
\left(\frac{a}{n}\right)=\left(\frac{1}{n^{\prime}}\right)\left(\frac{b}{p^{\prime}}\right)=\left(\frac{b}{p^{\prime}}\right)=\left(\frac{a}{p^{\prime}}\right) .
$$

The next result follows from a similar argument as in the proof of Observation 7.
Observation 30. Let $n=m_{1} m_{2}$ where m_{1} and m_{2} are coprime. Let $A \subseteq \mathbb{Z}_{n}$ be a subset and let S be a sequence in \mathbb{Z}_{n}. For every $i \in[1,2]$ let $A_{i} \subseteq U\left(m_{i}\right)$ be given and S_{i} denote the image of the sequence S under $f_{n, m_{i}}$. Suppose $A_{1} \times A_{2} \subseteq \psi(A)$ where $\psi: U(n) \rightarrow U\left(m_{1}\right) \times U\left(m_{2}\right)$ is the isomorphism given by the Chinese remainder theorem. If S_{1} is an A_{1}-weighted zero-sum sequence in $\mathbb{Z}_{m_{1}}$ and S_{2} is an A_{2}-weighted zero-sum sequence in $\mathbb{Z}_{m_{2}}$, then S is an A-weighted zero-sum sequence in \mathbb{Z}_{n}.

Lemma 31. Let n be a squarefree integer and let $n^{\prime}=n / p^{\prime}$, where p^{\prime} is a prime divisor of n. Suppose $\psi: U(n) \rightarrow U\left(n^{\prime}\right) \times U\left(p^{\prime}\right)$ is the isomorphism given by the Chinese remainder theorem. Then we have that $S\left(n^{\prime}\right) \times U\left(p^{\prime}\right) \subseteq \psi\left(L\left(n ; p^{\prime}\right)\right)$.

Proof. Let $(b, c) \in S\left(n^{\prime}\right) \times U\left(p^{\prime}\right)$. There exists $a \in U(n)$ such that $\psi(a)=(b, c)$. Then we see that $a \in L\left(n ; p^{\prime}\right)$ as

$$
\left(\frac{a}{n}\right)=\left(\frac{b}{n^{\prime}}\right)\left(\frac{c}{p^{\prime}}\right)=\left(\frac{c}{p^{\prime}}\right)=\left(\frac{a}{p^{\prime}}\right) .
$$

5 The constants $D_{L(n ; p)}$ and $C_{L(n ; p)}$

Lemma 32. Let n be a squarefree integer with every prime divisor of n at least seven. Let $S=\left(x_{1}, \ldots, x_{l}\right)$ be a sequence in \mathbb{Z}_{n} such that for every prime divisor p of n at least two terms of S are coprime to p. Assume that S^{\prime} denotes the image of S under $f_{n, n^{\prime}}$, where $n^{\prime}=n / p^{\prime}$ with p^{\prime} a prime divisor of n. Suppose at most one term of S^{\prime} is a unit, or there is a prime divisor p of n / p^{\prime} such that at least three terms of S are coprime to p. Then S is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum sequence.

Proof. Let $n^{\prime}=n / p^{\prime}$ and let S^{\prime} denote the image of the sequence S under $f_{n, n^{\prime}}$. As at least two terms of $S^{\left(p^{\prime}\right)}$ are coprime to p^{\prime}, Lemma 16 implies that $S^{\left(p^{\prime}\right)}$ is a $U\left(p^{\prime}\right)$-weighted zero-sum sequence.

If at most one term of S^{\prime} is a unit, by Lemma 21 we see that S^{\prime} is an $S\left(n^{\prime}\right)$-weighted zero-sum sequence in $\mathbb{Z}_{n^{\prime}}$. This is because n^{\prime} is squarefree and for every prime divisor p of n^{\prime} at least two terms of S^{\prime} are coprime to p.

If there is a prime divisor p of n / p^{\prime} such that at least three terms of S are coprime to p, by Lemma 22 we see that S^{\prime} is an $S\left(n^{\prime}\right)$-weighted zero-sum sequence since at least three terms of S^{\prime} are coprime to p.

