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Abstract

For a positive integer h, a Bh-set is a set of integers A such that every integer n
has at most one representation in the form n = x1 + · · · + xh, where xr ∈ A for all
r = 1, . . . , h and x1 ≤ · · · ≤ xh. The greedy Bh-set is the infinite set of nonnegative
integers {a0(h), a1(h), a2(h), . . .} constructed as follows: a0(h) = 0, and ak+1(h) is
least integer greater than ak(h) for which {a0(h), a1(h), a2(h), . . . , ak(h), ak+1(h)} is a
Bh-set. Nathanson gave the formulas a1(h) = 1, a2(h) = h+1, and a3(h) = h2+h+1,
valid for all h. This paper proves that a4(h), the fourth positive term of the greedy
Bh-set, is

(

h3 + 3h2 + 3h+ 1
)

/2 if h is odd and
(

h3 + 2h2 + 3h+ 2
)

/2 if h is even. In
particular, a4(h) is not a polynomial, but is a quasipolynomial.
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1 The greedy algorithm

Let h be a positive integer. A finite or infinite set A of nonnegative integers is a Bh-set if no
integer has two different representations as sums of h elements of A. Equivalently, the set A
is a Bh-set if the equation

x1 + · · ·+ xh = y1 + · · · ≤ yh

with xi, yi ∈ A for all r = 1, . . . , h and

x1 ≤ · · · ≤ xh and y1 ≤ · · · yh

implies that xi = yi for all i = 1, . . . , h. A B2-set is also called a Sidon set.

For every positive integer h, we use a greedy algorithm to construct a Bh-set {ak(h) :
k = 0, 1, 2, . . .} as follows: a0(h) = 0 and, if {a0(h), a1(h), . . . , ak(h)} is a Bh-set, then
ak+1(h) is the least positive integer such that {a0(h), a1(h), . . . , ak(h), ak+1(h)} is a Bh-set.
The greedy B1-set is simply the set N0 of nonnegative integers, that is, ak(1) = k for all
k ∈ N0. The greedy B2-set is the (shifted) Mian-Chowla sequence (Mian-Chowla [2], Guy [1,
Section E28]). In the OEIS [4], the greedy Bh-set for 1 ≤ h ≤ 9 are sequences (in order,
with various offsets and shifts) A001477, A005282, A051912, A365300, A365301, A365302,
A365303, A365304, A365305. The first, second, third, fourth, fifth and sixth positive terms
of the greedy Bh-set are A000012, A020725, A002061 (offset), A369817, A369818, A369819,
respectively. These are rows and columns of the table sequences A365515 and (shifted by 1)
A347570.

For all h ≥ 1 we have

a0(h) = 0, a1(h) = 1, and a2(h) = h+ 1.

From computer calculations of initial segments of Bh-sets for small h, the second author
conjectured on September 30 2023 that, for all positive integers h, we have

a3(h) = h2 + h+ 1.

This formula for a3(h) was later proved by the first author [3]. In this paper we obtain an
explicit quasi-polynomial for a4(h).

Theorem 1. The fourth positive element in the greedy Bh-set is

a4(h) =

{

1
2
(h3 + 3h2 + 3h+ 1) , if h is odd;

1
2
(h3 + 2h2 + 3h+ 2) , if h is even.

Using the floor function, we may also write

a4(h) =

⌊

h+ 3

2

⌋

h2 +

⌊

3h

2

⌋

+ 1.
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It is an open problem to compute exact values or even asymptotic estimates for ak(h) for
k ≥ 5. Indeed, it is not even known if ak(h) < ak(h + 1) for all integers h ≥ 1 and k ≥ 2.
We have the upper bound [3]

ak(h) ≤
k−1
∑

i=0

hi < hk−1 + 2hk−2

for all positive integers h and k.

2 Lower bound for a4(h)

In this section we compute a lower bound for a4(h).
For u, v ∈ R, define the interval of integers [u, v] = {n ∈ Z : u ≤ n ≤ v}.

