
23 11

Article 24.1.7
Journal of Integer Sequences, Vol. 27 (2024),2

3

6

1

47

Zero-Sum Constants Related to the
Jacobi Symbol

Santanu Mondal, Krishnendu Paul, and Shameek Paul
School of Mathematical Sciences

Ramakrishna Mission Vivekananda Educational and Research Institute
West Bengal 711202

India
santanu.mondal.math18@gm.rkmvu.ac.in

krishnendu.p.math18@gm.rkmvu.ac.in

shameek.paul@rkmvu.ac.in

Abstract

Let A ⊆ Zn be a subset. A sequence S = (x1, . . . , xk) is said to be an A-weighted
zero-sum sequence if there exist a1, . . . , ak ∈ A such that a1x1 + · · · + akxk = 0. We
refer to A as a weight-set. The A-weighted Davenport constant DA is defined to be
the smallest natural number k such that every sequence of k elements in Zn has an A-
weighted zero-sum subsequence. The constant CA is defined to be the smallest natural
number k such that every sequence of k elements in Zn has an A-weighted zero-sum
subsequence having consecutive terms.

When n is odd, let S(n) be the set of all units in Zn whose Jacobi symbol with
respect to n is 1. We compute the constants CS(n) and DS(n). For a prime divisor p of
n, we also compute these constants for a related weight-set L(n; p). This is the set of
all units x in Zn such that the Jacobi symbol of x with respect to n is the same as the
Legendre symbol of x with respect to p. We show that even though these weight-sets
A may have half the size of U(n) (which is the set of units of Zn), the corresponding
A-weighted constants are the same as those for the weight-set U(n).

1 Introduction

For a, b ∈ Z, we denote the set {x ∈ Z : a ≤ x ≤ b} by [a, b]. Let U(n) denote the group of
units in the ring Zn, and U(n)

2 = {x2 : x ∈ U(n) }. For an odd prime p, let Qp denote the
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set U(p)2. For n = p1p2 · · · pk where pi is a prime for each i ∈ [1, k], we define Ω(n) = k.

Definition 1. Let A ⊆ Zn be a subset. A sequence S = (x1, . . . , xk) is said to be an A-
weighted zero-sum sequence if there exist a1, . . . , ak ∈ A such that a1x1 + · · · + akxk = 0.
We refer to A as a weight-set.

Definition 2. For a weight-set A ⊆ Zn, the A-weighted Davenport constant DA is defined to
be the least positive integer k, such that every sequence in Zn of length k has an A-weighted
zero-sum subsequence.

Adhikari and Rath [4] gave the previous definition. Chintamani and Moriya [5] showed
that DU(n)2 = 2Ω(n) + 1 when every prime divisor of n is at least seven. Grynkiewicz and
Hennecart [7] generalized this by showing that DU(n)2 ≥ 2Ω(n)+min{v3(n), v5(n)}+1 when
n is odd, with equality if either 3 ∤ n or v3(n) ≥ v5(n). Mazumdar and Sinha [10] made
suitable modifications in the method of Griffiths [6] to consider the case when n is an even
integer. (However, their result cannot be used to determine DU(n)2 when n is even.) Adhikari
et al. [1, Lem. 2.1] showed that D{1,−1} = ⌊log 2n⌋+ 1 for every positive integer n.

Mondal, Paul, and Paul [11] gave the following definition.

Definition 3. For a weight-set A ⊆ Zn, the A-weighted constant CA is defined to be the least
positive integer k, such that every sequence in Zn of length k has an A-weighted zero-sum
subsequence of consecutive terms.

Mondal, Paul, and Paul [11, Cor. 3, Cor. 6] showed that CU(n)2 = 3Ω(n) when every prime
divisor of n is at least seven and C{1,−1} = n when n is a power of two. Mondal, Paul, and
Paul [12] showed the next result.

Theorem 4. For every positive integer n we have DU(n) = Ω(n) + 1 and CU(n) = 2Ω(n).

When p is an odd prime such that p ≡ 2 (mod 3), we can show that U(p)3 = U(p).
Mondal, Paul, and Paul [11, Thm. 7, Lem. 2] showed that when p 6= 7 is a prime such that
p ≡ 1 (mod 3), we have DU(p)3 = CU(p)3 = 3, and also that DU(7)3 = 3 and CU(7)3 = 4.
Adhikari and Rath [4, Thm. 2], and Mondal, Paul, and Paul [11, Thm. 4] showed the next
result.

Theorem 5. Let p be an odd prime. Then CQp
= DQp

= 3.

Let m be a divisor of n. We refer to the ring homomorphism fn,m : Zn → Zm given by
a + nZ 7→ a + mZ as the natural map. As this map sends units to units, we get a group
homomorphism U(n) → U(m), which we also refer to as the natural map. When n is odd
and x ∈ Zn, the Jacobi symbol

(

x
n

)

is defined in Section 2.
The following are some of the results in this paper. We assume that n is an odd, squarefree

number whose every prime divisor is at least seven.
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• Let S(n) =
{

x ∈ U(n) :
(

x
n

)

= 1
}

.

If n is prime, then DS(n) = 3, and DS(n) = Ω(n) + 1 otherwise.

If n is prime, then CS(n) = 3, and CS(n) = 2Ω(n) otherwise.

• Let L(n; p) =
{

x ∈ U(n) :
(

x
n

)

=
(

x
p

) }

where p is a prime divisor of n.

If Ω(n) = 2, then DL(n;p) = 4, and DL(n;p) = Ω(n) + 1 otherwise.

If Ω(n) = 2, then CL(n;p) = 6, and CL(n;p) = 2Ω(n) otherwise.