As n is squarefree, n^{\prime} is coprime to p^{\prime}. Let $\psi: U(n) \rightarrow U\left(n^{\prime}\right) \times U\left(p^{\prime}\right)$ be the isomorphism given by the Chinese remainder theorem. By Lemma 31 we see that $S\left(n^{\prime}\right) \times U\left(p^{\prime}\right) \subseteq$ $\psi\left(L\left(n ; p^{\prime}\right)\right)$. Hence, by Observation 30 we see that S is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum sequence.

Theorem 33. Let n be a squarefree number such that every prime divisor of n is at least seven and $\Omega(n) \neq 2$. Suppose p^{\prime} is a prime divisor of n. Then $D_{L\left(n ; p^{\prime}\right)}=\Omega(n)+1$.

Proof. Let p^{\prime} be a prime divisor of n. We have $D_{U(n)} \leq D_{L\left(n ; p^{\prime}\right)}$, as $L\left(n ; p^{\prime}\right) \subseteq U(n)$. From Theorem 4 we have $D_{U(n)}=\Omega(n)+1$ and so $D_{L\left(n ; p^{\prime}\right)} \geq \Omega(n)+1$. If $\Omega(n)=1$, then $L\left(n ; p^{\prime}\right)=U(n)$ and so by Theorem 4 we have $D_{L\left(n ; p^{\prime}\right)}=2$.

Let n be a squarefree number such that every prime divisor is at least seven and $\Omega(n) \geq 3$. Suppose $S=\left(x_{1}, \ldots, x_{l}\right)$ is a sequence in \mathbb{Z}_{n} of length $\Omega(n)+1$. It suffices to show that S has an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
Let us assume without loss of generality that x_{i} is divisible by p for $i>1$. Let T denote the subsequence $\left(x_{2}, \ldots, x_{l}\right)$ of S. Let $n^{\prime}=n / p$ and let T^{\prime} denote the sequence in $\mathbb{Z}_{n^{\prime}}$ which is the image of T under $f_{n, n^{\prime}}$. We see that n^{\prime} is a squarefree number, which is not a prime, every prime divisor of n^{\prime} is at least seven, and T^{\prime} has length $\Omega\left(n^{\prime}\right)+1$.

So it follows from Theorem 23 that T^{\prime} has an $S\left(n^{\prime}\right)$-weighted zero-sum subsequence. As n is squarefree, it follows that p is coprime to n^{\prime}. So by Lemmas 15 and 28 we see that T has an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence.

Case 2: For every prime divisor p of n / p^{\prime}, there are exactly two terms of S which are coprime to p, and at least two terms of S are coprime to p^{\prime}.

Let $n^{\prime}=n / p^{\prime}$ and let $S^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{l}^{\prime}\right)$ be the image of S under $f_{n, n^{\prime}}$. Suppose at most one term of S^{\prime} is a unit. By Lemma 32 we see that S is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum sequence. Suppose at least two terms of S^{\prime} are units. Under the assumptions in this case, two terms $x_{j_{1}}^{\prime}$ and $x_{j_{2}}^{\prime}$ of S^{\prime} are units, and the other terms of S^{\prime} are zero. It follows that all the terms of S are divisible by n^{\prime} except $x_{j_{1}}$ and $x_{j_{2}}$.

Hence, if some term $f_{n, p^{\prime}}\left(x_{j}\right)$ of $S^{\left(p^{\prime}\right)}$ is zero for $j \neq j_{1}, j_{2}$, then $x_{j}=0$. So we can assume that all the terms of $S^{\left(p^{\prime}\right)}$ are non-zero except possibly two terms. As $\Omega(n) \geq 3$, the sequence
S has length at least four. Let T be a subsequence of S of length at least two which does not contain the terms $x_{j_{1}}$ and $x_{j_{2}}$.

As all the terms of $T^{\left(p^{\prime}\right)}$ are non-zero and as $T^{\left(p^{\prime}\right)}$ has length at least 2, by Lemma 16 we see that $T^{\left(p^{\prime}\right)}$ is a $U\left(p^{\prime}\right)$-weighted zero-sum sequence. Also, all the terms of T are divisible by n^{\prime}. Hence, by Lemmas 15 and 29 we see that T is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of S.