Lemma 2. For all integers h ≥ 2 we have

a4(h) ≥

{

1
2
(h3 + 3h2 + 3h+ 1) , if h is odd;

1
2
(h3 + 2h2 + 3h+ 2) , if h is even.

Proof. Let B be the set of positive integers b such that a4(h) 6= b. A sufficient condition that
b ∈ B is the existence of nonnegative integers x1, x2, y1, y2, y3 with

x1 + x2 ≤ h− 1, y1 + y2 + y3 ≤ h, x1y1 = x2y2 = 0

such that
b+ x1 + x2(h+ 1) = y1 + y2(h+ 1) + y3(h

2 + h+ 1)

or, equivalently,
b = y3(h

2 + h+ 1) + (y2 − x2)(h+ 1) + (y1 − x1).

We consider the following two cases separately: x2 = 0 and y2 = 0.
Let x2 = 0 and let 1 ≤ y3 ≤ h and 0 ≤ y2 ≤ h− y3. Because

0 ≤ x1 ≤ h− 1 and 0 ≤ y1 ≤ h− y3 − y2,

the set B contains the interval

y3(h
2+h+ 1) + y2(h+ 1) + [−(h− 1), h− y3 − y2]

= y3(h
2 + h+ 1) + [y2(h+ 1)− h+ 1, y2h+ h− y3] . (1)

If
0 ≤ y2 ≤ h− y3 − 1 (2)
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then B also contains the interval

y3(h
2+h+ 1) + [(y2 + 1)(h+ 1)− h+ 1, (y2 + 1)h+ h− y3]

= y3(h
2 + h+ 1) + [y2(h+ 1) + 2, y2h+ 2h− y3] . (3)

Inequality (2) implies that

y2(h+ 1) + 2 ≤ y2h+ h− y3 + 1,

and so intervals (1) and (3) overlap. Therefore, B contains the interval

y3(h
2 + h+ 1) +

h−y3
⋃

y2=0

[y2(h+ 1)− h+ 1, y2h+ h− y3]

= y3(h
2 + h+ 1) + [−h+ 1, (h− y3)h+ h− y3]

=
[

y3(h
2 + h+ 1)− h+ 1, y3h

2 + h2 + h
]

. (4)

Let y2 = 0 and let 1 ≤ y3 ≤ h and 0 ≤ x2 ≤ h− y3. Note that h− y3 ≤ h− 1. Because

0 ≤ x1 ≤ h− 1− x2 and 0 ≤ y1 ≤ h− y3,

the set B contains the interval

y3(h
2+h+ 1)− x2(h+ 1) + [−(h− 1− x2), h− y3]

= y3(h
2 + h+ 1) + [−x2h− h+ 1,−x2(h+ 1) + h− y3] . (5)

If
0 ≤ x2 ≤ h− y3 − 1 (6)

then B also contains the interval

y3(h
2+h+ 1) + [−(x2 + 1)h− h+ 1,−(x2 + 1)(h+ 1) + h− y3]

= y3(h
2 + h+ 1) + [−x2h− 2h+ 1,−x2(h+ 1)− y3 − 1] . (7)

Inequality (6) implies that

−x2h− h ≤ −x2(h+ 1)− y3 − 1,

and so intervals (5) and (7) overlap. Therefore, B contains the interval

y3(h
2+h+ 1) +

h−y3
⋃

x2=0

[−x2h− h+ 1,−x2(h+ 1) + h− y3]

= y3(h
2 + h+ 1) + [−(h− y3)h− h+ 1, h− y3]

=
[

y3(h
2 + 2h+ 1)− h2 − h+ 1, y3(h

2 + h) + h
]

. (8)
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Intervals (4) and (8) overlap because y3 ≤ h ≤ 2h, and so B contains the interval

I(y3) =
[

y3(h
2 + 2h+ 1)− h2 − h+ 1, y3h

2 + h2 + h
]

(9)

for y3 ∈ [1, h]. These intervals move to the right as y3 increases. Intervals (I(y3) and I(y3+1)
overlap if

(y3 + 1)(h2 + 2h+ 1)− h2 − h+ 1 ≤ y3h
2 + h2 + h+ 1

or, equivalently, if (2h+ 1)y3 ≤ h2 − 1 or

y3 ≤

⌊

h2 − 1

2h+ 1

⌋

=

{

h−1
2
, if h is odd;

h−2
2
, if h is even.