Remark 6. Adhikari and Hegde [3] showed that if A = Zn \ {0} and B = {1, 2, . . . , ⌈n/2⌉},
we have DA = DB. We make a similar observation in this paper. In Proposition 11, we show
that S(n) is a subgroup of U(n) having index two when n is not a square. Theorem 4 shows
that, when n is odd, we have DU(n) = Ω(n) + 1 and CU(n) = 2Ω(n). In addition, if n is not a
prime, Theorems 23 and 24 show that DS(n) = DU(n) and CS(n) = CU(n). Thus, even though
these weight-sets may have different sizes, they can have the same constants. If Ω(n) 6= 2,
Theorems 33 and 35 show that DL(n; p) = DU(n) and CL(n; p) = CU(n).

If p is a prime divisor of n, we use the notation vp(n) = r to mean that pr | n and pr+1 ∤ n.
Let p be a prime divisor of n and vp(n) = r. We denote the image in U(pr) of x ∈ U(n)
under fn, pr by x(p). For a sequence S = (x1, . . . , xl) in Zn, let S

(p) denote the sequence

(x
(p)
1 , . . . , x

(p)
l ) in Zpr , which is the image of S under fn, pr . Griffiths [6, Obs. 2.2] made the

following observation.

Observation 7. Let n = pr11 · · · prkk where the pi’s are distinct primes and S = (x1, . . . , xl)
be a sequence in Zn. Suppose for every i ∈ [1, k] there exist ci,1, . . . , ci,j , . . . , ci,l ∈ U(prii ) such

that ci,1x
(pi)
1 + · · ·+ci,jx

(pi)
j + · · ·+ci,lx

(pi)
l = 0. Then there exist a1, . . . , aj , . . . , al ∈ U(n) such

that for every (i, j) ∈ [1, k]× [1, l] we have a
(pi)
j = ci,j and a1x1 + · · ·+ ajxj + · · ·+ alxl = 0.

Proof. Let j ∈ [1, l]. By the Chinese remainder theorem, there exists aj ∈ U(n) such that

for every i ∈ [1, k] we have that a
(pi)
j = ci,j. Let x = a1x1 + · · ·+ ajxj + · · ·+ alxl. For each

i ∈ [1, k] we see that fn, prii (x) = x(pi) = ci,1x
(pi)
1 + · · · + ci,jx

(pi)
j + · · · + ci,lx

(pi)
l = 0. So by

using the Chinese remainder theorem once again, we see that x = 0.

Mondal, Paul, and Paul [11, Lem. 3] showed the next result, which will be used in
Theorem 36. In the next two results, for a subset A of Zn, we use the notation CA(n) and
DA(n) for the constants CA and DA respectively.

Lemma 8. Let n = mq. Let A,B,C be subsets of Zn,Zm,Zq respectively. Suppose fn,m(A) ⊆
B and fn,q(A) ⊆ C. Then we have CA(n) ≥ CB(m)CC(q).

We now prove a similar result for the weighted Davenport constant, which we will use in
Theorem 34. Grynkiewicz, Marchan, and Ordaz [8, Lem. 3.1] proved a generalization of this
result for abelian groups.
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Lemma 9. Let n = mq. Let A,B,C be subsets of Zn,Zm,Zq respectively. Suppose fn,m(A) ⊆
B and fn,q(A) ⊆ C. Then we have DA(n) ≥ DB(m) +DC(q)− 1.

Proof. LetDB(m) = k andDC(q) = l. If k = 1, we let S ′
1 be the empty sequence, and if l = 1,

we let S ′
2 be the empty sequence. Otherwise, there exists a sequence S ′

1 = (u1, . . . , uk−1)
of length k − 1 in Zm, which has no B-weighted zero-sum subsequence, and there exists
a sequence S ′

2 = (v1, . . . , vl−1) of length l − 1 in Zq, which has no C-weighted zero-sum
subsequence.

As fn,m is onto, for every i ∈ [1, k − 1] there exists xi ∈ Zn such that fn,m(xi) = ui. As
fn,q is onto, for every j ∈ [1, l− 1] there exists yj ∈ Zn such that fn,q(yj) = vj. Consider the
following sequence of length k + l − 2 in Zn:

S = (qx1, . . . , qxk−1, y1, . . . , y l−1).

Let S1 = (qx1, . . . , qxk−1) and S2 = (y1, . . . , y l−1). Suppose S has an A-weighted zero-
sum subsequence T . If the sequence T contains some term of S2, by taking the image of
T under fn,q we get the contradiction that S ′

2 has a C-weighted zero-sum subsequence, as
fn,q(qxi) = 0 and as fn,q(A) ⊆ C.

Thus, no term of S2 is a term of T , and so T is a subsequence of S1. Let T ′ be the
subsequence of S ′

1, such that ui is a term of T ′ if and only if qxi is a term of T . As
fn,m(A) ⊆ B, by dividing the A-weighted zero-sum which is obtained from T by q and
by taking the image under fn,m we get the contradiction that T ′ is a B-weighted zero-sum
subsequence of S ′

1.
Hence, we see that S does not have a A-weighted zero-sum subsequence. As S has length

k + l − 2, it follows that DA(n) ≥ k + l − 1.

2 Some results about the weight-set S(n)

From this point onwards, we will assume that n is odd.

Definition 10. For an odd prime p and a ∈ U(p), the symbol
(a

p

)

is the Legendre symbol

with respect to p, which is defined as follows:

(a

p

)

=

{

1, if a ∈ Qp;

−1, if a /∈ Qp.

For a prime divisor p of n, we use the notation
(a

p

)

to denote

(

fn, p(a)

p

)

where a ∈ U(n).

