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Abstract
Let A C Z,, be a subset. A sequence S = (z1,...,xy) is said to be an A-weighted
zero-sum sequence if there exist aq,...,ar € A such that ayxq + --- + arzp = 0. We

refer to A as a weight-set. The A-weighted Davenport constant D4 is defined to be
the smallest natural number k such that every sequence of k elements in Z,, has an A-
weighted zero-sum subsequence. The constant C'4 is defined to be the smallest natural
number k such that every sequence of k elements in Z,, has an A-weighted zero-sum
subsequence having consecutive terms.

When n is odd, let S(n) be the set of all units in Z, whose Jacobi symbol with
respect to n is 1. We compute the constants Cg,,) and Dg(,). For a prime divisor p of
n, we also compute these constants for a related weight-set L(n;p). This is the set of
all units x in Z,, such that the Jacobi symbol of x with respect to n is the same as the
Legendre symbol of z with respect to p. We show that even though these weight-sets
A may have half the size of U(n) (which is the set of units of Z,), the corresponding
A-weighted constants are the same as those for the weight-set U(n).

1 Introduction

For a,b € Z, we denote the set {x € Z : a < x < b} by [a,b]. Let U(n) denote the group of
units in the ring Z,, and U(n)? = {z? : € U(n) }. For an odd prime p, let Q, denote the
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set U(p)?. For n = pypy -+ pr where p; is a prime for each i € [1, k|, we define Q(n) = k.

Definition 1. Let A C Z, be a subset. A sequence S = (z1,...,x) is said to be an A-
weighted zero-sum sequence if there exist aq,...,a; € A such that a;xq + -+ + apzr = 0.
We refer to A as a weight-set.

Definition 2. For a weight-set A C Z,,, the A-weighted Davenport constant D 4 is defined to
be the least positive integer k, such that every sequence in Z,, of length k£ has an A-weighted
zero-sum subsequence.

Adhikari and Rath [4] gave the previous definition. Chintamani and Moriya [5] showed
that Dy(,y2 = 2€(n) + 1 when every prime divisor of n is at least seven. Grynkiewicz and
Hennecart [7] generalized this by showing that Dy(,y2 > 2€(n) +min{vs(n), vs(n)} +1 when
n is odd, with equality if either 3 { n or v3(n) > vs(n). Mazumdar and Sinha [10] made
suitable modifications in the method of Griffiths [6] to consider the case when n is an even
integer. (However, their result cannot be used to determine Dyy(,y2 when n is even.) Adhikari
et al. [1, Lem. 2.1] showed that Dy 1y = [logyn] + 1 for every positive integer n.

Mondal, Paul, and Paul [11] gave the following definition.

Definition 3. For a weight-set A C Z,,, the A-weighted constant C'4 is defined to be the least
positive integer k, such that every sequence in Z, of length k& has an A-weighted zero-sum
subsequence of consecutive terms.

Mondal, Paul, and Paul [11, Cor. 3, Cor. 6] showed that Cy )2 = 32" when every prime
divisor of n is at least seven and Cy;_;y = n when n is a power of two. Mondal, Paul, and
Paul [12] showed the next result.

Theorem 4. For every positive integer n we have Dy, = Q(n) + 1 and Cyny = 282(n)

When p is an odd prime such that p = 2 (mod 3), we can show that U(p)® = U(p).
Mondal, Paul, and Paul [11, Thm. 7, Lem. 2] showed that when p # 7 is a prime such that
p = 1 (mod 3), we have Dy = Cypys = 3, and also that Dy(ys = 3 and Cyrys = 4.
Adhikari and Rath [4, Thm. 2|, and Mondal, Paul, and Paul [11, Thm. 4] showed the next
result.

Theorem 5. Let p be an odd prime. Then Cq, = Dg, = 3.

Let m be a divisor of n. We refer to the ring homomorphism f,, ,, : Z,, — Z,, given by
a + nZ — a + mZ as the natural map. As this map sends units to units, we get a group
homomorphism U(n) — U(m), which we also refer to as the natural map. When n is odd
and z € Z,, the Jacobi symbol (%) is defined in Section 2.

The following are some of the results in this paper. We assume that n is an odd, squarefree
number whose every prime divisor is at least seven.



o Let S(n) ={zecUn): (£)=1}.
If n is prime, then Dg,) = 3, and Dg,) = Q(n ) + 1 otherwise.
If n is prime, then Cg(,) = 3, and Cg(,) = 29(n) otherwise.

e Let L(n;p) {x eU(n): ( ) = (%) } where p is a prime divisor of n.
If Q(n) = 2, then Dy, =4, and Dy = Q(n) + 1 otherwise.
If Q(n) = 2, then Cp () = 6, and Cp(,yp) = 2% otherwise.