For odd h ≥ 3, the set B contains the interval

(h+1)/2
⋃

y3=1

I(y3) =

(h+1)/2
⋃

y3=1

[

y3(h
2 + 2h+ 1)− h2 − h+ 1, y3h

2 + h2 + h
]

=

[

h+ 2,

(

h+ 1

2

)

h2 + h2 + h

]

=

[

h+ 2,
h3 + 3h2 + 2h

2

]

. (10)

For even h ≥ 2, the set B contains the interval

h/2
⋃

y3=1

I(y3) =
[

y3(h
2 + 2h+ 1)− h2 − h+ 1, y3h

2 + h2 + h
]

=

[

h+ 2,

(

h

2

)

h2 + h2 + h

]

=

[

h+ 2,
h3 + 2h2 + 2h

2

]

. (11)

For odd h ≥ 3, let

y2 = 0, y3 =
h+ 3

2
, x2 =

h+ 1

2
.

The set B contains the interval

y3(h
2 + h+ 1)− x2(h+ 1) + [−(h− 1− x2), h− y3]

=

(

h+ 3

2

)

(h2 + h+ 1)−

(

h+ 1

2

)

(h+ 1) +

[

−
h− 3

2
,
h− 3

2

]

=

[

h3 + 3h2 + h+ 5

2
,
h3 + 3h2 + 3h− 1

2

]

. (12)
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Intervals (10) and (12) overlap and so B contains the interval

[

h+ 2,
h3 + 3h2 + 3h− 1

2

]

.

It follows that, for odd h ≥ 3, we have the lower bound

a4(h) ≥
h3 + 3h2 + 3h− 1

2
+ 1 =

h3 + 3h2 + 3h+ 1

2
.

For even h ≥ 2, let

y2 = 0, y3 =
h+ 2

2
, x2 =

h

2
.

The set B contains the interval

y3(h
2 + h+ 1)− x2(h+ 1) + [−(h− 1− x2), h− y3]

=

(

h+ 2

2

)

(h2 + h+ 1)−

(

h

2

)

(h+ 1) +

[

−
h− 2

2
,
h− 2

2

]

=

[

h3 + 2h2 + h+ 4

2
,
h3 + 2h2 + 3h

2

]

. (13)

Intervals (11) and (13) overlap and so B contains the interval

[

h+ 2,
h3 + 2h2 + 3h

2

]

.

It follows that, for even h ≥ 2, we have the lower bound

a4(h) ≥
h3 + 2h2 + 3h

2
+ 1 =

h3 + 2h2 + 3h+ 2

2
.

This completes the proof of Lemma 2.

3 The upper bound for a4(h)

In this section we compute an upper bound for a4(h).

Lemma 3. For all positive integers h we have

a4(h) ≤

{

1
2
(h3 + 3h2 + 3h+ 1) , if h is odd;

1
2
(h3 + 2h2 + 3h+ 2) , if h is even.
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Proof. Let

H =

{

1
2
(h2 + 2h+ 1), if h is odd;

1
2
(h2 + h+ 2), if h is even.

We must prove that
a4(h) ≤ (h+ 1)H.

This inequality is equivalent to the statement that there do not exist nonnegative integers
x0, x1, x2, x3 and y1, y2, y3 such that

x0(h+ 1)H + x1 + x2(h+ 1) + x3(h
2 + h+ 1) (14)

= y1 + y2(h+ 1) + y3(h
2 + h+ 1)

with
x0 + x1 + x2 + x3 ≤ h, y1 + y2 + y3 ≤ h (15)

and
x0 ≥ 1, x1y1 = x2y2 = x3y3 = 0. (16)

Suppose that equation (14) has a solution satisfying conditions (15) and (16). Note that

h2 + 1 < 2H.