Let n = pr11 · · · prkk where the pi’s are distinct primes.

For a ∈ U(n), we define the Jacobi symbol
(a

n

)

to be
( a

p1

)r1

· · ·
( a

pk

)rk

. Observe that

we have
(a

n

)

=

(

a(p1)

pr11

)

· · ·

(

a(pk)

prkk

)

.
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Let S(n) denote the kernel of the homomorphism U(n) → {1,−1} given by a 7→
(a

n

)

.

Adhikari, David, and Urroz [2, Sec. 3] considered the set S(n) as a weight-set.

Proposition 11. S(n) is a subgroup having index two in U(n) when n is a non-square, and

S(n) = U(n) when n is a square.

Proof. Let n = pr11 · · · prkk where the pi’s are distinct primes. If n is a square, then all the ri
are even, and so S(n) = U(n). If n is not a square, there exists j such that rj is odd. As
for every i ∈ [1, k] the map fprii , pi

is onto, by the Chinese Remainder theorem we see that

there is a unit b ∈ U(n) such that
( b

pi

)

= 1 when i 6= j, and
( b

pj

)

= −1. It follows that

( b

n

)

= −1 and so the homomorphism U(n) → {1,−1} given by a 7→
(a

n

)

is onto. Hence,

we see that S(n) has index two in U(n).

Remark 12. In particular, if n is squarefree, then S(n) has index two in U(n). It follows
that when p is an odd prime we have S(p) = Qp.

Observation 13. Let n = p1 · · · pk where the pi’s are distinct prime numbers. For a ∈ U(n),
let µ(a) denote the cardinality of { j ∈ [1, k] : fn, pj(a) = a(pj) /∈ Qpj }. As we have that

(

a

n

)

=

(

a(p1)

p1

)

· · ·

(

a(pj)

pj

)

· · ·

(

a(pk)

pk

)

,

it follows that a ∈ S(n) if and only if µ(a) is even.

Lemma 14. Let d be a proper divisor of n such that d is not a square. Suppose d is coprime

with n′ where n′ = n/d. Then we have that U(n′) ⊆ fn,n′(S(n)).

Proof. Let a′ ∈ U(n′). By the Chinese remainder theorem, there is an isomorphism ψ :
U(n) → U(n′) × U(d). As d is not a square, by Proposition 11 there exists b ∈ U(d) such
that b /∈ S(d). If a′ ∈ S(n′), let a ∈ U(n) be a unit such that ψ(a) = (a′, 1). If a′ /∈ S(n′), let
a ∈ U(n) be a unit such that ψ(a) = (a′, b). Then we have a ∈ S(n) and fn,n′(a) = a′.

Lemma 15. Let S be a sequence in Zn and d be a proper divisor of n which divides every

term of S. Let n′ = n/d and d be coprime with n′. Let S ′ be the sequence in Zn′ which

is the image of the sequence S under fn,n′. Let A ⊆ Zn and A′ ⊆ Zn′ be subsets such that

A′ ⊆ fn,n′(A). Suppose S ′ is an A′-weighted zero-sum sequence. Then S is an A-weighted
zero-sum sequence.

Proof. Let S = (x1, . . . , xk) be a sequence in Zn and S ′ = (x′1, . . . , x
′
k) where x

′
i = fn,n′(xi)

for every i ∈ [1, k]. Suppose S ′ is an A′-weighted zero-sum sequence. Then for every i ∈ [1, k]
there exist a′i ∈ A′ such that a′1x

′
1 + · · · + a′kx

′
k = 0. Since A′ ⊆ fn,n′(A), for every i ∈ [1, k]

there exist ai ∈ A such that fn,n′(ai) = a′i. As a′1x
′
1 + · · · + a′kx

′
k = 0 in Zn′ , it follows that
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fn,n′(a1x1 + · · · + akxk) = 0. Let x = a1x1 + · · · + akxk ∈ Zn. As fn,n′(x) = 0, we see that
n′ | x, and as every term of S is divisible by d, we see that d | x. As d is coprime with n′, it
follows that x is divisible by n = n′d, and so x = 0. Thus, we see that S is an A-weighted
zero-sum sequence.

Griffiths [6, Lem. 2.1] proved the next result, which we restate here using our terminology.

Lemma 16. Let p be an odd prime. If a sequence S in Zpr has at least two terms coprime

to p, then S is a U(pr)-weighted zero-sum sequence.

Chintamani and Moriya [5, Lem. 1] proved the next result.

Lemma 17. Let A = U(n)2 where n = pr and p is a prime which is at least seven. Suppose

we have elements x1, x2, x3 ∈ U(n). Then we get that Ax1 + Ax2 + Ax3 = Zn.

We will use the next result in Lemma 22.

Lemma 18. Let n = pr where p is a prime which is at least seven. Let A1 = U(n)2 and

A2 = U(n) \ U(n)2. Suppose x1, x2, x3 ∈ U(n) and f : {1, 2, 3} → {1, 2} is a function. Then

A
f(1)
x1 + A

f(2)
x2 + A

f(3)
x3 = Zn.

Proof. From [9, Thm. 2, p. 43] we see that when n is a power of an odd prime, the group
U(n) is cyclic. So it follows that −1 is the unique element in U(n) of order 2. Thus, the
map U(n) → U(n) given by x 7→ x2 has kernel {1,−1}. Hence, the image of this map is a
subgroup of U(n) having index 2 and so there exists c ∈ U(n) such that A2 = cA1.

For every i ∈ [1, 3] let

yi =

{

xi, if f(i) = 1;

cxi, if f(i) = 2.