Remark 6. Adhikari and Hegde [3] showed that if A =Z, \ {0} and B = {1,2,...,[n/2]},
we have Dy = Dp. We make a similar observation in this paper. In Proposition 11, we show
that S(n) is a subgroup of U(n) having index two when n is not a square. Theorem 4 shows
that, when n is odd, we have Dy,y = Q(n) + 1 and Cy(,) = 292" In addition, if n is not a
prime, Theorems 23 and 24 show that Dg,) = Dy ) and Cg(,) = Cy(n). Thus, even though
these weight-sets may have different sizes, they can have the same constants. If Q(n) # 2,
Theorems 33 and 35 show that Dy, = Dy and Crp) = Cum).-

If p is a prime divisor of n, we use the notation v,(n) = r to mean that p" | n and p"*! { n.
Let p be a prime divisor of n and v,(n) = r. We denote the image in U(p") of x € U(n)
under f, ,» by ™. For a sequence S = (1, ..., 1) in Z,, let S® denote the sequence
(', ..., ) in Z,, which is the image of S under f, ,-. Griffiths [6, Obs. 2.2] made the
following observation.

Observation 7. Let n = pi* -- - p,* where the p;’s are distinct primes and S = (xy,..., 7))
be a sequence in Z,,. Suppose for every i € [1, k] there exist ¢; 1,...,¢, ..., ¢y € U(p;") such
that cz-ngpi)—i—- . -+Ci7j:L‘§-pi) +- e xl(pi) = 0. Then there exist ai,...,a;,...,q € U(n) such
that for every (7,7) € [1, k] x [1,(] we have a(pl) =c¢; and a1z + - +a;x; + -+ aa; = 0.

Proof. Let j € [1,1]. By the Chinese remainder theorem, there exists a; € U(n) such that

for every i € [1, k] we have that a§p") =¢;j. Let v = a1 + - - -+ ajz; + - - - + quy. For each

i € [1,k] we see that f, rn(z) = 2P) = a4t cmxg.pi) + o+ e = 0. So by
using the Chinese remainder theorem once again, we see that x = 0. [

Mondal, Paul, and Paul [11, Lem. 3] showed the next result, which will be used in
Theorem 36. In the next two results, for a subset A of Z,,, we use the notation C'4(n) and
D 4(n) for the constants Cy and D4 respectively.

Lemma 8. Letn = mgq. Let A, B, C be subsets of Z,,, Ly, L, respectively. Suppose fr, m(A) C
B and f,4(A) C C. Then we have Cy(n) > C(m) Ce(q).

We now prove a similar result for the weighted Davenport constant, which we will use in
Theorem 34. Grynkiewicz, Marchan, and Ordaz [8, Lem. 3.1] proved a generalization of this
result for abelian groups.



Lemma 9. Letn = mgq. Let A, B, C be subsets of Z,,, Ly, L, respectively. Suppose fp, m(A) C
B and f, ,(A) C C. Then we have Da(n) > Dg(m) + Dc(q) — 1.

Proof. Let Dg(m) =k and Da(q) = 1. If k = 1, we let S| be the empty sequence, and if | = 1,

we let S} be the empty sequence. Otherwise, there exists a sequence S| = (uq,...,Ug_1)
of length £k — 1 in Z,,, which has no B-weighted zero-sum subsequence, and there exists
a sequence S5 = (v1,...,v-1) of length [ — 1 in Z,, which has no C-weighted zero-sum
subsequence.

As f,.m is onto, for every i € [1,k — 1] there exists z; € Z, such that f,,,(z;) = u;. As
fn,q is onto, for every j € [1,1 — 1] there exists y; € Z, such that f, ,(y;) = v;. Consider the
following sequence of length k& + 1 — 2 in Z,:

S =(qr1, o\ QTh_1, Y1, -« Yi_1)-

Let S = (qx1,...,qxk_1) and Ss = (y1,...,y;-1). Suppose S has an A-weighted zero-
sum subsequence 7. If the sequence 7' contains some term of Sy, by taking the image of
T under f,, we get the contradiction that S has a C-weighted zero-sum subsequence, as
fnq(qr;) =0 and as f, ,(A) C C.

Thus, no term of Sy is a term of 7', and so T is a subsequence of S;. Let 7" be the
subsequence of S|, such that w; is a term of 7" if and only if gz; is a term of 7. As
fam(A) € B, by dividing the A-weighted zero-sum which is obtained from 7' by ¢ and
by taking the image under f,,, we get the contradiction that 7" is a B-weighted zero-sum
subsequence of 5.

Hence, we see that S does not have a A-weighted zero-sum subsequence. As S has length
k+1—2, it follows that Da(n) > k+1— 1. O

2 Some results about the weight-set S(n)
From this point onwards, we will assume that n is odd.

Definition 10. For an odd prime p and a € U(p), the symbol (E) is the Legendre symbol
p

with respect to p, which is defined as follows:
(g) )1 ifacQy
p/ -1, ifa¢Q,

a a
For a prime divisor p of n, we use the notation (—) to denote (fn’p( )) where a € U(n).
D p
Let n = pi' - - - p;* where the p;’s are distinct primes.

