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Abstract

A subset A of a commutative semigroup X is called a Bh-set in X if the only
solutions to

a1 + · · ·+ ah = b1 + · · ·+ bh, ai, bi ∈ A

are the trivial solutions {a1, . . . , ah} = {b1, . . . , bh} (as multisets). With h = 2 and
X = Z, these sets are also known as Sidon sets, Golomb rulers, and Babcock sets. In
this work, we generalize constructions of Bose-Chowla and Singer and give the resultant
bounds on the diameter of a k element Bh-set in Z for h = 3, k ≤ 28 and h = 4, k ≤ 16.
We conclude with a list of open problems.

1 Introduction

A subset A of a commutative semigroup X is called a Bh-set in X if the only solutions to

a1 + · · ·+ ah = b1 + · · ·+ bh, ai, bi ∈ A

are the trivial solutions {a1, . . . , ah} = {b1, . . . , bh} (as multisets). With h = 2 and X = Z,
these sets are also known as Sidon sets, Golomb rulers, and Babcock sets. For an extensive
bibliography of related mathematics literature we direct the reader to [14]. The purpose of
this work is to give new parameterized constructions of Bh-sets for h ≥ 3, and to give criteria
on the parameters for these sets to be affinely inequivalent.
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One application of Bh-sets in Z is in electrical engineering; this literature starts in Bab-
cock [1] and continues for dozens of articles in IEEE journals not covered by Math Sci-Net.
Specifically, a nonlinear amplifier for channel frequencies a1, a2, a3, . . . produces “ghost” sig-
nals at frequencies of the form a1+a2, a1+a2−a3, and so on. The strongest relevant ghosts
are at a1+ a2− a3 (third-order intermodulation) and a1+ a2+ a3− a4− a5 (fifth-order inter-
modulation). Thus, the set of frequencies should avoid equations of the sort a4 = a1+a2−a3
and a6 = a1 + a2 + a3 − a4 − a5. That is, to avoid third-order intermodulation, the channels
should form a B2-set, and to avoid fifth-order intermodulation, the channels should be a
B3-set.

The first published usage of the “Bh” terminology that we have found is in the intro-
duction of the famous Erdős & Turán paper [8], where they state “Such sequences, called
B2 sequences by Sidon, occur in the theory of Fourier series.” Singer [17] had already con-
structed thick finite Bh-sets in 1939, and Bose gave a different thick finite construction of
B2-sets in [3], which was generalized to Bh-sets by Bose & Chowla in [4]. The constructions
given in this work subsume those of Singer and Bose & Chowla.

Definition 1. For an integer h ≥ 2 and a prime power q, set M = qh − 1. For a generator
θ of the multiplicative group F

×

qh
, and b ∈ Z/(qh − 1)Z for which θb has algebraic degree h

over Fq, we define the set

BoseChh(q, b) :=
{

a ∈ Z/MZ : θa = θb + v, v ∈ Fq

}

.

Definition 2. For an integer h ≥ 2, a prime power q, set M = qh+1
−1

q−1
. For a generator θ of

the multiplicative group F
×

qh+1 , and b ∈ Z/MZ for which θb has algebraic degree h + 1, we
define the set

Singerh(q, b) :=
{

a ∈ Z/MZ : θa = uθb + v, u, v ∈ Fq

}

.

We comment that it may seem that the modulus should be qh+1 − 1. However, for any a
with θa = uθb + v, one also has θa+(qh+1

−1)/(q−1) = u1θ
b + v1, where u1, v1 are in Fq because

all of u, v, θ(q
h+1

−1)/(q−1) are in Fq.

A cautious reader will object that the choice of the generator impacts the right side of
these definitions, and so should be included in the notationBoseChh(q, b) and Singerh(q, b).
While the choice of θ does matter, we will eventually show that it does not matter in a mean-
ingful way. To avoid this technicality, we set θ in the above definitions to be a root of the
Conway polynomial [11] that generates the appropriate field. The only facts about Conway
polynomials that we will use is that for each prime power q = pe, the Conway polynomial
Cp,e(x) ∈ Fp[x] is uniquely defined, irreducible, and

Fp[x]/Cp,e(x) ∼= Fq, 〈θ〉 = F
×

q .

There are additional properties that make Conway polynomials a computationally pleasant
approach to working in finite fields, particularly concerning subfields, and Luebeck [12] has
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provided an extensive database. The specific presentation of the finite fields is not relevant
to the theory in this work, and is only useful if one wants to compare explicit computations.

The b = 1 cases of the following theorem are exactly the constructions of Bose-Chowla
and Singer. The first sentence of Theorem 3 is Observation #1 in [9].

Theorem 3. If h, q, b are in the domain of BoseCh, then BoseChh(q, b) is a Bh set in
Z/(qh − 1)Z with q distinct elements.