Case 3: For every prime divisor p of n, there are at least two terms of S which are coprime to p, and there is a prime divisor p of n / p^{\prime} such that at least three terms of S are coprime to p.

In this case, we are done by Lemma 32.
Theorem 34. Let $n=p^{\prime} q$ where p^{\prime} and q are distinct primes which are at least seven. Then $D_{L\left(n ; p^{\prime}\right)}=4$.

Proof. Let n be as in the statement of the theorem. As $L\left(n ; p^{\prime}\right) \subseteq U(n)$, we have that $f_{n, p^{\prime}}\left(L\left(n ; p^{\prime}\right)\right) \subseteq U\left(p^{\prime}\right)$. Also observe that $f_{n, q}\left(L\left(n ; p^{\prime}\right)\right) \subseteq Q_{q}$. As from Theorem 4 we have $D_{U\left(p^{\prime}\right)}=2$ and from Theorem 5 we have $D_{Q_{q}}=3$, by Lemma 9 it follows that $D_{L\left(n ; p^{\prime}\right)} \geq 4$.

Let $S=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ be a sequence in \mathbb{Z}_{n}. We will show that S has an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence. It will follow that $D_{L\left(n ; p^{\prime}\right)}=4$. If some term of S is zero, then we are done. So we can assume that all the terms of S are non-zero. We continue with the notation and terminology that were used in the proof of Theorem 33.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
We can find a subsequence T of S of length three such that all the terms of T are divisible by p. Let $n^{\prime}=n / p$ and let T^{\prime} be the sequence in $\mathbb{Z}_{n^{\prime}}$ which is the image of T under $f_{n, n^{\prime}}$. As all the terms of S are non-zero, no term of T can be divisible by n^{\prime}. So T^{\prime} is a sequence of non-zero terms of length three. As n^{\prime} is a prime, we have $S\left(n^{\prime}\right)=Q_{n^{\prime}}$. By Corollary 19 we see that T^{\prime} is a $Q_{n^{\prime}}$-weighted zero-sum subsequence. Thus, by Lemmas 15 and 28 we see that T is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of S.

Case 2: Exactly two terms of S are coprime to q.
Let us assume that x_{1} and x_{2} are coprime to q. If $T=\left(x_{3}, x_{4}\right)$, the sequence $T^{(q)}$ has both terms zero. Hence, we get that $T^{(q)}$ is an $S(q)$-weighted zero-sum sequence. As S has all terms non-zero, we see that both the terms of $T^{\left(p^{\prime}\right)}$ are non-zero. So by Lemma 16 we get that $T^{\left(p^{\prime}\right)}$ is a $U\left(p^{\prime}\right)$-weighted zero-sum sequence. Let $\psi: U(n) \rightarrow U(q) \times U\left(p^{\prime}\right)$ be the isomorphism given by the Chinese remainder theorem. By Lemma 31 we have $S(q) \times U\left(p^{\prime}\right) \subseteq \psi\left(L\left(n ; p^{\prime}\right)\right)$. Thus, by Observation 30 we see that T is an $L\left(n ; p^{\prime}\right)$-weighed zero-sum subsequence of S.

Case 3: At least three terms of S are coprime to q, and at least two terms of S are coprime to p^{\prime}.

In this case, we are done by Lemma 32 .

Theorem 35. Let n be a squarefree number such that every prime divisor of n is at least seven and $\Omega(n) \neq 2$. Suppose p^{\prime} is a prime divisor of n. Then $C_{L\left(n ; p^{\prime}\right)}=2^{\Omega(n)}$.

