

Article 24.7.3 **²** Journal of Integer Sequences, Vol. 27 (2024),

The Fourth Positive Element in the Greedy B_h -Set

Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx, NY 10468 USA

melvyn.nathanson@lehman.cuny.edu

Kevin O'Bryant Department of Mathematics College of Staten Island (CUNY) Staten Island, NY 10314 USA

kevin.obryant@csi.cuny.edu

Abstract

For a positive integer h, a B_h -set is a set of integers A such that every integer n has at most one representation in the form $n = x_1 + \cdots + x_h$, where $x_r \in A$ for all $r = 1, \ldots, h$ and $x_1 \leq \cdots \leq x_h$. The greedy B_h -set is the infinite set of nonnegative integers $\{a_0(h), a_1(h), a_2(h), \ldots\}$ constructed as follows: $a_0(h) = 0$, and $a_{k+1}(h)$ is least integer greater than $a_k(h)$ for which $\{a_0(h), a_1(h), a_2(h), \ldots, a_k(h), a_{k+1}(h)\}\$ is a B_h -set. Nathanson gave the formulas $a_1(h) = 1$, $a_2(h) = h+1$, and $a_3(h) = h^2 + h + 1$, valid for all h. This paper proves that $a_4(h)$, the fourth positive term of the greedy B_h -set, is $(h^3 + 3h^2 + 3h + 1)$ /2 if h is odd and $(h^3 + 2h^2 + 3h + 2)$ /2 if h is even. In particular, $a_4(h)$ is not a polynomial, but is a quasipolynomial.

1 The greedy algorithm

Let h be a positive integer. A finite or infinite set A of nonnegative integers is a B_h -set if no integer has two different representations as sums of h elements of A . Equivalently, the set A is a B_h -set if the equation

$$
x_1 + \dots + x_h = y_1 + \dots \le y_h
$$

with $x_i, y_i \in A$ for all $r = 1, \ldots, h$ and

$$
x_1 \leq \cdots \leq x_h
$$
 and $y_1 \leq \cdots y_h$

implies that $x_i = y_i$ for all $i = 1, ..., h$. A B_2 -set is also called a *Sidon set*.

For every positive integer h, we use a greedy algorithm to construct a B_h -set $\{a_k(h):$ $k = 0, 1, 2, \ldots$ as follows: $a_0(h) = 0$ and, if $\{a_0(h), a_1(h), \ldots, a_k(h)\}$ is a B_h -set, then $a_{k+1}(h)$ is the least positive integer such that $\{a_0(h), a_1(h), \ldots, a_k(h), a_{k+1}(h)\}$ is a B_h -set. The greedy B_1 -set is simply the set \mathbb{N}_0 of nonnegative integers, that is, $a_k(1) = k$ for all $k \in \mathbb{N}_0$. The greedy B_2 -set is the (shifted) Mian-Chowla sequence (Mian-Chowla [\[2\]](#page-9-0), Guy [\[1,](#page-9-1) Section E28]). In the OEIS [\[4\]](#page-9-2), the greedy B_h -set for $1 \leq h \leq 9$ are sequences (in order, with various offsets and shifts) $\underline{A001477}$, $\underline{A005282}$, $\underline{A051912}$, $\underline{A365300}$, $\underline{A365301}$, $\underline{A365302}$, [A365303,](https://oeis.org/A365303) [A365304,](https://oeis.org/A365304) [A365305.](https://oeis.org/A365305) The first, second, third, fourth, fifth and sixth positive terms of the greedy Bh-set are [A000012,](https://oeis.org/A000012) [A020725,](https://oeis.org/A020725) [A002061](https://oeis.org/A002061) (offset), [A369817,](https://oeis.org/A369817) [A369818,](https://oeis.org/A369818) [A369819,](https://oeis.org/A369819) respectively. These are rows and columns of the table sequences [A365515](https://oeis.org/A365515) and (shifted by 1) [A347570.](https://oeis.org/A347570)

For all $h \geq 1$ we have

$$
a_0(h) = 0
$$
, $a_1(h) = 1$, and $a_2(h) = h + 1$.

From computer calculations of initial segments of B_h -sets for small h, the second author conjectured on September 30 2023 that, for all positive integers h , we have

$$
a_3(h) = h^2 + h + 1.
$$

This formula for $a_3(h)$ was later proved by the first author [\[3\]](#page-9-3). In this paper we obtain an explicit quasi-polynomial for $a_4(h)$.