Let x ∈ Zn. By Lemma 17 there exist b1, b2, b3 ∈ U(n)2 with x = b1y1 + b2y2 + b3y3.
For every i ∈ [1, 3] let

ai =

{

bi, if f(i) = 1;

bic, if f(i) = 2.

For every i ∈ [1, 3] it follows that ai ∈ Af(i) and biyi = aixi. Thus, we see that x =
a1x1 + a2x2 + a3x3.

The next result follows immediately from Lemma 18.

Corollary 19. Let n = pr where p is a prime which is at least seven. Suppose S is a

sequence in Zn such that at least three terms of S are in U(n). Then S is a U(n)2-weighted
zero-sum sequence.

Remark 20. The conclusion of Corollary 19 may not hold when p ≤ 5. One can check that
the sequence (1, 1, 1) in Zn is not a U(n)2-weighted zero-sum sequence when n = 2, 5. Also,
the sequence (1, 2, 1) in Z3 is not a U(3)2-weighted zero-sum sequence.
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3 The constants DS(n) and CS(n)

Lemma 21. Let n be squarefree and S = (x1, . . . , xl) be a sequence in Zn. Suppose for every

prime divisor p of n, at least two terms of S are coprime to p. If at most one term of S is

a unit, then S is an S(n)-weighted zero-sum sequence.

Proof. As we have assumed that n is odd and for every prime divisor p of n at least two terms
of S are coprime to p, by Lemma 16 we see that for every prime divisor p of n the sequence
S(p) = (x

(p)
1 , . . . , x

(p)
j , . . . , x

(p)
l ) is a U(p)-weighted zero-sum sequence. Let n = p1 · · · pi · · · pk

where the pi’s are distinct primes. For every i ∈ [1, k] there exist ci,1, . . . , ci,j , . . . , ci,l ∈ U(pi)

such that ci,1x
(pi)
1 + · · · + ci,jx

(pi)
j + · · · + ci,lx

(pi)
l = 0. We will refer to this U(pi)-weighted

zero-sum in Zpi as the i
th sum.

By Observation 7 we see that for every j ∈ [1, l] there exists aj ∈ U(n) such that

a1x1 + · · ·+ ajxj + · · ·+ alxl = 0, (1)

and for every i ∈ [1, k] we have (a
(pi)
1 , . . . , a

(pi)
j , . . . , a

(pi)
l ) = (ci,1, . . . , ci,j , . . . , ci,l). We observe

that for some i ∈ [1, k], a different choice for the ith sum will give us a different l-tuple

(a1, . . . , al) in (1). For example, if for some i ∈ [1, k] there exists j ∈ [1, l] such that x
(pi)
j is

zero, we can make an arbitrary choice for ci,j in the ith sum. For every i ∈ [1, k] we want to
choose the ith sum so that all the aj’s in (1) are in S(n). Consider the following matrices:

C =















c1,1 · · · c1,j · · · c1,l
...

...
...

...
...

ci,1 · · · ci,j · · · ci,l
...

...
...

...
...

ck,1 · · · ck,j · · · ck,l















and X =

















x
(p1)
1 · · · x

(p1)
j · · · x

(p1)
l

...
...

...
...

...

x
(pi)
1 · · · x

(pi)
j · · · x

(pi)
l

...
...

...
...

...

x
(pk)
1 · · · x

(pk)
j · · · x

(pk)
l

















.

Suppose some entry x
(pi)
j of X is 0. From Proposition 11 and Observation 13 we see that

by making a suitable choice for ci,j we can ensure that in (1) we have aj ∈ S(n). Thus, if the
jth column of X has a zero, we can get a U(n)-weighted zero-sum (1) in which aj ∈ S(n).

We observe that a term xj of S is a unit if and only if the jth column of X does not have
a zero. Hence, if no term of S is a unit, then every column of X has a zero. So in this case
S is an S(n)-weighted zero-sum sequence.

Suppose exactly one term of S is a unit, say xj0 . Then the jth0 column of X does not
have a zero and there is a zero in all the other columns of X. By multiplying the 1st row
of C by a suitable element of U(p1), we can modify c1,j0 so that aj0 ∈ S(n). As the other
columns of X have a zero, we can modify those columns of C suitably so that aj ∈ S(n) for
j 6= j0. Thus, it follows that S is an S(n)-weighted zero-sum sequence.

Lemma 22. Let n be a squarefree integer with every prime divisor of n at least seven. Let

S = (x1, . . . , xl) be a sequence in Zn such that, for every prime divisor of n, at least two
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terms of S are coprime to it. Suppose there is a prime divisor p of n such that at least three

terms of S are coprime to p. Then S is an S(n)-weighted zero-sum sequence.

Proof. If Ω(n) = 1, then n is a prime say p. As at least three terms of S are coprime to p,
Corollary 19 implies S is a Qp-weighted zero-sum sequence with Qp = S(p).

Suppose Ω(n) ≥ 2. Let n = p1 · · · pk where the pi’s are distinct primes. By Lemma 16

for every i ∈ [1, k] there exist ci,1, . . . , ci,l ∈ U(pi) such that ci,1x
(pi)
1 + · · · + ci,lx

(pi)
l = 0. By

Observation 7 there exist a1, . . . , al ∈ U(n) such that

a1x1 + · · ·+ alxl = 0. (2)

Assume that p = p1 and that x
(p)
1 , x

(p)
2 , and x

(p)
3 are units. A similar argument will work

in the general case. Let us denote c1,1, . . . , c1,l ∈ U(p1) by b1, . . . , bl. We want to choose the
bi’s in U(p) so that the corresponding ai’s in (2) are in S(n).