If h, q, b are in the domain of Singer, then Singerh(q, b) is a Bh set in Z/( q
h+1

−1
q−1

Z)
with q + 1 distinct elements.

We say that sets A1,A2 ∈ Z/MZ are affinely equivalent, writing A1 ∼ A2, if there is
some d relatively prime to M and some s with A2 = {da + s : a ∈ A1}. Clearly, if A1 is
a Bh set in Z/MZ and A1 ∼ A2, then A2 is also a Bh set in Z/MZ. We use the notation
d ∗ A := {da : a ∈ A} and A + s := {a + s : a ∈ A} to denote dilations and translations of
sets.

We identify when the Bh-sets given in Theorem 3 are affinely equivalent in the following
theorem.

Theorem 4. Suppose that h, q = pr, b and h, q, e are in the domain of BoseCh. If

(i) b ≡ e (mod qh−1
q−1

), or

(ii) θb − θe ∈ Fq, or
(iii) b ≡ pie (mod qh − 1) for some integer i,

then BoseChh(q, b) ∼ BoseChh(q, e).
Suppose that h, q, b and h, q, e are in the domain of Singer. If

(iv) b ≡ e (mod qh+1
−1

q−1
), or

(v) b ≡ pie (mod qh+1 − 1) for some integer i, where p is the prime that divides q,
or
(vi) θb − θe ∈ Fq, or
(vii) rθb + tθe+b + wθe ∈ Fq for some r, t, w ∈ Fq, and r, t are not both 0,

then Singerh(q, b) ∼ Singerh(q, e).

One sad consequence is that for h = 2 and any allowed q, b, e, we have BoseCh2(q, b) ∼
BoseCh2(q, e). That is, we do not produce any new (up to affine equivalence) Sidon sets.
However, BoseCh3(5, 1) 6∼ BoseCh3(5, 4) and for h > 2 and most (but not all) prime
powers q we generate previously unknown Bh-sets.

In the number theory literature, the thickness of a Bh-set A is sometimes measured by
a lower bound on the cardinality |A| in terms of the diameter maxA − minA, while in
recreational, computational, and engineering literature it is more common to see an upper
bound on the diameter in terms of cardinality. To serve all audiences, we define both Rh(n)
as the maximum possible cardinality of a Bh-set contained in [1, n], and R−1

h (k) be the
smallest n such that there is a Bh-set with k elements contained in [1, n].

Sequence A227358 from the On-Line Encyclopedia of Integer Sequences (OEIS) gives the
minimum diameter of B3-sets with up to 10 elements. We are not aware of any such compu-
tation for h > 3. As comparison, we have also computed the smallest diameters achievable
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by any subset of any shift of dilations of BoseCh3(q, b), BoseCh4(q, b), Singer3(q, b), and
Singer4(q, b) for all b and small q (projected from Z/MZ to Z in the obvious way). In
my opinion, this data suggests that the BoseCh and Singer constructions are not close to
optimal for h > 2, in contrast to the apparent situation for h = 2.

The lower bound on Rh(n) and upper bound on R−1
h (k) implied by our constructions

is not better than that achieved by Singer’s construction alone. Nevertheless, we give sev-
eral statements using up-to-date results on the distribution of primes, as these results are
frequently misstated in the literature.

Theorem 5.

(a) For all n ∈ Z, we have Rh(n) ≥ n1/h − 244n154/(155h) and R−1
h (k) ≤ kh + 3155hkh−1/155.

(b) If k, n ≥ ee
34

, we have Rh(n) ≥ n1/h − 7n2/(3h) and R−1
h (k) ≤ kh + (3k)h−1/3.

(c) If k, n are sufficiently large, then Rh(n) ≥ n1/h−n21/(40h) and R−1
h (k) ≤ kh+2hkh−19/40.

(d) If the Riemann Hypothesis holds, then

R−1
h (k) < kh + log(20k)kh−1/2 + 2kh−1 log2h(20k), Rh(n) ≥ n1/h − (7 + logn

h
)n1/(2h).

2 Two explicit examples

2.1 A BoseCh example.

Let h = 3 and q = 11; we first compute the various BoseCh3(11, b), and will then give
Singer3(11, b).

The Conway polynomial for 113 is C11,3(x) = 9 + 2x + x3 ∈ F11[x]. We have Fq3
∼=

Fq[x]/C11,3(x), and θ (whose minimal polynomial is C11,3(x)) generates the multiplicative
group.