Theorem 1. *The fourth positive element in the greedy* Bh*-set is*

$$
a_4(h) = \begin{cases} \frac{1}{2} (h^3 + 3h^2 + 3h + 1), & \text{if } h \text{ is odd;} \\ \frac{1}{2} (h^3 + 2h^2 + 3h + 2), & \text{if } h \text{ is even.} \end{cases}
$$

Using the floor function, we may also write

$$
a_4(h) = \left\lfloor \frac{h+3}{2} \right\rfloor h^2 + \left\lfloor \frac{3h}{2} \right\rfloor + 1.
$$

It is an open problem to compute exact values or even asymptotic estimates for $a_k(h)$ for $k \geq 5$. Indeed, it is not even known if $a_k(h) < a_k(h+1)$ for all integers $h \geq 1$ and $k \geq 2$. We have the upper bound [\[3\]](#page-9-3)

$$
a_k(h) \le \sum_{i=0}^{k-1} h^i < h^{k-1} + 2h^{k-2}
$$

for all positive integers h and k .

2 Lower bound for $a_4(h)$

In this section we compute a lower bound for $a_4(h)$.

For $u, v \in \mathbb{R}$, define the interval of integers $[u, v] = \{n \in \mathbb{Z} : u \leq n \leq v\}.$

Lemma 2. For all integers $h \geq 2$ we have

$$
a_4(h) \ge \begin{cases} \frac{1}{2} \left(h^3 + 3h^2 + 3h + 1 \right), & \text{if } h \text{ is odd;} \\ \frac{1}{2} \left(h^3 + 2h^2 + 3h + 2 \right), & \text{if } h \text{ is even.} \end{cases}
$$

Proof. Let B be the set of positive integers b such that $a_4(h) \neq b$. A sufficient condition that $b \in \mathcal{B}$ is the existence of nonnegative integers x_1, x_2, y_1, y_2, y_3 with

$$
x_1 + x_2 \le h - 1
$$
, $y_1 + y_2 + y_3 \le h$, $x_1y_1 = x_2y_2 = 0$

such that

$$
b + x_1 + x_2(h + 1) = y_1 + y_2(h + 1) + y_3(h^2 + h + 1)
$$

or, equivalently,

$$
b = y_3(h^2 + h + 1) + (y_2 - x_2)(h + 1) + (y_1 - x_1).
$$

We consider the following two cases separately: $x_2 = 0$ and $y_2 = 0$.

Let $x_2 = 0$ and let $1 \le y_3 \le h$ and $0 \le y_2 \le h - y_3$. Because

$$
0 \le x_1 \le h - 1
$$
 and $0 \le y_1 \le h - y_3 - y_2$,

the set β contains the interval

$$
y_3(h^2+h+1) + y_2(h+1) + [-(h-1), h-y_3-y_2]
$$

=
$$
y_3(h^2+h+1) + [y_2(h+1)-h+1, y_2h+h-y_3].
$$
 (1)

If

$$
0 \le y_2 \le h - y_3 - 1 \tag{2}
$$

then $\mathcal B$ also contains the interval

$$
y_3(h^2+h+1) + [(y_2+1)(h+1) - h + 1, (y_2+1)h + h - y_3]
$$

=
$$
y_3(h^2+h+1) + [y_2(h+1) + 2, y_2h + 2h - y_3].
$$
 (3)

Inequality [\(2\)](#page-2-0) implies that

$$
y_2(h+1) + 2 \le y_2h + h - y_3 + 1,
$$

and so intervals (1) and (3) overlap. Therefore, β contains the interval

$$
y_3(h^2 + h + 1) + \bigcup_{y_2=0}^{h-y_3} [y_2(h + 1) - h + 1, y_2h + h - y_3]
$$

= $y_3(h^2 + h + 1) + [-h + 1, (h - y_3)h + h - y_3]$
= $[y_3(h^2 + h + 1) - h + 1, y_3h^2 + h^2 + h].$ (4)

Let $y_2 = 0$ and let $1 \le y_3 \le h$ and $0 \le x_2 \le h - y_3$. Note that $h - y_3 \le h - 1$. Because

$$
0 \le x_1 \le h - 1 - x_2
$$
 and $0 \le y_1 \le h - y_3$,

the set β contains the interval

$$
y_3(h^2+h+1) - x_2(h+1) + [-(h-1-x_2), h-y_3]
$$

=
$$
y_3(h^2+h+1) + [-x_2h-h+1, -x_2(h+1)+h-y_3].
$$
 (5)