For a € U(n), we define the Jacobi symbol (%) to be <£)Tl e (g)m. Observe that

b1 Pk
a a(pl) a(pk)
we have <—> = el R Gl E
n 1 Py




Let S(n) denote the kernel of the homomorphism U(n) — {1, —1} given by a — <ﬁ)'
n

Adhikari, David, and Urroz [2, Sec. 3] considered the set S(n) as a weight-set.

Proposition 11. S(n) is a subgroup having index two in U(n) when n is a non-square, and
S(n) = U(n) when n is a square.

Proof. Let n = pi* - - pi* where the p;’s are distinct primes. If n is a square, then all the r;
are even, and so S(n) = U(n). If n is not a square, there exists j such that r; is odd. As
for every i € [1,k] the map f,r: , is onto, by the Chinese Remainder theorem we see that

b b
there is a unit b € U(n) such that (—) = 1 when i # j, and (—) = —1. It follows that
Di Pj
b
<—> = —1 and so the homomorphism U(n) — {1,—1} given by a (2) is onto. Hence,
n

n
we see that S(n) has index two in U(n). O

Remark 12. In particular, if n is squarefree, then S(n) has index two in U(n). It follows
that when p is an odd prime we have S(p) = Q,.

Observation 13. Let n = p; - - - pi where the p;’s are distinct prime numbers. For a € U(n),
let p(a) denote the cardinality of {j € [1,k] : fn p,(a) = a'??) ¢ Q,, }. As we have that

()= () (50)
n b1 pj Pk ’

it follows that a € S(n) if and only if u(a) is even.

Lemma 14. Let d be a proper divisor of n such that d is not a square. Suppose d is coprime
with n’ where n’ = n/d. Then we have that U(n') C f,,/(S(n)).

Proof. Let ' € U(n’). By the Chinese remainder theorem, there is an isomorphism ) :
U(n) — U(n') x U(d). As d is not a square, by Proposition 11 there exists b € U(d) such
that b ¢ S(d). If ' € S(n'), let a € U(n) be a unit such that ¢(a) = (a,1). If a’ ¢ S(n'), let
a € U(n) be a unit such that ¢(a) = (a’,b). Then we have a € S(n) and f,(a) =d. O

Lemma 15. Let S be a sequence in Z, and d be a proper divisor of n which divides every
term of S. Let n' = n/d and d be coprime with n'. Let S’ be the sequence in Z, which
is the image of the sequence S under f, .. Let A C Z, and A" C Z,s be subsets such that
A" C fow(A). Suppose S" is an A'-weighted zero-sum sequence. Then S is an A-weighted
Zero-sum sequence.

Proof. Let S = (z1,...,x,) be a sequence in Z,, and S" = (z1,...,z},) where =} = f, . (z;)
for every i € [1, k]. Suppose S’ is an A’-weighted zero-sum sequence. Then for every i € [1, k]
there exist a; € A" such that ajz} + - + ajz}, = 0. Since A’ C f,,,»(A), for every i € [1, k]
there exist a; € A such that f,,(a;) = a}. As ajz) + -+ ajx), = 0 in Z,, it follows that
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o (@121 + -+ agxy) = 0. Let v = aqzy + -+ - + apry, € Zy,. As fr(z) = 0, we see that
n' | z, and as every term of S is divisible by d, we see that d | z. As d is coprime with 7', it
follows that x is divisible by n = n/d, and so x = 0. Thus, we see that S is an A-weighted
Zero-sum sequence. O

Griffiths [6, Lem. 2.1] proved the next result, which we restate here using our terminology.

Lemma 16. Let p be an odd prime. If a sequence S in Zy has at least two terms coprime
to p, then S is a U(p")-weighted zero-sum sequence.

Chintamani and Moriya [5, Lem. 1] proved the next result.

Lemma 17. Let A = U(n)? where n = p" and p is a prime which is at least seven. Suppose
we have elements 1, x2, x5 € U(n). Then we get that Az, + Axe + Axz = Z,.

We will use the next result in Lemma 22.

Lemma 18. Let n = p” where p is a prime which is at least seven. Let Ay = U(n)? and
Ay = U(n)\ U(n)?. Suppose x1,x9, 13 € U(n) and f:{1,2,3} — {1,2} is a function. Then

Af<1>$1 + Af(2>l‘2 + Af(g)il,‘g = Zn

Proof. From [9, Thm. 2, p. 43] we see that when n is a power of an odd prime, the group
U(n) is cyclic. So it follows that —1 is the unique element in U(n) of order 2. Thus, the
map U(n) — U(n) given by = — z? has kernel {1, —1}. Hence, the image of this map is a
subgroup of U(n) having index 2 and so there exists ¢ € U(n) such that Ay = cA;.

For every i € [1, 3] let
YT N ew, i FU) =2

Let x € Z,. By Lemma 17 there exist by, by, bs € U(n)? with x = byy; + bays + bsys.
For every i € [1, 3] let

by, if f(i) =1;
i = .
biC, if f(Z) = 2.
For every i € [1,3] it follows that a; € Ay and byy; = a;x;. Thus, we see that z =
a1Ty + asxs + asrs. ]

The next result follows immediately from Lemma 18.