Our first task is to find a suitably small set of candidates for b. From Theorem 4(i),

we only need to consider values between 1 and qh−1
q−1

= 133, inclusive. As the Fq3 has only

Fq as a subfield, only b = 133 has θb having algebraic degree less than 3. Further, by
Theorem 4(ii) each b is equivalent to 11b and 112b. These equivalences combine to give
additional equivalences, e.g., BoseCh3(11, 3) ∼ BoseCh3(11, 11

2 · 3) ∼ BoseCh3(11, 97).
The second condition given in Theorem 4 is much harder to use, as it requires arithmetic
inside the field. For instance,

θ21 − θ1 = (θ3)7 − θ = (−9− 2θ)7 − θ = 27(1− θ)7 − θ = · · · = 3 ∈ F11,

and so BoseCh3(11, 1) ∼ BoseCh3(11, 21). With some computerized labor, we find that
each b value is equivalent to one of 1, 2, 4, 6. We have used the Conway polynomial
representation, but any finite field representation will lead to four equivalence classes for b,
but not necessarily these as the smallest representatives of each class.
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We then compute inside the field using Definition 1 that

BoseCh3(11, 1) = {1, 21, 65, 100, 111, 238, 324, 523, 535, 1137, 1214},

BoseCh3(11, 2) = {2, 16, 132, 237, 330, 338, 389, 419, 764, 1174, 1254},

BoseCh3(11, 4) = {4, 56, 116, 174, 354, 626, 782, 905, 979, 1147, 1183}, and

BoseCh3(11, 6) = {6, 152, 261, 295, 311, 352, 367, 891, 1092, 1113, 1228}.

By Theorem 3, these four sets are B3-sets in Z/1330Z, and by direct computation we can
verify that no two are affinely equivalent. We are not aware of any affine equivalences that
are not dictated by Theorem 4.

By directly examining all sets affinely equivalent to these, we notice that

167 ∗BoseCh3(11, 6) + 330 = {1, 2, 27, 167, 385, 397, 439, 444, 484, 586, 594}

has a particularly small diameter. Consequently R3(594) ≥ 11 and R−1
3 (11) ≤ 594.

2.2 A Singer example.

We now compute Singer3(11, b). The Conway polynomial for 114 is C11,4(x) = 2 + 10x +
8x2 + x4 ∈ F11[x].

Our first task is find a suitably small set of candidates for b. From Theorem 4(iv), we only

need to consider values between 1 and qh+1
−1

q−1
= 1464. We require θb to have algebraic degree

h+1 = 4, and that reduces the number of b values to 1452. Including Theorem 4(v) reduces
the number of possible inequivalent b values to 366. Theorem 4(vi) is significantly more
computationally intensive, but reduces the number of inequivalent to b values to at most 36.
Using Theorem 4(vii) is much more time-consuming. With the additional assumptions that
r = 0, t = 1, we find that each b is equivalent to one of 1, 2, 3, 6, 8 or 14. We have the
B3-sets in Z/1464Z:

Singer3(11, 1) = {1, 418, 502, 679, 846, 1050, 1164, 1187, 1285, 1319, 1339, 1464}

Singer3(11, 2) = {2, 273, 377, 432, 500, 665, 674, 887, 908, 1192, 1257, 1464}

Singer3(11, 3) = {3, 201, 309, 425, 664, 700, 876, 1061, 1105, 1239, 1357, 1464}

Singer3(11, 6) = {6, 76, 388, 593, 702, 734, 950, 1147, 1208, 1440, 1457, 1464}

Singer3(11, 8) = {8, 128, 582, 624, 739, 774, 841, 922, 1143, 1311, 1369, 1464}

Singer3(11, 14) = {14, 40, 85, 492, 529, 621, 683, 722, 940, 969, 1151, 1464}

By direct computation, no two of these are affinely equivalent. We are not aware of any
affine equivalences that are not dictated by Theorem 4.

We further find, after some computation, that

481 ∗ Singer3(11, 1) + 102 = {1, 4, 36, 72, 89, 102, 229, 379, 583, 592, 629, 738}.
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Thus, R3(738) ≥ 12 and R−1
3 (12) ≤ 738. Moreover,

653 ∗ Singer3(11, 2) + 564 = {1, 22, 31, 81, 92, 108, 225, 406, 564, 568, 592, 793}.

Thus, dropping the last element, we find that R3(592) ≥ 11 and R−1
3 (11) ≤ 592. This is

slightly better than the bound from BoseChh(11, b) sets.

3 Generalized Bose-Chowla sets

Fix an integer h ≥ 2 and a prime power q, and set M := qh − 1. Let τ be a multiplicative
generator of F×

qh
(not necessarily in line with the Conway polynomial). Take β ∈ Fqh with

algebraic degree h. We define Sh as follows:

Sh(τ, β) := {a ∈ Z/MZ : τa = β + v, v ∈ Fq} .

Further, let α1, α2, . . . , αh be a basis for Fqh over Fq as a vector space, with α1 = 1 and
α2 = β.