If

$$
0 \le x_2 \le h - y_3 - 1 \tag{6}
$$

then β also contains the interval

$$
y_3(h^2+h+1) + [-(x_2+1)h-h+1, -(x_2+1)(h+1) + h - y_3]
$$

=
$$
y_3(h^2+h+1) + [-x_2h-2h+1, -x_2(h+1) - y_3 - 1].
$$
 (7)

Inequality [\(6\)](#page-3-1) implies that

$$
-x_2h - h \le -x_2(h+1) - y_3 - 1,
$$

and so intervals (5) and (7) overlap. Therefore, β contains the interval

$$
y_3(h^2 + h + 1) + \bigcup_{x_2=0}^{h-y_3} [-x_2h - h + 1, -x_2(h + 1) + h - y_3]
$$

=
$$
y_3(h^2 + h + 1) + [-(h - y_3)h - h + 1, h - y_3]
$$

=
$$
[y_3(h^2 + 2h + 1) - h^2 - h + 1, y_3(h^2 + h) + h].
$$
 (8)

Intervals [\(4\)](#page-3-4) and [\(8\)](#page-3-5) overlap because $y_3 \leq h \leq 2h$, and so \mathcal{B} contains the interval

$$
I(y_3) = [y_3(h^2 + 2h + 1) - h^2 - h + 1, y_3h^2 + h^2 + h]
$$
\n(9)

for $y_3 \in [1, h]$. These intervals move to the right as y_3 increases. Intervals $(I(y_3)$ and $I(y_3+1)$ overlap if

$$
(y_3 + 1)(h^2 + 2h + 1) - h^2 - h + 1 \le y_3 h^2 + h^2 + h + 1
$$

or, equivalently, if $(2h+1)y_3 \leq h^2 - 1$ or

$$
y_3 \le \left\lfloor \frac{h^2 - 1}{2h + 1} \right\rfloor = \begin{cases} \frac{h-1}{2}, & \text{if } h \text{ is odd}; \\ \frac{h-2}{2}, & \text{if } h \text{ is even}. \end{cases}
$$

For odd $h \geq 3$, the set β contains the interval

$$
\bigcup_{y_3=1}^{(h+1)/2} I(y_3) = \bigcup_{y_3=1}^{(h+1)/2} \left[y_3(h^2 + 2h + 1) - h^2 - h + 1, y_3h^2 + h^2 + h \right]
$$

$$
= \left[h + 2, \left(\frac{h+1}{2} \right) h^2 + h^2 + h \right]
$$

$$
= \left[h + 2, \frac{h^3 + 3h^2 + 2h}{2} \right]. \tag{10}
$$

For even $h \geq 2$, the set β contains the interval

$$
\bigcup_{y_3=1}^{h/2} I(y_3) = [y_3(h^2 + 2h + 1) - h^2 - h + 1, y_3h^2 + h^2 + h]
$$

$$
= \left[h + 2, \left(\frac{h}{2} \right) h^2 + h^2 + h \right]
$$

$$
= \left[h + 2, \frac{h^3 + 2h^2 + 2h}{2} \right]. \tag{11}
$$

For odd $h \geq 3$, let

$$
y_2 = 0,
$$
 $y_3 = \frac{h+3}{2},$ $x_2 = \frac{h+1}{2}.$

The set β contains the interval

$$
y_3(h^2 + h + 1) - x_2(h + 1) + [-(h - 1 - x_2), h - y_3]
$$

= $\left(\frac{h+3}{2}\right)(h^2 + h + 1) - \left(\frac{h+1}{2}\right)(h + 1) + \left[-\frac{h-3}{2}, \frac{h-3}{2}\right]$
= $\left[\frac{h^3 + 3h^2 + h + 5}{2}, \frac{h^3 + 3h^2 + 3h - 1}{2}\right].$ (12)

Intervals (10) and (12) overlap and so β contains the interval

$$
\[h+2, \frac{h^3 + 3h^2 + 3h - 1}{2}\].
$$

It follows that, for odd $h \geq 3$, we have the lower bound

$$
a_4(h) \ge \frac{h^3 + 3h^2 + 3h - 1}{2} + 1 = \frac{h^3 + 3h^2 + 3h + 1}{2}.
$$

For even $h\geq 2,$ let

$$
y_2 = 0,
$$
 $y_3 = \frac{h+2}{2},$ $x_2 = \frac{h}{2}.$

The set β contains the interval

$$
y_3(h^2 + h + 1) - x_2(h + 1) + [-(h - 1 - x_2), h - y_3]
$$

= $\left(\frac{h+2}{2}\right)(h^2 + h + 1) - \left(\frac{h}{2}\right)(h + 1) + \left[-\frac{h-2}{2}, \frac{h-2}{2}\right]$
= $\left[\frac{h^3 + 2h^2 + h + 4}{2}, \frac{h^3 + 2h^2 + 3h}{2}\right].$ (13)

.