Corollary 19. Let n = p" where p is a prime which is at least seven. Suppose S is a
sequence in Z, such that at least three terms of S are in U(n). Then S is a U(n)?-weighted
zero-sum sequence.

Remark 20. The conclusion of Corollary 19 may not hold when p < 5. One can check that
the sequence (1,1,1) in Z, is not a U(n)?-weighted zero-sum sequence when n = 2, 5. Also,
the sequence (1,2, 1) in Zs is not a U(3)*weighted zero-sum sequence.
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3 The constants Dg(,) and Cg,,

Lemma 21. Let n be squarefree and S = (x1,...,x;) be a sequence in Z,. Suppose for every
prime divisor p of n, at least two terms of S are coprime to p. If at most one term of S is
a unit, then S is an S(n)-weighted zero-sum sequence.

Proof. As we have assumed that n is odd and for every prime divisor p of n at least two terms
of S are coprime to p, by Lemma 16 we see that for every prime divisor p of n the sequence
S = (xgp), o ,xgp), o ,:L‘l(p)) is a U(p)-weighted zero-sum sequence. Let n = py---p; - pg
where the p;’s are distinct primes. For every i € [1, k| there exist ¢;1,...,¢ij,...,ciy € U(p;)
such that ci,lazgp") + e+ ci,jxg-p") + e+ cilel(p") = 0. We will refer to this U(p;)-weighted
zero-sum in Z,, as the i sum.

By Observation 7 we see that for every j € [1,1] there exists a; € U(n) such that

axy + -+ ax+ -+ ax; =0, (1)

and for every i € [1, k] we have (agpi), . ,ag.pi), . ,al(pi)) = (Cias---sCijs- .-, Cip). We observe
that for some i € [1,k], a different choice for the " sum will give us a different [-tuple
(ay,...,q;) in (1). For example, if for some ¢ € [1, k] there exists j € [1,[] such that x§pi)
zero, we can make an arbitrary choice for ¢; ; in the i sum. For every i € [1, k] we want to

choose the '™ sum so that all the a;’s in (1) are in S(n). Consider the following matrices:

18

(p1) x(pl) (p1)

6171 IR 017] .. Cl7l 'rl DR ] P 'rl
C=\|c1 - ¢y - ciu and X = xgpi) . x§pi) o xl(pz’)
Crka ° Crj ' Ciy g;gpk) . xg,pk) . wl(Pk)

Suppose some entry 3:5-17 ) of X is 0. From Proposition 11 and Observation 13 we see that
by making a suitable choice for ¢; ; we can ensure that in (1) we have a; € S(n). Thus, if the
j™ column of X has a zero, we can get a U(n)-weighted zero-sum (1) in which a; € S(n).

We observe that a term z; of S is a unit if and only if the j column of X does not have
a zero. Hence, if no term of S is a unit, then every column of X has a zero. So in this case
S is an S(n)-weighted zero-sum sequence.

Suppose exactly one term of S is a unit, say z;,. Then the j&" column of X does not
have a zero and there is a zero in all the other columns of X. By multiplying the 1% row
of C' by a suitable element of U(p;), we can modify ¢; ;, so that a;, € S(n). As the other
columns of X have a zero, we can modify those columns of C' suitably so that a; € S(n) for
J # jo. Thus, it follows that S is an S(n)-weighted zero-sum sequence. O]

Lemma 22. Let n be a squarefree integer with every prime divisor of n at least seven. Let
S = (x1,...,x;) be a sequence in Z, such that, for every prime divisor of n, at least two
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terms of S are coprime to it. Suppose there is a prime divisor p of n such that at least three
terms of S are coprime to p. Then S is an S(n)-weighted zero-sum sequence.

Proof. Tt Q(n) = 1, then n is a prime say p. As at least three terms of S are coprime to p,
Corollary 19 implies S is a (),-weighted zero-sum sequence with @, = S(p).

Suppose (n) > 2. Let n = p; - - pr where the p;’s are distinct primes. By Lemma 16
for every i € [1, k] there exist ¢;1,...,¢,; € U(p;) such that ci,lmg Dp g ci,l:vl(pi) = 0. By
Observation 7 there exist ai,...,a; € U(n) such that

ary+ -+ ax; = 0. (2)
Assume that p = p; and that 27, 2%, and :vgp ) are units. A similar argument will work
in the general case. Let us denote ¢y 1,...,¢1; € U(py) by by,...,b. We want to choose the

b;’s in U(p) so that the corresponding a;’s in (2) are in S(n).

Using Observation 13 we can choose by, ..., b € U(p) so that ay,...,a; € S(n). Let y =
—(bgz P 4 '—i-blacl(p)). By using Observation 13 and Lemma 18 we can choose by, by, b € U(p)
so that ay, as, ag € S(n) and blmg”)+b2x§p>+ng§p) = y. Thus, S'is an S(n)-weighted zero-sum
sequence. ]

Theorem 23. Let n be squarefree. If n is prime we have Dg,,y = 3. If n is not a prime and
every prime divisor of n is at least seven, we have Dg(,y = Q(n) + 1.