As 1, β, . . . , αh is a basis, each x′ ∈ Fq corresponds to a distinct x ∈ Z/MZ by the

equation θx = 1 · x′ + 1 · β +
∑h

i=3 0 · αi, so that Sh(τ, β) has exactly q elements.
Consider k ∈ Z/MZ, and suppose that a1, . . . , ah, b1, . . . , bh ∈ Sh(τ, β) satisfy

k = a1 + · · ·+ ah ≡ b1 + · · ·+ bh (mod M).

As τ has multiplicative order qh − 1 = M , we have

τ k = τa1+···+ah =
h
∏

i=1

τai =
h
∏

i=1

(β + a′i)

for some a′i ∈ Fq. In the same manner,

τ k =
h
∏

i=1

(β + b′i).

Now define polynomials f, g ∈ Fq[x] by

f(x) =
h
∏

i=1

(x+ a′i), g(x) =
h
∏

i=1

(x+ b′i).

Then β (which has algebraic degree h) is a root of f(x) − g(x) (which has degree at most
h − 1), from which we learn that f(x) − g(x) is identically 0, i.e., f(x) = g(x). We have
unique factorization over finite fields, so that

{a′1, . . . , a
′

h} = {b′1, . . . , b
′

h}
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as multisets. As noted above, that α1, . . . , αh is a basis implies that a′i, b
′

i ∈ Fq uniquely
define ai, bi in Z/MZ, and consequently

{a1, . . . , ah} = {b1, . . . , bh}

as multisets. That is, Sh(τ, β) is a Bh-set in Z/MZ.
We can take τ to be θ, the generator provided in the Conway polynomial representation

of Fqh , and note that β = θb for some b ∈ Z/MZ, so that Sh(τ, β) = BoseChh(θ, b). We
have proven the claims in Theorem 3 concerning BoseChh(q, b) sets.

Before proceeding into the proof of Theorem 4 as it pertains to BoseCh sets, we spend a
few words noting some tempting generalizations that aren’t really meaningful generalizations.
First, fix any basis α1, . . . , αh of Fqh over Fq, and any constants c1, . . . , ch−1 ∈ Fq, not all 0
and with (c1α1 + · · ·+ ch−1αh−1)α

−1
h having degree h. Then the set

{a ∈ Z/MZ : τa = c1α1 + · · ·+ ch−1αh−1 + vαh, v ∈ Fq}

is a Bh-set with q elements. By details we spare the reader, each such set is affinely equivalent
to BoseChh(q, b) for some integer b. Second, we note that if τ is also a generator of the
multiplicative group of Fqh , then Sh(τ, β) ∼ Sh(θ, β). Specifically, τ = θt for some t, and
since τ is a generator, gcd(t,M) = 1; let t−1 be the inverse of t modulo m. Then

Sh(τ, β) := {a ∈ Z/MZ : τa = β + v, v ∈ Fq}

= {a ∈ Z/MZ : θta = β + v, v ∈ Fq} = t−1 ∗ Sh(θ, β).

We now turn to the task of determining when

BoseChh(q, b) ∼ BoseChh(q, e).

First, suppose that b ≡ e (mod qh−1
q−1

). Then for some integer x we have b = e + x qh−1
q−1

and θb = θeθx(q
h
−1)/(q−1) = wθe, and w = (θ(q

h
−1)/(q−1))x ∈ Fq because θ(q

h
−1)/(q−1) is in Fq.

We have

BoseChh(q, b) :=
{

a ∈ Z/MZ : θa = θb + v, v ∈ Fq

}

= {a ∈ Z/MZ : θa = wθe + v, v ∈ Fq}

=
{

a ∈ Z/MZ : θa−x(qh−1)/(q−1) = θe + vw−1, v ∈ Fq

}

= x qh−1
q−1

+ {a ∈ Z/MZ : θa = θe + v, v ∈ Fq}

= x qh−1
q−1

+BoseChh(q, e).

Thus, BoseChh(q, b) ∼ BoseChh(q, e).
Now, suppose that pb ≡ e (mod M), where p is the characteristic of the field Fqh . The

map u 7→ up, the Frobenius automorphism, is a bijection and satisfies (u+ v)p = up + vp for
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any u, v ∈ Fqh . We have

BoseChh(q, b) :=
{

a ∈ Z/MZ : θa = θb + v, v ∈ Fq

}

=
{

a ∈ Z/MZ : (θa)p = (θb + v)p, v ∈ Fq

}

=
{

a ∈ Z/MZ : θap = θpb + vp, v ∈ Fq

}

= p−1 ∗ {a ∈ Z/MZ : θap = θe + v, v ∈ Fq}

= p−1 ∗BoseChh(q, e).

It follows that if b ≡ pie (mod M) for any i, then BoseChh(q, b) ∼ BoseChh(q, e).
Now suppose that w := θe − θb ∈ Fq. Then

BoseChh(q, b) :=
{

a ∈ Z/MZ : θa = θb + v, v ∈ Fq

}

= {a ∈ Z/MZ : θa = θe − w + v, v ∈ Fq}

= BoseChh(q, e).