 \Box

Intervals (11) and (13) overlap and so β contains the interval

$$
\left[h+2,\frac{h^3+2h^2+3h}{2}\right]
$$

It follows that, for even $h \geq 2$, we have the lower bound

$$
a_4(h) \ge \frac{h^3 + 2h^2 + 3h}{2} + 1 = \frac{h^3 + 2h^2 + 3h + 2}{2}.
$$

This completes the proof of Lemma [2.](#page-2-2)

3 The upper bound for $a_4(h)$

In this section we compute an upper bound for $a_4(h)$.

Lemma 3. *For all positive integers* h *we have*

$$
a_4(h) \le \begin{cases} \frac{1}{2} \left(h^3 + 3h^2 + 3h + 1 \right), & \text{if } h \text{ is odd;} \\ \frac{1}{2} \left(h^3 + 2h^2 + 3h + 2 \right), & \text{if } h \text{ is even.} \end{cases}
$$

Proof. Let

$$
H = \begin{cases} \frac{1}{2}(h^2 + 2h + 1), & \text{if } h \text{ is odd}; \\ \frac{1}{2}(h^2 + h + 2), & \text{if } h \text{ is even}. \end{cases}
$$

We must prove that

$$
a_4(h) \le (h+1)H.
$$

This inequality is equivalent to the statement that there do not exist nonnegative integers x_0, x_1, x_2, x_3 and y_1, y_2, y_3 such that

$$
x_0(h+1)H + x_1 + x_2(h+1) + x_3(h^2 + h + 1)
$$

= $y_1 + y_2(h+1) + y_3(h^2 + h + 1)$ (14)

with

$$
x_0 + x_1 + x_2 + x_3 \le h, \qquad y_1 + y_2 + y_3 \le h \tag{15}
$$

and

$$
x_0 \ge 1, \qquad x_1 y_1 = x_2 y_2 = x_3 y_3 = 0. \tag{16}
$$

Suppose that equation [\(14\)](#page-6-0) has a solution satisfying conditions [\(15\)](#page-6-1) and [\(16\)](#page-6-2). Note that

$$
h^2 + 1 < 2H
$$

If $x_0 \geq 2$, then

$$
(h+1)(h2+1) < 2(h+1)H \le x0(h+1)H
$$

\n
$$
\le y1 + y2(h+1) + y3(h2 + h + 1)
$$

\n
$$
\le h(h2 + h + 1)
$$

\n
$$
< (h+1)(h2 + 1),
$$

which is absurd. Therefore,

 $x_0 = 1.$

If $y_3 = 0$, then

$$
\frac{(h+1)(h^2+1)}{2} < (h+1)H \le y_1 + y_2(h+1) \le h(h+1)
$$

and so $(h-1)^2 < 0$, which is absurd. Therefore,

 $y_3 \ge 1$ and $x_3 = 0$.

With $x_0 = 1$ and $x_3 = 0$, equation [\(14\)](#page-6-0) becomes

$$
x_1 + (H + x_2)(h + 1) = y_1 + y_2(h + 1) + y_3(h^2 + h + 1)
$$

= $y_1 + y_3 + (y_2 + y_3h)(h + 1).$ (17)

We obtain the congruence

$$
x_1 \equiv y_1 + y_3 \pmod{h+1}.
$$

If $x_1 = 0$, then $y_1 + y_3 \equiv 0 \pmod{h+1}$. The inequalities $y_1 \ge 0$ and $y_3 \ge 1$ imply $y_1 + y_3 \geq h + 1$, which contradicts condition [\(15\)](#page-6-1). Therefore,

$$
x_1 \ge 1 \qquad \text{and} \qquad y_1 = 0
$$

and

$$
x_1 \equiv y_3 \pmod{h+1}.
$$

Because $1 \le y_3 \le h$, if $x_1 \ne y_3$, then $x_1 \ge y_3 + h + 1 > h$, which is absurd. Therefore,

 $x_1 = y_3$

and equation [\(17\)](#page-6-3) becomes, simply,

$$
H + x_2 = y_2 + y_3 h,\t\t(18)
$$

where x_2, y_2, y_3 are nonnegative integers such that

$$
x_2 + y_3 \le h - 1
$$
, $y_2 + y_3 \le h$, and $x_2y_2 = 0$.

We consider separately the two cases: h odd and h even.