If x0 ≥ 2, then

(h+ 1)(h2 + 1) < 2(h+ 1)H ≤ x0(h+ 1)H

≤ y1 + y2(h+ 1) + y3(h
2 + h+ 1)

≤ h(h2 + h+ 1)

< (h+ 1)(h2 + 1),

which is absurd. Therefore,
x0 = 1.

If y3 = 0, then

(h+ 1)(h2 + 1)

2
< (h+ 1)H ≤ y1 + y2(h+ 1) ≤ h(h+ 1)

and so (h− 1)2 < 0, which is absurd. Therefore,

y3 ≥ 1 and x3 = 0.

With x0 = 1 and x3 = 0, equation (14) becomes

x1 + (H + x2)(h+ 1) = y1 + y2(h+ 1) + y3(h
2 + h+ 1) (17)

= y1 + y3 + (y2 + y3h)(h+ 1).
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We obtain the congruence
x1 ≡ y1 + y3 (mod h+ 1).

If x1 = 0, then y1 + y3 ≡ 0 (mod h + 1). The inequalities y1 ≥ 0 and y3 ≥ 1 imply
y1 + y3 ≥ h+ 1, which contradicts condition (15). Therefore,

x1 ≥ 1 and y1 = 0

and
x1 ≡ y3 (mod h+ 1).

Because 1 ≤ y3 ≤ h, if x1 6= y3, then x1 ≥ y3 + h+ 1 > h, which is absurd. Therefore,

x1 = y3

and equation (17) becomes, simply,

H + x2 = y2 + y3h, (18)

where x2, y2, y3 are nonnegative integers such that

x2 + y3 ≤ h− 1, y2 + y3 ≤ h, and x2y2 = 0.

We consider separately the two cases: h odd and h even.
Let h be odd. If y3 ≤ (h+ 1)/2, then equation (18) gives

h2 + 2h+ 1

2
≤ y2 + y3h ≤ (h− y3) + y3h

= h+ y3(h− 1) ≤ h+
h2 − 1

2

=
h2 + 2h− 1

2

which is absurd. It follows that y3 > (h+ 1)/2 and, because h is odd, that

y3 ≥
h+ 3

2
.

If y2 = 0, then

x2 = y3h−H ≥
h2 + 3h

2
−

h2 + 2h+ 1

2
≥

h− 1

2
,

and so

h+ 1 =
h− 1

2
+

h+ 3

2
≤ x2 + y3 ≤ h− 1

which is absurd. Therefore,
y2 ≥ 1 and x2 = 0.
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Equation (18) becomes
H = y2 + y3h.

Equivalently,
h2 + 2h+ 1 = 2H = 2y2 + 2y3h ≥ 2y2 + h2 + 3h,

and so
1 ≥ 2y2 + h,

which is absurd. This completes the proof in the odd case.
Let h be even. If y3 ≤ h/2, then equation (18) gives

h2 + h+ 2

2
≤ y2 + y3h ≤ (h− y3) + y3h

= h+ y3(h− 1) ≤ h+
h2 − h

2

=
h2 + h

2

which is absurd. It follows that y3 > h/2 and, because h is even, that

y3 ≥
h+ 2

2
.

If y2 = 0, then

x2 = y3h−H ≥
h2 + 2h

2
−

h2 + h+ 2

2
=

h− 2

2
,

and so

h =
h+ 2

2
+

h− 2

2
≤ y3 + x2 ≤ h− 1,

which is absurd. Therefore,
y2 ≥ 1 and x2 = 0.

Equation (18) becomes
H = y2 + y3h

Equivalently,
h2 + h+ 2 = 2H = 2y2 + 2y3h ≥ 2y2 + h2 + 2h,

and so
2 ≥ 2y2 + h,

which is absurd. This completes the proof in the even case.

Now Theorem 1, the exact formula for a4(h), follows immediately from Lemmas 2 and 3.
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