Using Observation 13 we can choose b4, . . . , bl ∈ U(p) so that a4, . . . , al ∈ S(n). Let y =

−(b4x
(p)
4 +· · ·+blx

(p)
l ). By using Observation 13 and Lemma 18 we can choose b1, b2, b3 ∈ U(p)

so that a1, a2, a3 ∈ S(n) and b1x
(p)
1 +b2x

(p)
2 +b3x

(p)
3 = y. Thus, S is an S(n)-weighted zero-sum

sequence.

Theorem 23. Let n be squarefree. If n is prime we have DS(n) = 3. If n is not a prime and

every prime divisor of n is at least seven, we have DS(n) = Ω(n) + 1.

Proof. From Theorem 4 we have DU(n) = Ω(n) + 1. As S(n) ⊆ U(n) it follows that DS(n) ≥
DU(n) and so DS(n) ≥ Ω(n) + 1. If Ω(n) = 1, then n is a prime and S(n) = Qn. So by
Theorem 5, we have DS(n) = 3.

Suppose Ω(n) ≥ 2. We claim that DS(n) ≤ Ω(n) + 1. Let S = (x1, . . . , xl) be a sequence
in Zn of length l = k + 1 where k = Ω(n). We have to show that S has an S(n)-weighted
zero-sum subsequence. If at least one term of S is zero, then that term will give us an
S(n)-weighted zero-sum subsequence of length 1.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
Let us assume without loss of generality that xi is divisible by p for every i ∈ [2, l]. Let

T denote the subsequence (x2, . . . , xl) of S. Let n
′ = n/p and let T ′ be the sequence in Zn′

which is the image of T under fn,n′ . From Theorem 4, we see that DU(n′) = Ω(n′) + 1. As
T ′ has length l − 1 = Ω(n) = Ω(n′) + 1, it follows that T ′ has a U(n′)-weighted zero-sum
subsequence. As n is squarefree, p is coprime to n′. Thus, by Lemmas 14 and 15 we see that
S has an S(n)-weighted zero-sum subsequence.

Case 2: For every prime divisor p of n, exactly two terms of S are coprime to p.
Suppose S has at most one unit. By Lemma 21, we see that S is an S(n)-weighted

zero-sum sequence. So we can assume that S has at least two units. By the assumption in
this subcase, we see that S will have exactly two units and the other terms of S will be zero.
As S has length k + 1 and as k ≥ 2, some term of S is zero.
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Case 3: For every prime divisor p of n at least two terms of S are coprime to p, and there
is a prime divisor p′ of n such that at least three terms of S are coprime to p′.

In this case, we are done by Lemma 22.

Theorem 24. Let n be squarefree. If n is a prime, then CS(n) = 3. If n is not a prime and

every prime divisor of n is at least seven, then CS(n) = 2Ω(n).

Proof. If n = p where p is a prime, then S(n) = Qp. As p is odd, from Theorem 5 we get that
CS(n) = 3. Let n = p1 · · · pk where k ≥ 2. As S(n) ⊆ U(n), it follows that CS(n) ≥ CU(n). As
n is odd, from Theorem 4 we have CS(n) ≥ 2k.

Let S = (x1, . . . , xl) be a sequence in Zn of length l = 2k. If we show that S has an
S(n)-weighted zero-sum subsequence of consecutive terms, it will follow that CS(n) ≤ 2k. If
at least one term of S is zero, we get an S(n)-weighted zero-sum subsequence of S of length
1.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
We will get a subsequence T of consecutive terms of S of length l/2 with all its terms

divisible by p. Let n′ = n/p and let T ′ be the image of T under fn,n′ . From Theorem 4, we
have CU(n′) = 2Ω(n′). As the length of T ′ is 2Ω(n′), it follows that T ′ has a U(n′)-weighted
zero-sum subsequence of consecutive terms. As n′ is coprime with p, by Lemmas 14 and
15 we get that T (and hence S) has an S(n)-weighted zero-sum subsequence of consecutive
terms.

Case 2: For every prime divisor p of n exactly two terms of S are coprime to p.
In this case, as Ω(n) = k, there are at most 2k non-zero terms in S. Suppose k ≥ 3. As

S has length 2k and as 2k > 2k, some term of S is zero and we are done. Now assume that
k = 2. Then S has length four. If S has at most one unit, by Lemma 21 this sequence S is
an S(n)-weighted zero-sum sequence. So we can assume that S has at least two units. By
the assumption in this subcase, we see that S has exactly two units and so the other two
terms of S are zero.

Case 3: For every prime divisor p of n at least two terms of S are coprime to p, and there
is a prime divisor p′ of n such that at least three terms of S are coprime to p′.

In this case, we are done by Lemma 22.

4 Some results about the weight-set L(n; p)

To determine the constant DS(n) for some non-squarefree n, we consider the following subset
of Zn as a weight-set.

Definition 25. Let p be a prime divisor of n where n is odd. We define

L(n; p) =
{

a ∈ U(n) :
(a

n

)

=
(a

p

)}

.

9



Consider the homomorphism ϕ : U(n) → {1,−1} given by ϕ(a) =
(a

n

)(a

p

)

. Then the

kernel of ϕ is L(n; p). It follows that L(n; p) is a subgroup having an index at most two in
U(n).

Proposition 26. Let p be a prime divisor of n. Then L(n; p) has index two in U(n) unless
p is the unique prime divisor of n such that vp(n) is odd.

Proof. Let n = prm where m is coprime to p. Let ψ : U(n) → U(pr) × U(m) be the
isomorphism that is given by the Chinese remainder theorem. If we show that −1 is in the
image of the homomorphism ϕ : U(n) → {1,−1} which was defined above, then the kernel
of ϕ will be a subgroup of index two in U(n).