Proof. If n is a prime, then $n=p^{\prime}$ and $L\left(n ; p^{\prime}\right)=U(n)$. So from Theorem 4 we have $C_{L\left(n ; p^{\prime}\right)}=2$. Let $p^{\prime}=p_{k}$ and $n=p_{1} \cdots p_{k}$ where $k \geq 3$. As $L\left(n ; p^{\prime}\right) \subseteq U(n)$, we have $C_{L\left(n ; p^{\prime}\right)} \geq C_{U(n)}$. So from Theorem 4, we have $C_{L\left(n ; p^{\prime}\right)} \geq 2^{\Omega(n)}$. Let $S=\left(x_{1}, \ldots, x_{l}\right)$ be a sequence in \mathbb{Z}_{n} of length $l=2^{\Omega(n)}$. If we show that S has an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of consecutive terms, it will follow that $C_{L\left(n ; p^{\prime}\right)} \leq 2^{\Omega(n)}$. If at least one term of S is zero, we get an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of S of length one.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
We can find a subsequence T of consecutive terms of S of length $l / 2$ such that all the terms of T are divisible by p. Let $n^{\prime}=n / p$ and let T^{\prime} be the image of T under $f_{n, n^{\prime}}$. As $\Omega\left(n^{\prime}\right)=\Omega(n)-1 \geq 2$ and T^{\prime} has length $2^{\Omega\left(n^{\prime}\right)}$, by Theorem 24 we see that T^{\prime} has an $S\left(n^{\prime}\right)$-weighted zero-sum subsequence of consecutive terms. By Lemma 28 we get $S\left(n^{\prime}\right) \subseteq$ $f_{n, n^{\prime}}\left(L\left(n ; p^{\prime}\right)\right)$. So by Lemma 15 we see that T (and hence S) has an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of consecutive terms.

Case 2: For every prime divisor p of n / p^{\prime}, there are exactly two terms of S which are coprime to p, and at least two terms of S are coprime to p^{\prime}.

In this case, we can use a slight modification of the argument which was used in the same case of the proof of Theorem 33. We just observe that if S is a sequence of length at least eight such that at most two terms of S are not divisible by n^{\prime}, then we can find a subsequence T of consecutive terms of S having length at least two such that all the terms of T are divisible by n^{\prime}.

Case 3: For every prime divisor p of n, there are at least two terms of S which are coprime to p, and there is a prime divisor p of n / p^{\prime} such that at least three terms of S are coprime to p.

In this case, we are done by Lemma 32 .
Theorem 36. Let $n=p^{\prime} q$ where p^{\prime} and q are distinct primes which are at least seven. Then $C_{L\left(n ; p^{\prime}\right)}=6$.

Proof. Let n be as in the statement of the theorem. By Theorems 4 and 5 we see that $C_{U\left(p^{\prime}\right)}=2$ and $C_{Q_{q}}=3$. As $f_{n, p^{\prime}}\left(L\left(n ; p^{\prime}\right)\right) \subseteq U\left(p^{\prime}\right)$ and $f_{n, q}\left(L\left(n ; p^{\prime}\right)\right) \subseteq Q_{q}$, by Lemma 8 it follows that $C_{L\left(n ; p^{\prime}\right)} \geq 6$.

Let $S=\left(x_{1}, \ldots, x_{6}\right)$ be a sequence in \mathbb{Z}_{n}. It is enough to show that S has an $L\left(n ; p^{\prime}\right)$ weighted zero-sum subsequence of consecutive terms. We can assume that all the terms of S are non-zero.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
In this case, we can find a subsequence T of S of consecutive terms of length three whose all terms are divisible by p. As all the terms of S are non-zero, all the terms of T are coprime
to n^{\prime} where $n^{\prime}=n / p$. If T^{\prime} is the image of T under $f_{n, n^{\prime}}$, then T^{\prime} is a sequence of non-zero terms of length three in $\mathbb{Z}_{n^{\prime}}$. As n^{\prime} is a prime, it follows that $S\left(n^{\prime}\right)=Q_{n^{\prime}}$. By Corollary 19 we get that T^{\prime} is a $Q_{n^{\prime}}$-weighted zero-sum sequence. By using Lemmas 15 and 28 it follows that T is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of S of consecutive terms.

Case 2: Exactly two terms of S are coprime to q.
Let the terms $x_{j_{1}}$ and $x_{j_{2}}$ be coprime to q. As S has length six, we can find a subsequence T of consecutive terms of S of length two, such that neither $x_{j_{1}}$ nor $x_{j_{2}}$ is a term of T. As x_{j} is divisible by q when $j \neq j_{1}, j_{2}$, all the terms of T are divisible by q. As S has all terms non-zero, all the terms of T are coprime to p^{\prime}.