Let h be odd. If $y_3 \le (h+1)/2$, then equation [\(18\)](#page-7-0) gives

$$
\frac{h^2 + 2h + 1}{2} \le y_2 + y_3 h \le (h - y_3) + y_3 h
$$

$$
= h + y_3 (h - 1) \le h + \frac{h^2 - 1}{2}
$$

$$
= \frac{h^2 + 2h - 1}{2}
$$

which is absurd. It follows that $y_3 > (h+1)/2$ and, because h is odd, that

$$
y_3 \ge \frac{h+3}{2}.
$$

If $y_2 = 0$, then

$$
x_2 = y_3h - H \ge \frac{h^2 + 3h}{2} - \frac{h^2 + 2h + 1}{2} \ge \frac{h - 1}{2},
$$

and so

$$
h + 1 = \frac{h - 1}{2} + \frac{h + 3}{2} \le x_2 + y_3 \le h - 1
$$

which is absurd. Therefore,

$$
y_2 \ge 1 \qquad \text{and} \qquad x_2 = 0.
$$

Equation [\(18\)](#page-7-0) becomes

$$
H = y_2 + y_3 h.
$$

Equivalently,

$$
h2 + 2h + 1 = 2H = 2y2 + 2y3h \ge 2y2 + h2 + 3h,
$$

and so

 $1 \geq 2y_2 + h$,

which is absurd. This completes the proof in the odd case.

Let h be even. If $y_3 \leq h/2$, then equation [\(18\)](#page-7-0) gives

$$
\frac{h^2 + h + 2}{2} \le y_2 + y_3 h \le (h - y_3) + y_3 h
$$

$$
= h + y_3 (h - 1) \le h + \frac{h^2 - h}{2}
$$

$$
= \frac{h^2 + h}{2}
$$

which is absurd. It follows that $y_3 > h/2$ and, because h is even, that

$$
y_3 \ge \frac{h+2}{2}.
$$

If $y_2 = 0$, then

$$
x_2 = y_3h - H \ge \frac{h^2 + 2h}{2} - \frac{h^2 + h + 2}{2} = \frac{h - 2}{2},
$$

and so

$$
h = \frac{h+2}{2} + \frac{h-2}{2} \le y_3 + x_2 \le h - 1,
$$

which is absurd. Therefore,

 $y_2 \ge 1$ and $x_2 = 0$.

Equation [\(18\)](#page-7-0) becomes

$$
H = y_2 + y_3 h
$$

Equivalently,

$$
h2 + h + 2 = 2H = 2y2 + 2y3h \ge 2y2 + h2 + 2h,
$$

and so

$$
2 \ge 2y_2 + h,
$$

which is absurd. This completes the proof in the even case.

Now Theorem [1,](#page-1-0) the exact formula for $a_4(h)$, follows immediately from Lemmas [2](#page-2-2) and [3.](#page-5-1)

 \Box

References

- [1] R. K. Guy, *Unsolved Problems in Number Theory*, 3rd edition, Springer, 2004.
- [2] A. M. Mian and S. Chowla, On the B2-sequences of Sidon, *Proc. Nat. Acad. Sci. India Sect. A* 14 (1944), 3–4.
- [3] M. B. Nathanson, The third positive element in the greedy B_h -set, to appear in *Palest. J. Math.*, Available at <http://arxiv.org/abs/2310.14426>.
- [4] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2024. Available at <https://oeis.org>.

2020 *Mathematics Subject Classification*: Primary 11B13; Secondary 11B34, 11B75, 11P99. *Keywords:* Sidon set, Bh-set, greedy algorithm.

(Concerned with sequences $\underline{\text{A000012}}$, $\underline{\text{A001477}}$, $\underline{\text{A002061}}$, $\underline{\text{A005282}}$, $\underline{\text{A020725}}$, $\underline{\text{A051912}}$, $\underline{\text{A347570}}$, [A365300,](https://oeis.org/A365300) [A365301,](https://oeis.org/A365301) [A365302,](https://oeis.org/A365302) [A365303,](https://oeis.org/A365303) [A365304,](https://oeis.org/A365304) [A365305,](https://oeis.org/A365305) [A365515,](https://oeis.org/A365515) [A369817,](https://oeis.org/A369817) [A369818,](https://oeis.org/A369818) and [A369819.](https://oeis.org/A369819))

Received March 11 2024; revised version received August 28 2024. Published in *Journal of Integer Sequences*, August 28 2024.

Return to [Journal of Integer Sequences home page.](https://cs.uwaterloo.ca/journals/JIS/)