Thus, Sh(q, θ, θ
b) ∼ Sh(q, θ, θ

e).
This concludes the proof of all of the claims regarding BoseCh sets made in Theorems 3

and 4.

4 Generalized Singer sets

Fix an integer h ≥ 2 and a prime power q, and set M := (qh+1 − 1)/(q − 1). Let τ be a
multiplicative generator F×

qh+1 . Suppose further that β has algebraic degree h+1. We define
Sh as follows:

Sh(τ, β) := {a ∈ Z/MZ : τa = uβ + v, u, v ∈ Fq} .

Further, let α1, α2, . . . , αh be a basis for Fqh over Fq as a vector space, with α1 = 1 and
α2 = β. Note that τM ∈ Fq, as is τ

kM for any integer k.
We first argue that Sh(τ, β) has q+1 distinct elements. As 1, β, α3, . . . , αh is a basis, for

each u, v ∈ Fq, not both 0, there is a unique a in [1, qh+1 − 1] with τa = u + vβ. That is,
there are q2 − 1 such a. For each particular a, there is also a solution (with different u, v)
with a+ kM for any integer k, as

τa+kM = τ kM
(

uβ + v
)

= (wu)β + (wv),

where w = τ kM ∈ Fq, and so wu,wv ∈ Fq. Thus, the q2 − 1 solutions with 1 ≤ a ≤ qh+1 − 1
fall into congruence classes modulo M . Each congruence class modulo M has q− 1 elements
in 1 ≤ a ≤ qh+1 − 1, so that Sh(τ, β) consists of (q

2 − 1)/(q − 1) = q + 1 distinct elements.
We now prove that Sh(τ, β) is a Bh-set in Z/MZ. Define functions u, v : Sh(τ, β) → Fq

by
τ k = u(k)β + v(k).

8



Note that u(M) = 0 since τM ∈ Fq. Clearly the pair (u(k), v(k)) uniquely determines
k ∈ Sh(τ, β). But more surprisingly, the value −v(k)u(k)−1 (possibly undefined) uniquely
determines k ∈ Sh(τ, β), as we now explain. Suppose −v(k)u(k)−1 is undefined, whence
u(k) = 0. Then τ k = v(k) ∈ Fq, so that k ≡ 0 (mod M). Since Sh(τ, β) ⊆ Z/M/ZZ,
we must have k = M . Otherwise, w := −v(k)u(k)−1 is defined, whence wu(k) = v(k).
This means that τ k = u(k)β + wu(k). We know β and w, and therefore know the value
y ∈ [1, qh+1 − 1] with τ y = β + w. Since u(k) ∈ Fq, we have y ≡ k (mod M), whence there
is a unique candidate for k in [1,M ].

Now suppose that

a1 + · · ·+ ah ≡ b1 + · · ·+ bh (mod M), (1)

with ai, bi ∈ Sh(τ, β), and we must show that

{a1, . . . , ah} = {b1, . . . , bh} (2)

as multisets. From line (1), there is an integer x with

a1 + · · ·+ ah = kM + b1 + · · ·+ bh.

Let w = τ kM ∈ Fq. We then have, using that ai, bi ∈ Sh(τ, β),

h
∏

i=1

(

u(ai)β + v(ai)
)

=
h
∏

i=1

τai

= τ
∑

h

i=1
ai

= τxM+
∑

h

i=1
bi

= w
h
∏

i=1

τ bi

= w

h
∏

i=1

(

u(bi)β + v(bi)
)

.

We define the polynomials (each with degree at most h) in Fq[x]

f(x) :=
h
∏

i=1

(

u(ai)x+ v(ai)
)

, g(x) :=
h
∏

i=1

(

u(bi)x+ v(bi)
)

.

Then β, which by hypothesis has degree h + 1, is a root of the polynomial f(x) − wg(x),
which has degree at most h. Thus f(x) = wg(x), and f, g must have the same roots in the
same multiplicities. That is, the multisets are equal

{

−v(ai)u(ai)
−1 : 1 ≤ i ≤ h

}

=
{

−v(bi)u(bi)
−1 : 1 ≤ i ≤ h

}

,
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including the number of occurrences of undefined elements. As noted above, the value of
−v(ai)u(ai)

−1 uniquely determines ai, so that the multiset equality

{a1, . . . , ah} = {b1, . . . , bh}

holds.
We can take τ to be θ, the generator provided in the Conway polynomial representation,

and we can locate b ∈ Z/MZ so that β = θb, and then Sh(τ, β) = Singerh(θ, b). We have
proven the claims in Theorem 3 concerning Singerh(q, b) sets.