Case 1: r is odd.
Suppose m is a square. For every a ∈ U(n), we have ϕ(a) =

( a

m

)( a

pr+1

)

= 1. Thus, ϕ

is the trivial map, and so L(n; p) = U(n).
Suppose m is not a square. By Proposition 11 we see that S(m) has index two in U(m).

For c ∈ U(m) \ S(m), there exists a ∈ U(n) such that ψ(a) = (1, c). Thus
(a

p

)

=
(1

p

)

= 1

and so ϕ(a) =
(a

n

)

=
( a

m

)

=
( c

m

)

= −1.

Case 2: r is even.
Suppose m = 1. Then

(a

n

)

=
(a

p

)r

= 1 and so ϕ(a) =
(a

p

)

. Let b ∈ U(p) \Qp. There

exists a ∈ U(n) such that fn,p(a) = b. Thus ϕ(a) =
( b

p

)

= −1.

Suppose m > 1. Let b ∈ U(p) \ Qp. There exists b′ ∈ U(pr) such that fpr, p(b
′) = b. For

c ∈ S(m), there exists a ∈ U(n) such that ψ(a) = (b′, c). Thus
(a

n

)

=
( b

p

)r( c

m

)

= 1 and

so ϕ(a) =
(a

p

)

=
( b

p

)

= −1.

Remark 27. In particular, if n is a prime p, then L(n; p) = U(p).

The remaining results in this section are technical results, which will be used in the next
section.

Lemma 28. Let p and p′ be prime divisors of n such that p is coprime with n′ = n/p. Then
S(n′) ⊆ fn, n′

(

L(n; p′)
)

.

Proof. Let b ∈ S(n′) where n′ = n/p. As p is coprime with n′, by the Chinese remainder
theorem we have an isomorphism ψ : U(n) → U(n′)× U(p).

Suppose p = p′. Let a ∈ U(n) be a unit such that ψ(a) = (b, 1). Thus fn, n′(a) = b. We
have a ∈ L(n; p′) as

(a

n

)

=
( b

n′

)(1

p

)

=
(1

p

)

=
(a

p

)

=
( a

p′

)

.
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Suppose p 6= p′. Then p′ divides n′. Let c ∈ U(p) be a unit such that
( c

p

)

=
( b

p′

)

. Let

a ∈ U(n) be a unit such that ψ(a) = (b, c). Thus fn, n′(a) = b. We have a ∈ L(n; p′) as

(a

n

)

=
( b

n′

)( c

p

)

=
( c

p

)

=
( b

p′

)

=
( a

p′

)

.

Lemma 29. Let p′ be a prime divisor of n which is coprime to n′ = n/p′. Then we have

that U(p′) ⊆ fn, p′
(

L(n; p′)
)

.

Proof. Let b ∈ U(p′). As n′ = n/p′ is coprime to p′, by the Chinese remainder theorem
we have an isomorphism ψ : U(n) → U(n′) × U(p′). There exists a ∈ U(n) such that
ψ(a) = (1, b). Thus fn, p′(a) = b. We have a ∈ L(n; p′) as

(a

n

)

=
( 1

n′

)( b

p′

)

=
( b

p′

)

=
( a

p′

)

.

The next result follows from a similar argument as in the proof of Observation 7.

Observation 30. Let n = m1m2 wherem1 andm2 are coprime. Let A ⊆ Zn be a subset and
let S be a sequence in Zn. For every i ∈ [1, 2] let Ai ⊆ U(mi) be given and Si denote the image
of the sequence S under fn,mi

. Suppose A1×A2 ⊆ ψ(A) where ψ : U(n) → U(m1)×U(m2) is
the isomorphism given by the Chinese remainder theorem. If S1 is an A1-weighted zero-sum
sequence in Zm1 and S2 is an A2-weighted zero-sum sequence in Zm2 , then S is an A-weighted
zero-sum sequence in Zn.

Lemma 31. Let n be a squarefree integer and let n′ = n/p′, where p′ is a prime divisor of

n. Suppose ψ : U(n) → U(n′) × U(p′) is the isomorphism given by the Chinese remainder

theorem. Then we have that S(n′)× U(p′) ⊆ ψ
(

L(n; p′)
)

.

Proof. Let (b, c) ∈ S(n′) × U(p′). There exists a ∈ U(n) such that ψ(a) = (b, c). Then we
see that a ∈ L(n; p′) as

(a

n

)

=
( b

n′

)( c

p′

)

=
( c

p′

)

=
( a

p′

)

.

5 The constants DL(n; p) and CL(n; p)

Lemma 32. Let n be a squarefree integer with every prime divisor of n at least seven. Let

S = (x1, . . . , xl) be a sequence in Zn such that for every prime divisor p of n at least two

terms of S are coprime to p. Assume that S ′ denotes the image of S under fn,n′, where

n′ = n/p′ with p′ a prime divisor of n. Suppose at most one term of S ′ is a unit, or there is

a prime divisor p of n/p′ such that at least three terms of S are coprime to p. Then S is an

L(n; p′)-weighted zero-sum sequence.
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Proof. Let n′ = n/p′ and let S ′ denote the image of the sequence S under fn,n′ . As at least
two terms of S(p′) are coprime to p′, Lemma 16 implies that S(p′) is a U(p′)-weighted zero-sum
sequence.

If at most one term of S ′ is a unit, by Lemma 21 we see that S ′ is an S(n′)-weighted
zero-sum sequence in Zn′ . This is because n′ is squarefree and for every prime divisor p of
n′ at least two terms of S ′ are coprime to p.