Proof. From Theorem 4 we have Dy, = Q(n) +1. As S(n) C U(n) it follows that Dgg,) >
Dy(ny and so Dgpy > Q(n) + 1. If Q(n) = 1, then n is a prime and S(n) = @,. So by
Theorem 5, we have Dg(,) = 3.

Suppose Q(n) > 2. We claim that Dgg,y < Q(n)+ 1. Let S = (21,...,2;) be a sequence
in Z, of length I = k + 1 where k = Q(n). We have to show that S has an S(n)-weighted
zero-sum subsequence. If at least one term of S is zero, then that term will give us an
S(n)-weighted zero-sum subsequence of length 1.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.

Let us assume without loss of generality that z; is divisible by p for every i € [2,1]. Let
T denote the subsequence (xg,...,2;) of S. Let n’ = n/p and let 7" be the sequence in Z,,
which is the image of T under f, ,,. From Theorem 4, we see that Dy(,y = Q(n’) + 1. As
T’ has length | — 1 = Q(n) = Q(n’) + 1, it follows that 7" has a U(n')-weighted zero-sum
subsequence. As n is squarefree, p is coprime to n’. Thus, by Lemmas 14 and 15 we see that
S has an S(n)-weighted zero-sum subsequence.

Case 2: For every prime divisor p of n, exactly two terms of S are coprime to p.

Suppose S has at most one unit. By Lemma 21, we see that S is an S(n)-weighted
zero-sum sequence. So we can assume that S has at least two units. By the assumption in
this subcase, we see that S will have exactly two units and the other terms of S will be zero.
As S has length k£ 4+ 1 and as & > 2, some term of S is zero.



Case 3: For every prime divisor p of n at least two terms of S are coprime to p, and there
is a prime divisor p’ of n such that at least three terms of S are coprime to p'.
In this case, we are done by Lemma 22. O

Theorem 24. Let n be squarefree. If n is a prime, then Cgy = 3. If n is not a prime and
every prime divisor of n is at least seven, then Cg(,) = 282n)

Proof. If n = p where p is a prime, then S(n) = @,. As p is odd, from Theorem 5 we get that
Cs(ny = 3. Let n = py - - -pj, where k > 2. As S(n) C U(n), it follows that Cg(,) > Cuymy. As
n is odd, from Theorem 4 we have Cg(,) > 2k,

Let S = (x1,...,7;) be a sequence in Z, of length [ = 2*. If we show that S has an
S(n)-weighted zero-sum subsequence of consecutive terms, it will follow that Clg(,) < 2%, If

at least one term of S is zero, we get an S(n)-weighted zero-sum subsequence of S of length
1.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.

We will get a subsequence T of consecutive terms of S of length [/2 with all its terms
divisible by p. Let ' = n/p and let 7" be the image of 7" under f,, ,». From Theorem 4, we
have Cyy = 24", As the length of 77 is 20 it follows that 7" has a U(n’)-weighted
zero-sum subsequence of consecutive terms. As n' is coprime with p, by Lemmas 14 and
15 we get that 7' (and hence S) has an S(n)-weighted zero-sum subsequence of consecutive
terms.

Case 2: For every prime divisor p of n exactly two terms of S are coprime to p.

In this case, as Q(n) = k, there are at most 2k non-zero terms in S. Suppose k > 3. As
S has length 2% and as 2¥ > 2k, some term of S is zero and we are done. Now assume that
k = 2. Then S has length four. If S has at most one unit, by Lemma 21 this sequence S is
an S(n)-weighted zero-sum sequence. So we can assume that S has at least two units. By
the assumption in this subcase, we see that S has exactly two units and so the other two
terms of S are zero.

Case 3: For every prime divisor p of n at least two terms of S are coprime to p, and there
is a prime divisor p’ of n such that at least three terms of S are coprime to p'.
In this case, we are done by Lemma 22. O]

4 Some results about the weight-set L(n;p)

To determine the constant Dg(, for some non-squarefree n, we consider the following subset
of Z, as a weight-set.

Definition 25. Let p be a prime divisor of n where n is odd. We define

s = (ot (2) = (2))
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Consider the homomorphism ¢ : U(n) — {1, —1} given by ¢(a) = (E) (g) Then the
n/sA\p

kernel of ¢ is L(n;p). It follows that L(n;p) is a subgroup having an index at most two in
U(n).

Proposition 26. Let p be a prime divisor of n. Then L(n;p) has index two in U(n) unless
p is the unique prime divisor of n such that v,(n) is odd.

Proof. Let n = p"m where m is coprime to p. Let ¢ : U(n) — U(p") x U(m) be the
isomorphism that is given by the Chinese remainder theorem. If we show that —1 is in the
image of the homomorphism ¢ : U(n) — {1, —1} which was defined above, then the kernel
of ¢ will be a subgroup of index two in U(n).