Before proceeding into the proof of Theorem 4 as it pertains to Singer sets, we note that
as with BoseCh sets, neither the completion of 1, β into a basis (which we do not elaborate
upon) nor the particular choice of generator actually matters, up to affine equivalence, which
we now elaborate. Suppose τ = θk, β = θb. Then

Sh(τ, β) := {a ∈ Z/MZ : τa = uβ + v, u, v ∈ Fq}

=
{

a ∈ Z/MZ : θka = uθb + v, u, v ∈ Fq

}

= k−1 ∗ Singerh(q, b).

Thus, we have lost nothing by defining Singerh(q, b) with respect to a specific generator.
Now suppose that b ≡ e (mod M), whence b = e+ kM for some integer k and

θb = θeθkM = wθe

for some 0 6= w ∈ Fq. We have

Singerh(q, b) :=
{

a ∈ Z/MZ : θa = uθb + v, u, v ∈ Fq

}

= {a ∈ Z/MZ : θa = uwθe + v, u, v ∈ Fq} = Singerh(q, e).

Recall that the Frobenius automorphism u 7→ up, where p is the characteristic of Fqh

fixes each element of Fq, and satisfies the “children’s binomial theorem”: (u+ v)p = up + vp

for all u, v ∈ Fqh . Suppose that e ≡ pb (mod M). Then

Singerh(q, b) :=
{

a ∈ Z/MZ : θa = uθb + v, u, v ∈ Fq

}

=
{

a ∈ Z/MZ : θap = upθbp + vp, u, v ∈ Fq

}

=
{

a ∈ Z/MZ : θap = uθbp + v, u, v ∈ Fq

}

= p−1 ∗ Singerh(q, bp).

It follows that if b ≡ pie (mod qh+1−1) for some integer i, then Singerh(q, b) ∼ Singerh(q, e).
While Theorem 4(vi) is a special case of Theorem 4(vii), we provide a separate proof of

the easier (vi) as it is independently useful in computations. Suppose that w := θe−θb ∈ Fq.
Then

Singerh(q, b) :=
{

a ∈ Z/MZ : θa = uθb + v, u, v ∈ Fq

}

= {a ∈ Z/MZ : θa = u(θe − w) + v, u, v ∈ Fq}

= {a ∈ Z/MZ : θa = uθe + v − uw, u, v ∈ Fq}

= Singerh(q, e).
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We now address Theorem 4(vii). Suppose that r, t, w, s ∈ Fq, and at least one of r, t is
nonzero, and

rθb + tθe+b + wθe = s.

Then (r + tθe)θb = s− wθe. Since 1, θe are linearly independent over Fq and at least one of
r, t is nonzero, we know that r + tθe is nonzero, say θk = r + tθe. We have

Singerh(q, b) :=
{

a ∈ Z/MZ : θa = uθb + v, u, v ∈ Fq

}

=
{

a ∈ Z/MZ : θkθa = (r + tθe)(uθb + v), u, v ∈ Fq

}

=
{

a ∈ Z/MZ : θkθa = rv + u(r + tθe)θb + vtθe, u, v ∈ Fq

}

=
{

a ∈ Z/MZ : θkθa = rv + u(s− wθe) + vtθe, u, v ∈ Fq

}

=
{

a ∈ Z/MZ : θkθa = rv + us+ (vt− uw)θe, u, v ∈ Fq

}

= −k + {a ∈ Z/MZ : θa = u′θe + v′, u′, v′ ∈ Fq} .

= −k + Singerh(q, e).

The equality of the last line relies upon the nonsingularness of the equations u′ = rv+us, v′ =
rt− uw, which follows from θb being outside Fq and the equation (r + tθe)θb = s− wθe

This concludes the proof of all of the claims regarding Singer sets made in Theorems 3
and 4.

5 Lower bounds on Rh(n) and upper bounds on R−1
h (k)

Computing R−1
2 (k) is an old game already [18]. Babcock [1] computed by hand for k ≤

10 (his value of R−1
2 (10) is incorrect). More recently, the OGR Project [6] has computed

R−1
2 (28) = 585; the computation took 8.5 years on thousands of machines. We refer the

reader to the Wikipedia page for Golomb rulers [19] for R−1
2 (k) for k ≤ 28 and for the sets

that are optimal.
Another massive computation for R−1

2 (k) was carried out by Dogon & Rokicki [16]. With
several clever optimizations, they computed the bound achieved by all subsets of all sets
affinely equivalent to BoseCh2(q, 1) and Singer2(q, 1) for all q ≤ 40 000. In this section,
we report on a similar computation, much smaller in scale, for h = 3 and h = 4.

The asymptotic growth of Rh(n) (respectively, R
−1
h (k)) is not known for h > 2. The best

lower bounds on Rh(n) (upper bounds on R−1
h (k)) arise from the construction of Singer [17].