If there is a prime divisor p of n/p′ such that at least three terms of S are coprime to
p, by Lemma 22 we see that S ′ is an S(n′)-weighted zero-sum sequence since at least three
terms of S ′ are coprime to p.

As n is squarefree, n′ is coprime to p′. Let ψ : U(n) → U(n′) × U(p′) be the isomor-
phism given by the Chinese remainder theorem. By Lemma 31 we see that S(n′)× U(p′) ⊆
ψ
(

L(n; p′)
)

. Hence, by Observation 30 we see that S is an L(n; p′)-weighted zero-sum se-
quence.

Theorem 33. Let n be a squarefree number such that every prime divisor of n is at least

seven and Ω(n) 6= 2. Suppose p′ is a prime divisor of n. Then DL(n; p′) = Ω(n) + 1.

Proof. Let p′ be a prime divisor of n. We have DU(n) ≤ DL(n; p′), as L(n; p
′) ⊆ U(n). From

Theorem 4 we have DU(n) = Ω(n) + 1 and so DL(n; p′) ≥ Ω(n) + 1. If Ω(n) = 1, then
L(n; p′) = U(n) and so by Theorem 4 we have DL(n; p′) = 2.

Let n be a squarefree number such that every prime divisor is at least seven and Ω(n) ≥ 3.
Suppose S = (x1, . . . , xl) is a sequence in Zn of length Ω(n) + 1. It suffices to show that S
has an L(n; p′)-weighted zero-sum subsequence.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
Let us assume without loss of generality that xi is divisible by p for i > 1. Let T denote

the subsequence (x2, . . . , xl) of S. Let n
′ = n/p and let T ′ denote the sequence in Zn′ which

is the image of T under fn,n′ . We see that n′ is a squarefree number, which is not a prime,
every prime divisor of n′ is at least seven, and T ′ has length Ω(n′) + 1.

So it follows from Theorem 23 that T ′ has an S(n′)-weighted zero-sum subsequence. As
n is squarefree, it follows that p is coprime to n′. So by Lemmas 15 and 28 we see that T
has an L(n; p′)-weighted zero-sum subsequence.

Case 2: For every prime divisor p of n/p′, there are exactly two terms of S which are coprime
to p, and at least two terms of S are coprime to p′.

Let n′ = n/p′ and let S ′ = (x′1, . . . , x
′
l) be the image of S under fn,n′ . Suppose at most one

term of S ′ is a unit. By Lemma 32 we see that S is an L(n; p′)-weighted zero-sum sequence.
Suppose at least two terms of S ′ are units. Under the assumptions in this case, two terms
x′j1 and x′j2 of S ′ are units, and the other terms of S ′ are zero. It follows that all the terms
of S are divisible by n′ except xj1 and xj2 .

Hence, if some term fn,p′(xj) of S
(p′) is zero for j 6= j1, j2, then xj = 0. So we can assume

that all the terms of S(p′) are non-zero except possibly two terms. As Ω(n) ≥ 3, the sequence
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S has length at least four. Let T be a subsequence of S of length at least two which does
not contain the terms xj1 and xj2 .

As all the terms of T (p′) are non-zero and as T (p′) has length at least 2, by Lemma 16 we
see that T (p′) is a U(p′)-weighted zero-sum sequence. Also, all the terms of T are divisible by
n′. Hence, by Lemmas 15 and 29 we see that T is an L(n; p′)-weighted zero-sum subsequence
of S.

Case 3: For every prime divisor p of n, there are at least two terms of S which are coprime
to p, and there is a prime divisor p of n/p′ such that at least three terms of S are coprime
to p.

In this case, we are done by Lemma 32.

Theorem 34. Let n = p′q where p′ and q are distinct primes which are at least seven. Then

DL(n;p′) = 4.

Proof. Let n be as in the statement of the theorem. As L(n; p′) ⊆ U(n), we have that
fn, p′

(

L(n; p′)
)

⊆ U(p′). Also observe that fn, q
(

L(n; p′)
)

⊆ Qq. As from Theorem 4 we have
DU(p′) = 2 and from Theorem 5 we have DQq

= 3, by Lemma 9 it follows that DL(n; p′) ≥ 4.
Let S = (x1, x2, x3, x4) be a sequence in Zn. We will show that S has an L(n; p′)-weighted

zero-sum subsequence. It will follow that DL(n; p′) = 4. If some term of S is zero, then we are
done. So we can assume that all the terms of S are non-zero. We continue with the notation
and terminology that were used in the proof of Theorem 33.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
We can find a subsequence T of S of length three such that all the terms of T are divisible

by p. Let n′ = n/p and let T ′ be the sequence in Zn′ which is the image of T under fn,n′ .
As all the terms of S are non-zero, no term of T can be divisible by n′. So T ′ is a sequence
of non-zero terms of length three. As n′ is a prime, we have S(n′) = Qn′ . By Corollary 19
we see that T ′ is a Qn′-weighted zero-sum subsequence. Thus, by Lemmas 15 and 28 we see
that T is an L(n; p′)-weighted zero-sum subsequence of S.

Case 2: Exactly two terms of S are coprime to q.
Let us assume that x1 and x2 are coprime to q. If T = (x3, x4), the sequence T

(q) has both
terms zero. Hence, we get that T (q) is an S(q)-weighted zero-sum sequence. As S has all
terms non-zero, we see that both the terms of T (p′) are non-zero. So by Lemma 16 we get that
T (p′) is a U(p′)-weighted zero-sum sequence. Let ψ : U(n) → U(q)×U(p′) be the isomorphism
given by the Chinese remainder theorem. By Lemma 31 we have S(q)×U(p′) ⊆ ψ

(

L(n; p′)
)

.
Thus, by Observation 30 we see that T is an L(n; p′)-weighed zero-sum subsequence of S.