Case 1: r is odd. "

Suppose m is a square. For every a € U(n), we have p(a) = (—) <
m

a

= 1. Thus, ¢
pr+1>

is the trivial map, and so L(n;p) = U(n).
Suppose m is not a square. By Proposition 11 we see that S(m) has index two in U(m).

For ¢ € U(m) \ S(m), there exists a € U(n) such that ¥(a) = (1,¢). Thus (%) = (%) =1
it~ () = (2) = (£) =1

Case 2: r is even.
a a\’

Suppose m = 1. Then <ﬁ) = <Z_7) =1 and so ¢(a) = <%> Let b€ U(p) \ @p- There
b

exists a € U(n) such that f,,(a) =b. Thus ¢(a) = (—) =—1.
p

Suppose m > 1. Let b € U(p) \ Q. There exists b’ € U(p") such that f,r ,(b') =b. For

¢ € S(m), there exists a € U(n) such that ¥(a) = (V/,c). Thus (%) = <§)r<%> = 1 and

so p(a) = <%> = (g) = —1. O

Remark 27. In particular, if n is a prime p, then L(n;p) = U(p).

The remaining results in this section are technical results, which will be used in the next
section.

Lemma 28. Let p and p' be prime divisors of n such that p is coprime with n’ = n/p. Then
S(n') € fn,n’(L(n§p/>)'

Proof. Let b € S(n') where n’ = n/p. As p is coprime with n’, by the Chinese remainder
theorem we have an isomorphism ¢ : U(n) — U(n') x U(p).
Suppose p = p'. Let a € U(n) be a unit such that ¢)(a) = (b,1). Thus f, .(a) =b. We

T 0 00-0-0-0)
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b
Suppose p # p'. Then p’ divides n'. Let ¢ € U(p) be a unit such that (;) = <]7) Let
a € U(n) be a unit such that 1(a) = (b,c). Thus f, . (a) =b. We have a € L(n;p’) as

(-GG -0 =G -G -

Lemma 29. Let p' be a prime divisor of n which is coprime to n’ = n/p’. Then we have
that U(p) C fop (L(n;p')).

Proof. Let b € U(p'). As n’ = n/p’ is coprime to p/, by the Chinese remainder theorem
we have an isomorphism ¢ : U(n) — U(n') x U(p'). There exists a € U(n) such that
YP(a) = (1,b). Thus f, y(a) =b. We have a € L(n;p’) as

(-G -6)-G) -

The next result follows from a similar argument as in the proof of Observation 7.

Observation 30. Let n = mymy where m and my are coprime. Let A C Z, be a subset and
let S be a sequence in Z,,. For every i € [1,2]let A; C U(m;) be given and S; denote the image
of the sequence S under f;, ,,,,. Suppose A; x Ay C p(A) where ¢ : U(n) — U(my) xU(ms) is
the isomorphism given by the Chinese remainder theorem. If Sy is an A;-weighted zero-sum
sequence in Z,,, and S is an As-weighted zero-sum sequence in Z,,,, then S is an A-weighted
zero-sum sequence in Z,.

Lemma 31. Let n be a squarefree integer and let n' = n/p', where p' is a prime divisor of
n. Suppose ¥ : U(n) — U(n') x U(p') is the isomorphism given by the Chinese remainder
theorem. Then we have that S(n') x U(p') C ¢ (L(n;p")).

Proof. Let (b,c) € S(n') x U(p'). There exists a € U(n) such that ¢ (a) = (b,¢). Then we
see that a € L(n;p’) as ,
c c a
) =GG)=6)=G) -

5 The constants Dy,.,) and Cp,. )
Lemma 32. Let n be a squarefree integer with every prime divisor of n at least seven. Let
S = (z1,...,1) be a sequence in Z, such that for every prime divisor p of n at least two
terms of S are coprime to p. Assume that S’ denotes the image of S under f,,,, where
n' =n/p with p' a prime divisor of n. Suppose at most one term of S” is a unit, or there is
a prime dwisor p of n/p" such that at least three terms of S are coprime to p. Then S is an
L(n; p')-weighted zero-sum sequence.

11



Proof. Let n’ = n/p’ and let S denote the image of the sequence S under f, ,». As at least
two terms of S®) are coprime to p/, Lemma 16 implies that S®") is a U (p')-weighted zero-sum
sequence.

If at most one term of S’ is a unit, by Lemma 21 we see that S’ is an S(n’)-weighted
zero-sum sequence in Z,,. This is because n’ is squarefree and for every prime divisor p of
n' at least two terms of S” are coprime to p.

If there is a prime divisor p of n/p’ such that at least three terms of S are coprime to
p, by Lemma 22 we see that S’ is an S(n')-weighted zero-sum sequence since at least three
terms of S’ are coprime to p.