Our generalization produces many more such sets, but they are of roughly the same size.
Nevertheless, we feel it would be a contribution to the literature to record the resulting
bounds under several hypotheses.

Clearly, R−1
h (1) = 1, R−1

h (2) = 2, and R−1
h (3) = max{1, 2, h + 2} = h + 2. We therefore

restrict our attention to k ≥ 4 and n ≥ h+ 3.
By “Bose Bh-set”, we mean any affine image of BoseChh(q, θ, b) for any q, θ, b in the

domain of BoseChh. By “Singer Bh-set”, we mean any affine image of Singerh(q, b) for
any q, θ, b in the domain of Singerh.
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While Singer Bh-sets are slightly thicker than Bose Bh-sets, it is easier to work with Bose
sets. First, if q is a prime power, then BoseChh(q, 1) is a set with q elements modulo qh−1.
Thus, Rh(q

h − 1) ≥ q and R−1
h (q) ≤ qh − 1. Consequently, if k ≤ q then R−1

h (k) ≤ R−1
h (q) <

qh. The difficulty is now reduced to locating a prime power greater than k, but not too much
greater.

We will state results that work for every k, for k > k0 with explicit k0, and for k
sufficiently large assuming the Riemann Hypothesis. The bounds are either impracticably
bad for small k, or only apply for impracticably large k, or use an impracticably difficult
hypothesis. Except for h = 2, we do not believe that the main terms reported below even
have the “correct” coefficient. We start with the most explicit unconditional result.

Theorem 6 (Cully-Hugill [5]). For all integers n ≥ 1, there is a prime between n155 and
(n+ 1)155.

It follows that there is a prime between ⌈k1/155⌉155 and ⌈k1/155 + 1⌉155. As

⌈k1/155 + 1⌉155h < (k1/155 + 2)155h < kh + 3155hkh−1/155,

we have the statement in the theorem below for R−1
h (k). Assuming that

k155 < q < (k + 1)155 < n1/h ≤ (k + 2)155

and using the straightforward k155 > (k + 2)155 − 244(k + 1)154 yields the Rh(n) result.

Theorem 7. For all k ≥ 4 and n ≥ h + 3 ≥ 5, we have R−1
h (k) < kh + 3155hkh−1/155 and

Rh(n) ≥ n1/h − 244n154/(155h).

For large k, we can do somewhat better.

Theorem 8 (Cully-Hugill [5]). For all integers n > exp(exp(32.537)), there is a prime
between n3 and (n+ 1)3.

Hence:

Theorem 9. For all k > ee
34

, we have R−1
h (k) < kh+(3k)h−1/3 and Rh(n) > n1/h−7n2/(3h).

The following famed result [2] is beautifully straightforward to use.

Theorem 10 (Baker & Harman & Pintz [2]). If x is sufficiently large, then there is a prime
in the interval [x− x21/40, n], and in the interval [x, x+ x21/40].

This leads to:

Theorem 11. If k, n are sufficiently large, then R−1
h (k) < kh + 2hkh−19/40 and Rh(n) ≥

n1/h − n21/(40h).

Assuming the Riemann Hypothesis, we naturally have stronger results. The best result
along these lines of which this author is aware follows [7].

12



Theorem 12 (Dudek & Grenié & Löıc [7]). Assuming the Riemann Hypothesis, for all
n ≥ 2, there is a prime between n2 and (n+ (1 + 1

logn
)2 log n)2.

This leads directly to the following.

Theorem 13. Assume the Riemann Hypothesis, and that k ≥ 4, n ≥ h+ 3. Then

R−1
h (k) < kh + log(20k)kh−1/2 + 2kh−1 log2h(20k), Rh(n) ≥ n1/h − (7 + logn

h
)n1/(2h).

6 Explicit computations

For k ≤ 9, we computed the minimum-diameter B3-sets in Z by brute force. This allowed us
to find the sequence in the OEIS (A227358), where R−1

3 (10) is also reported. These results
are shown in Table 1.

k R−1
3 (k) witness

1 1 {0}
2 2 {0, 1}
3 5 {0, 1, 4}
4 12 {0, 1, 7, 11}, {0, 1, 8, 11}
5 24 {0, 1, 15, 18, 23}, {0, 1, 15, 20, 23}
6 46 {0, 2, 11, 26, 42, 45}
7 83 {0, 1, 7, 50, 59, 78, 82}, {0, 2, 23, 45, 72, 79, 82}

{0, 4, 23, 32, 75, 76, 82}
8 130 {0, 2, 5, 34, 74, 107, 120, 129}
9 209 {0, 1, 17, 26, 127, 138, 185, 204, 208}

{0, 1, 18, 76, 83, 162, 188, 193, 208}
10 310

Table 1: A227358, computations by John Tromo, sets and k ≤ 9 independently computed
by the author.