By Lemma 16 we get that $T^{\left(p^{\prime}\right)}$ is a $U\left(p^{\prime}\right)$-weighted zero-sum sequence. So by Lemmas 15 and 29 it follows that T is an $L\left(n ; p^{\prime}\right)$-weighted zero-sum subsequence of consecutive terms of S.

Case 3: At least three terms of S are coprime to q, and at least two terms of S are coprime to p^{\prime}.

In this case, we are done by Lemma 32 .

6 Concluding remarks

We have $S(15)=\{1,2,4,8\}$. We can check that the sequence $S=(1,1,1)$ does not have a $S(15)$-weighted zero-sum subsequence. So it follows that $D_{S(15)} \geq 4$ and hence $D_{S(15)} \geq$ $\Omega(15)+2$. This shows that the statement of Theorem 23 is not true in general if some prime divisor of n is smaller than seven. It will be interesting to find the Davenport constant $D_{S(n)}$ for non-squarefree n.

Adhikari et al. [1] proposed to characterize when two weight-sets $A \subseteq \mathbb{Z}_{n}$ have the same value of D_{A}. In this paper, we have seen that if $A \subseteq \mathbb{Z}_{n}$ is such that $S(n) \subseteq A \subseteq U(n)$ and if n is not a prime, then $D_{A}=D_{U(n)}$. We have also seen that if $A \subseteq \mathbb{Z}_{n}$ is such that $L(n ; p) \subseteq A \subseteq U(n)$ and if $\Omega(n) \neq 2$, then again $D_{A}=D_{U(n)}$. We can investigate whether there are other weight-sets $A \subseteq \mathbb{Z}_{n}$ such that $D_{A}=D_{U(n)}$. We can also ask similar questions regarding the constant C_{A}.

7 Acknowledgments

Santanu Mondal would like to acknowledge CSIR, Govt. of India for a research fellowship whose file number is $09 / 934(0013) / 2019-E M R-I$. We thank the referee for the corrections and suggestions.

References

[1] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin, and F. Pappalardi, Contributions to zero-sum problems, Discrete Math. 306 (2006), 1-10.
[2] S. D. Adhikari, C. David, and J. J. Urroz, Generalizations of some zero-sum theorems, Integers 8 (2008), \#A52.
[3] S. D. Adhikari and S. Hegde, Zero-sum constants involving weights, Proc. Indian Acad. Sci. (Math. Sci.) 137 (2021), \#A37.
[4] S. D. Adhikari and P. Rath, Davenport constant with weights and some related questions, Integers 6 (2006), \#A30.
[5] M. N. Chintamani and B. K. Moriya, Generalizations of some zero sum theorems, Proc. Indian Acad. Sci. (Math. Sci.) 122 (2012), 15-21.
[6] S. Griffiths, The Erdős-Ginzberg-Ziv theorem with units, Discrete Math. 308 (2008), 5473-5484.
[7] D. J. Grynkiewicz and F. Hennecart, A weighted zero-sum problem with quadratic residues, Uniform Dist. Theory 10 (2015), 69-105.
[8] D. J. Grynkiewicz, L. E. Marchan, and O. Ordaz, A weighted generalization of two theorems of Gao, Ramanujan J. 28 (2012), 323-340.
[9] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory (Second Edition), Springer, 1992.
[10] E. Mazumdar and S. B. Sinha, Modification of Griffiths' result for even integers, Electron. J. Combin. 23(4) (2016), \#P4.18.
[11] S. Mondal, K. Paul, and S. Paul, On a different weighted zero-sum constant, Discrete Math. 346 (2023), 113350.
[12] S. Mondal, K. Paul, and S. Paul, On unit-weighted zero-sum constants of \mathbb{Z}_{n}, accepted by Integers, arxiv preprint arXiv:2111.14477v3 [math.NT], 2023. Available at https:// arxiv.org/abs/2111.14477.
[13] P. Yuan and X. Zeng, Davenport constant with weights, European J. Combin. 31 (2010), 677-680.

2020 Mathematics Subject Classification: Primary 11B50; Secondary 11B75.
Keywords: Davenport constant, zero-sum sequence, Jacobi symbol.

Received May 18 2023; revised versions received May 21 2023; November 29 2023. Published in Journal of Integer Sequences, January 142024.

Return to Journal of Integer Sequences home page.