As n is squarefree, n' is coprime to p’. Let ¢ : U(n) — U(n’) x U(p') be the isomor-
phism given by the Chinese remainder theorem. By Lemma 31 we see that S(n’) x U(p') C
w(L(n;p’)). Hence, by Observation 30 we see that S is an L(n;p')-weighted zero-sum se-
quence. ]

Theorem 33. Let n be a squarefree number such that every prime divisor of n is at least
seven and §2(n) # 2. Suppose p' is a prime divisor of n. Then Dy, py = Q(n) + 1.

Proof. Let p’ be a prime divisor of n. We have Dy ) < Dy, as L(n;p’) € U(n). From
Theorem 4 we have Dyy = Q(n) + 1 and so Dyg,py > Q(n) + 1. If Q(n) = 1, then
L(n;p’) = U(n) and so by Theorem 4 we have Dy, ) = 2.

Let n be a squarefree number such that every prime divisor is at least seven and Q(n) > 3.
Suppose S = (z1,...,1x;) is a sequence in Z, of length Q(n) + 1. It suffices to show that S
has an L(n; p')-weighted zero-sum subsequence.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.

Let us assume without loss of generality that x; is divisible by p for ¢ > 1. Let T" denote
the subsequence (z3,...,2;) of S. Let n" = n/p and let 7" denote the sequence in Z,, which
is the image of T" under f,,,,. We see that n’ is a squarefree number, which is not a prime,
every prime divisor of n’ is at least seven, and 7" has length Q(n') + 1.

So it follows from Theorem 23 that 7" has an S(n')-weighted zero-sum subsequence. As
n is squarefree, it follows that p is coprime to n’. So by Lemmas 15 and 28 we see that T
has an L(n;p')-weighted zero-sum subsequence.

Case 2: For every prime divisor p of n/p’, there are exactly two terms of S which are coprime
to p, and at least two terms of S are coprime to p'.

Let n’ = n/p and let S" = (21, ..., z]) be the image of S under f,,,». Suppose at most one
term of S’ is a unit. By Lemma 32 we see that S is an L(n; p’)-weighted zero-sum sequence.
Suppose at least two terms of S” are units. Under the assumptions in this case, two terms
o and 2, of S’ are units, and the other terms of S” are zero. It follows that all the terms
of S are divisible by n' except x;, and x;j,.

Hence, if some term f,, ;v (x;) of S®) is zero for j # j1, j», then x; = 0. So we can assume
that all the terms of S®) are non-zero except possibly two terms. As Q(n) > 3, the sequence
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S has length at least four. Let 1" be a subsequence of S of length at least two which does
not contain the terms z;, and x;,.

As all the terms of T®) are non-zero and as T®) has length at least 2, by Lemma 16 we
see that T®) isa U (p")-weighted zero-sum sequence. Also, all the terms of 7" are divisible by
n'. Hence, by Lemmas 15 and 29 we see that T is an L(n; p’)-weighted zero-sum subsequence
of S.

Case 3: For every prime divisor p of n, there are at least two terms of S which are coprime
to p, and there is a prime divisor p of n/p’ such that at least three terms of S are coprime
to p.

In this case, we are done by Lemma 32. O

Theorem 34. Let n = p/'q where p' and q are distinct primes which are at least seven. Then
Dy = 4.

Proof. Let n be as in the statement of the theorem. As L(n;p') C U(n), we have that
fop (L(n;p’)) C U(p'). Also observe that fn,q(L(n;p’)) C @ As from Theorem 4 we have
Dyyy = 2 and from Theorem 5 we have Dg, = 3, by Lemma 9 it follows that Dy, > 4.

Let S = (21, xq, x3, 24) be a sequence in Z,. We will show that S has an L(n;p’)-weighted
zero-sum subsequence. It will follow that Dy, ,»y = 4. If some term of S is zero, then we are
done. So we can assume that all the terms of S are non-zero. We continue with the notation
and terminology that were used in the proof of Theorem 33.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.

We can find a subsequence T' of S of length three such that all the terms of T" are divisible
by p. Let n’ = n/p and let T" be the sequence in Z,, which is the image of 7" under f, .
As all the terms of S are non-zero, no term of 7" can be divisible by n’. So T” is a sequence
of non-zero terms of length three. As n’ is a prime, we have S(n') = Q,,. By Corollary 19
we see that T” is a @Q),y-weighted zero-sum subsequence. Thus, by Lemmas 15 and 28 we see
that 7" is an L(n;p’)-weighted zero-sum subsequence of S.

Case 2: Exactly two terms of S are coprime to q.

Let us assume that z; and x5 are coprime to q. If T = (23, 4), the sequence T(? has both
terms zero. Hence, we get that T(? is an S(q)-weighted zero-sum sequence. As S has all
terms non-zero, we see that both the terms of 7®") are non-zero. So by Lemma 16 we get that
T®) is a U(p')-weighted zero-sum sequence. Let 1 : U(n) — U(q)xU(p') be the isomorphism
given by the Chinese remainder theorem. By Lemma 31 we have S(q) x U(p') C w(L(n; i ))
Thus, by Observation 30 we see that 7" is an L(n; p')-weighed zero-sum subsequence of S.