We have computed all translations of all dilations of all subsets of the Singer and Bose
B3-sets generated with small q and any b. These results are shown in Table 2. The same
computation was performed for B4-sets, and those results are given in Table 3.
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k R−1
3 (k) from Greedy from BoseCh with q from Singer with q

1 1 1 1 2 1 2
2 2 2 2 2 2 2
3 5 5 5 4 5 2
4 12 14 12 5 14 3
5 24 33 33 5 28 4
6 46 72 73 11 57 5
7 83 125 122 7 121 7
8 130 219 202 8 157 7
9 209 376 306 9 258 8
10 310 573 493 11 365 9
11 745 594 11 592 11
12 1209 894 13 738 11
13 1557 1044 13 1014 13
14 2442 1612 17 1236 13
15 3098 1874 17 1877 16
16 4048 2247 16 2071 16
17 5298 2537 17 2392 16
18 6704 3433 19 2960 17
19 7839 3821 19 3679 19
20 10987 5578 23 4326 19
21 12332 6060 23 5849 23
22 15465 6212 23 6476 23
23 19144 6997 23 7229 23
24 24546 8846 25 8010 23
25 28974 9624 25 8854 25
26 34406 11447 27 10177 25
27 37769 12088 27 12143 27
28 45864 14272 29 13432 27
29 50877 15544 29
30 61372 17999 31

Table 2: The upper bounds on R−1
3 that arise from Singer and Bose B3-sets, and also the

greedy B3-set (A096772).
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k R−1
4 (k) from Greedy from BoseCh with q from Singer with q

1 1 1 1 2 1 2
2 2 2 2 2 2 2
3 6 6 6 3 6 2
4 16 22 26 5 18 3
5 42 56 89 5 71 5
6 101 154 212 7 156 5
7 369 404 7 388 7
8 857 959 8 693 7
9 1425 1731 11 1290 9
10 2604 2878 11 2345 9
11 4968 4469 11 4053 11
12 8195 7967 13 5174 11
13 13664 9903 13 9328 13
14 22433 15907 16 11348 13
15 28170 20849 16
16 47689 25397 16
17 65546 35282 17
18 96616 45783 19
19 146249 58033 19

Table 3: The upper bounds on R−1
4 that arise from Singer and Bose B4-sets, and the greedy

B4-set (A365300).

7 Open questions

The following questions are interesting to the author, who does not know of solutions.

1. The greedy B2-set is called the Mian-Chowla sequence [13], and the first terms were
computed in the 1940s. I’m not aware of any computation of the greedy Bh sequence
for h > 2. I have added these sequences to the OEIS for 4 ≤ h ≤ 9 (sequences A365300
through A365305).

2. The conditions in Theorem 4 are necessary for BoseChh(q, e) ∼ BoseChh(q, b); are
they sufficient? Also, for Singer sets.

3. Is there a faster way to interpret Theorem 4(ii)? Theorem 4(vii) is particularly time
consuming, can one assume without loss of generality that r = 0 and t = 1?

4. Does BoseCh2(q, 1) always have two elements whose difference is relatively prime to
q2− 1? Equivalently, is there an affine image of BoseCh2(q, θ, 1) that contains {1, 2}?
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Is there any m, s, q with

{0, 1, 4, 10, 18, 23, 25} ⊆ m ∗BoseCh2(q, 1) + s (mod q2 − 1)?

Halberstam & Laxton [10] considered them for which there is an s withBoseCh2(q, 1) =
m ∗BoseCh2(q, 1) + s. Can this be generalized to h > 2? Also for Singer sets.

5. Does the largest modular gap between consecutive elements ofBoseCh2(q, 1),Singer2(q, 1)
have order O(q)? It seems not, even if one chooses an affine image to make the largest
gap as small as possible.

6. It is obvious that affine maps preserve the Bh property. The existence of Bose sets
that are not affine images of each other suggests that there may be some more general
arithmetic (or geometric) operation (beyond affine equivalence) that preserves the Bh

property in cyclic groups.

References

[1] Wallace C. Babcock, Intermodulation interference in radio systems, Bell System Tech-
nical Journal 32 (1953), 63–73.

[2] R. C. Baker, G. Harman, and J. Pintz, The difference between consecutive primes. II,
Proc. London Math. Soc. 83 (2001), 532–562.

[3] R. C. Bose, An affine analogue of Singer’s theorem, J. Indian Math. Soc. 6 (1942), 1–15.

[4] R. C. Bose and S. Chowla, Theorems in the additive theory of numbers, Comment.
Math. Helv. 37 (1962/63), 141–147.

[5] Michaela Cully-Hugill, Primes between consecutive powers, J. Number Theory 247

(2023), 100–117.

[6] Distributed.net, Completion of OGR-28 project. A collaborative computing ef-
fort. Published electronically at https://blogs.distributed.net/2022/11/23/03/

28/bovine/.
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