Case 3: At least three terms of S are coprime to q, and at least two terms of S are coprime
to p′.

In this case, we are done by Lemma 32.
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Theorem 35. Let n be a squarefree number such that every prime divisor of n is at least

seven and Ω(n) 6= 2. Suppose p′ is a prime divisor of n. Then CL(n; p′) = 2Ω(n).

Proof. If n is a prime, then n = p′ and L(n; p′) = U(n). So from Theorem 4 we have
CL(n; p′) = 2. Let p′ = pk and n = p1 · · · pk where k ≥ 3. As L(n; p′) ⊆ U(n), we have
CL(n; p′) ≥ CU(n). So from Theorem 4, we have CL(n; p′) ≥ 2Ω(n). Let S = (x1, . . . , xl) be a
sequence in Zn of length l = 2Ω(n). If we show that S has an L(n; p′)-weighted zero-sum
subsequence of consecutive terms, it will follow that CL(n; p′) ≤ 2Ω(n). If at least one term of
S is zero, we get an L(n; p′)-weighted zero-sum subsequence of S of length one.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
We can find a subsequence T of consecutive terms of S of length l/2 such that all the

terms of T are divisible by p. Let n′ = n/p and let T ′ be the image of T under fn,n′ . As
Ω(n′) = Ω(n) − 1 ≥ 2 and T ′ has length 2Ω(n′), by Theorem 24 we see that T ′ has an
S(n′)-weighted zero-sum subsequence of consecutive terms. By Lemma 28 we get S(n′) ⊆
fn,n′

(

L(n; p′)
)

. So by Lemma 15 we see that T (and hence S) has an L(n; p′)-weighted
zero-sum subsequence of consecutive terms.

Case 2: For every prime divisor p of n/p′, there are exactly two terms of S which are coprime
to p, and at least two terms of S are coprime to p′.

In this case, we can use a slight modification of the argument which was used in the
same case of the proof of Theorem 33. We just observe that if S is a sequence of length
at least eight such that at most two terms of S are not divisible by n′, then we can find a
subsequence T of consecutive terms of S having length at least two such that all the terms
of T are divisible by n′.

Case 3: For every prime divisor p of n, there are at least two terms of S which are coprime
to p, and there is a prime divisor p of n/p′ such that at least three terms of S are coprime
to p.

In this case, we are done by Lemma 32.

Theorem 36. Let n = p′q where p′ and q are distinct primes which are at least seven. Then

CL(n; p′) = 6.

Proof. Let n be as in the statement of the theorem. By Theorems 4 and 5 we see that
CU(p′) = 2 and CQq

= 3. As fn, p′
(

L(n; p′)
)

⊆ U(p′) and fn, q
(

L(n; p′)
)

⊆ Qq, by Lemma 8 it
follows that CL(n; p′) ≥ 6.

Let S = (x1, . . . , x6) be a sequence in Zn. It is enough to show that S has an L(n; p′)-
weighted zero-sum subsequence of consecutive terms. We can assume that all the terms of
S are non-zero.

Case 1: There is a prime divisor p of n such that at most one term of S is coprime to p.
In this case, we can find a subsequence T of S of consecutive terms of length three whose

all terms are divisible by p. As all the terms of S are non-zero, all the terms of T are coprime
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to n′ where n′ = n/p. If T ′ is the image of T under fn,n′ , then T ′ is a sequence of non-zero
terms of length three in Zn′ . As n′ is a prime, it follows that S(n′) = Qn′ . By Corollary 19
we get that T ′ is a Qn′-weighted zero-sum sequence. By using Lemmas 15 and 28 it follows
that T is an L(n; p′)-weighted zero-sum subsequence of S of consecutive terms.

Case 2: Exactly two terms of S are coprime to q.
Let the terms xj1 and xj2 be coprime to q. As S has length six, we can find a subsequence

T of consecutive terms of S of length two, such that neither xj1 nor xj2 is a term of T . As
xj is divisible by q when j 6= j1, j2, all the terms of T are divisible by q. As S has all terms
non-zero, all the terms of T are coprime to p′.

By Lemma 16 we get that T (p′) is a U(p′)-weighted zero-sum sequence. So by Lemmas 15
and 29 it follows that T is an L(n; p′)-weighted zero-sum subsequence of consecutive terms
of S.

Case 3: At least three terms of S are coprime to q, and at least two terms of S are coprime
to p′.

In this case, we are done by Lemma 32.

6 Concluding remarks

We have S(15) = {1, 2, 4, 8}. We can check that the sequence S = (1, 1, 1) does not have
a S(15)-weighted zero-sum subsequence. So it follows that DS(15) ≥ 4 and hence DS(15) ≥
Ω(15)+2. This shows that the statement of Theorem 23 is not true in general if some prime
divisor of n is smaller than seven. It will be interesting to find the Davenport constant DS(n)

for non-squarefree n.
Adhikari et al. [1] proposed to characterize when two weight-sets A ⊆ Zn have the same

value of DA. In this paper, we have seen that if A ⊆ Zn is such that S(n) ⊆ A ⊆ U(n)
and if n is not a prime, then DA = DU(n). We have also seen that if A ⊆ Zn is such that
L(n; p) ⊆ A ⊆ U(n) and if Ω(n) 6= 2, then again DA = DU(n). We can investigate whether
there are other weight-sets A ⊆ Zn such that DA = DU(n). We can also ask similar questions
regarding the constant CA.
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