Case 3: At least three terms of S are coprime to ¢, and at least two terms of S are coprime

to p'.
In this case, we are done by Lemma 32. [
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Theorem 35. Let n be a squarefree number such that every prime divisor of n is at least
seven and §(n) # 2. Suppose p' is a prime divisor of n. Then Cpp,p) = 282(n)

Proof. If n is a prime, then n = p’ and L(n;p’) = U(n). So from Theorem 4 we have
CrLinypy = 2. Let p' = pyp and n = py---p, where & > 3. As L(n;p') C U(n), we have
Crin;p) = Cumy- So from Theorem 4, we have Cp,. ) > 24" Let S = (x1,...,7) be a
sequence in Z, of length [ = 2" If we show that S has an L(n;p')-weighted zero-sum
subsequence of consecutive terms, it will follow that Cp ) < 29" If at least one term of
S is zero, we get an L(n;p')-weighted zero-sum subsequence of S of length one.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.

We can find a subsequence T' of consecutive terms of S of length [/2 such that all the
terms of T" are divisible by p. Let n’ = n/p and let 7" be the image of T" under f,,/. As
Q(n') = Q(n) —1 > 2 and T’ has length 2%") by Theorem 24 we see that 7" has an
S(n')-weighted zero-sum subsequence of consecutive terms. By Lemma 28 we get S(n') C
fan (L(n;p')). So by Lemma 15 we see that T (and hence S) has an L(n;p')-weighted
zero-sum subsequence of consecutive terms.

Case 2: For every prime divisor p of n/p’, there are exactly two terms of S which are coprime
to p, and at least two terms of S are coprime to p'.

In this case, we can use a slight modification of the argument which was used in the
same case of the proof of Theorem 33. We just observe that if S is a sequence of length
at least eight such that at most two terms of S are not divisible by n’, then we can find a
subsequence T' of consecutive terms of S having length at least two such that all the terms
of T" are divisible by n'.

Case 3: For every prime divisor p of n, there are at least two terms of S which are coprime
to p, and there is a prime divisor p of n/p’ such that at least three terms of S are coprime
to p.

In this case, we are done by Lemma 32. [

Theorem 36. Let n = p'q where p' and q are distinct primes which are at least seven. Then
CLinp) = 6.

Proof. Let n be as in the statement of the theorem. By Theorems 4 and 5 we see that
Cupy=2and Cg, = 3. As f, (L(n;p’)) C U(p') and fn,q(L(n;p’)) C @, by Lemma 8 it
follows that Cp ;) > 6.

Let S = (x1,...,26) be a sequence in Z,. It is enough to show that S has an L(n;p’)-
weighted zero-sum subsequence of consecutive terms. We can assume that all the terms of
S are non-zero.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
In this case, we can find a subsequence T" of S of consecutive terms of length three whose
all terms are divisible by p. As all the terms of S are non-zero, all the terms of T are coprime
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to n’ where n’ = n/p. If T is the image of T" under f, ,, then 7" is a sequence of non-zero
terms of length three in Z,,. As n’ is a prime, it follows that S(n’) = @Q,,. By Corollary 19
we get that 1" is a Q,,-weighted zero-sum sequence. By using Lemmas 15 and 28 it follows
that 7" is an L(n;p’)-weighted zero-sum subsequence of S of consecutive terms.

Case 2: Exactly two terms of S are coprime to q.

Let the terms z;, and xj, be coprime to ¢. As S has length six, we can find a subsequence
T of consecutive terms of S of length two, such that neither z; nor z;, is a term of 7". As
x; is divisible by ¢ when j # 71, jo, all the terms of T" are divisible by ¢. As S has all terms
non-zero, all the terms of T" are coprime to p'.

By Lemma 16 we get that 7" is a U(p')-weighted zero-sum sequence. So by Lemmas 15
and 29 it follows that T is an L(n;p’)-weighted zero-sum subsequence of consecutive terms
of S.

Case 3: At least three terms of S are coprime to ¢, and at least two terms of S are coprime
to p'.
In this case, we are done by Lemma 32. O

6 Concluding remarks

We have S(15) = {1,2,4,8}. We can check that the sequence S = (1,1,1) does not have
a S(15)-weighted zero-sum subsequence. So it follows that Dgusy > 4 and hence Dg(5) >
2(15) + 2. This shows that the statement of Theorem 23 is not true in general if some prime
divisor of n is smaller than seven. It will be interesting to find the Davenport constant Dgy,)
for non-squarefree n.

Adhikari et al. [1] proposed to characterize when two weight-sets A C Z,, have the same
value of D4. In this paper, we have seen that if A C Z, is such that S(n) C A C U(n)
and if n is not a prime, then Dy = Dy,). We have also seen that if A C Z, is such that
L(n;p) € A C U(n) and if Q(n) # 2, then again Dy = Dy(,). We can investigate whether
there are other weight-sets A C Z,, such that D, = Dyy,). We can also ask similar questions
regarding the constant C4.
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