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Abstract

Using elementary methods, we provide formulas for evaluating the Brousseau sum
i PFy; and the shifted Brousseau sum ! | #Fy 4, for all integers m,p > 0,
where (F},;)i>0 is the k-Fibonacci sequence defined by the two-term linear recurrence
Fk,i = k}Fk,i_l + Fk’i_g for ¢ > 2 with initial values Fk70 =0 and Fk71 = 1.

1 Introduction

In the second issue of Fibonacci Quarterly in 1963, Brousseau [4] proposed a problem to
discover an expression for the Fibonacci sum of the form

n
§ i3F,
=1
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where Fj is the i Fibonacci number. In the following year, Erbacher and Fuchs [7] gave a
solution for this problem in terms of F, .o and F,, 3. Later, Ledin [12], Brousseau [5], and
Zeitlin [16] developed various methods to determine expressions for the Brousseau sum

n
> ",
i=1

where p is a non-negative integer. Ledin showed that the solution of Erbacher and Fuchs
can be expressed in the form

> iF; = (n® = 6n® + 24n — 50) Fu1q + (n® — 3n” + 15n — 31)F, + 50. (1)
i=1

Recently, Ollerton [13], Shannon [14], Hendel [11], and Adegoke [1] derived expressions
for such sums. Dresden [6] used a different technique to find the sum > | i*F; using just
the binomial coefficients. Motivated by this, we develop formulas for the sums

n n
E Z'kaji, and E ika,m+i>
i=1 =1

for integers m,p > 0, where Fy; is the i k-Fibonacci number. For a positive integer k, the
k-Fibonacci sequence (see [8]) (Fin)n>o0 is defined by the two-term linear recurrence

Fip =kFypn1 + Fin_o, (2)

with initial values Fj, o = 0 and F}; = 1. The numbers £}, ,, are sometimes called the “metal-
lic” or “metallonacci” numbers. The numbers F} ,, are the “regular” Fibonacci numbers and
F,, are the Pell numbers P,. The Pell numbers F5,, are sometimes called the silver Fi-
bonacci numbers, and the numbers Fj ), are sometimes called the bronze Fibonacci numbers.
For k = 1,2,3, and 4, the numbers Fj, are A000045, A000129, A006190, and A001076,
respectively, in the OEIS [15]. The k-Fibonacci numbers can be extended to negative sub-
scripts by

Fk,n = Fk,n+2 - ka,n_g_l, forn < 0.

The Lucas sequence (Ln)
tively, by

and the Pell-Lucas sequence (Q”)n are defined, respec-

n>0 >0

Lo = 2, Ly = L, L,=L, 1+ L, ,forn> 2,
and
QO = Ql = 27 Qn - 2@1171 + anQ for n > 2.

The numbers L, and @, are A000032 and A002203, respectively, in the OEIS. Falcén [9]
proved that the 4-Fibonacci numbers F},, are just Fj,/F3, the 11-Fibonacci numbers Fyy,
are just F%,/F5, the 29-Fibonacci numbers Fig,, are just Fr,/F7, and so on. In general,

2


https://oeis.org/A000045
https://oeis.org/A000129
https://oeis.org/A006190
https://oeis.org/A001076
https://oeis.org/A000032
https://oeis.org/A002203

for all odd indexed Lucas numbers L,,, the L,,-Fibonacci numbers Fy,, ,, are just Fi,,/Fp,.
The sequence 1,4, 11,29, 76, ... is A002878 in the OEIS. Falcon [9] also proved that the 14-
Fibonacci numbers Fiy,, are just Ps,/Ps, the 82-Fibonacci numbers Fy, ,, are just Ps,/Ps,
the 478-Fibonacci numbers Fyg,, are just Pr,/P;, and so on. In general, for all odd in-
dexed Pell-Lucas numbers Q,,, the @,,-Fibonacci numbers are just P,,,/P,,. The sequence
2,14,82,478,2786, ... is A077444 in the OEIS.

Hendel proved that

2-) i*Pi=(n® =30’ +6n—T)P, + (n® +3n—3)P, + 7. (3)
=1

We can see the clear similarities between Eqs. (1) and (3). For further clarity, we rewrite
Egs. (1) and (3) as

> iF; = (n® — 60+ 24n — 50) F,y1 + ((n 4 1)° = 6(n +1)* + 24(n + 1) — 50) F,, + 50, (4)
=1
and
2-) i*P=(n®=3n"+6n—7)Pup1 + (n+1)* = 3(n+ 1)* + 6(n+1) = 7)F, + 7. (5)
=1

The identity (4) appears in the OEIS at A259546. If we use the 3-Fibonacci numbers as
another example, then we would have

. s 22 8 292 29
3'223]73,1‘ = (n3_2n2+§n_§)F3,n+l+((n+1)3_2(n+1)2+§(n+1)_3>F3,n+§' (6)
1=1

Egs. (4), (5), and (6) naturally suggest the following interesting generalization about the
Brousseau sums of the k-Fibonacci numbers:

k-3 F = (O (1) Fips + (O (0 + 1)) F — C(0), (7)
=1

where C’lgp )(n) is a “coefficient polynomial” in n of degree p with rational coefficients. The

main task is to find an expression for the polynomial C,gp ) (n). We do this using some simple
recursion formulas involving just binomial coefficients. We use a similar technique as that of
Dresden. Throughout this paper, we assume (8) =1.
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2 k-Fibonacci numbers and powers

We begin with the following set of identities, which are similar to those with the “regular”
Fibonacci numbers [6].

Fk,n:n+;(kz—2 <1>)Fkn 0>
2 - -2 2
Fk,n:n —|—2 kic—2- Fkn i
i=1
n3+z<k‘i3—2 ( n—i
i=1

Fkn:n4+zn: kit o (1 @) P

7 i=1 1 o
Fk,n:n5+izl (k:z5—2 ( )z —2. ( )22—2- <5>)Fk,n—ia

and so on. Our first theorem involves the generalization of these formulas.

—_

G|
3
I

Theorem 1. For all integers n,p > 1, we have

n 21
Fin=n"+ (W -2) (2jp— 1)2.,,_2%1)1%_1,_ )
i=1 j=1

Proof. We use induction on n. When n = 1, the left-hand side of Eq. (8) is Fy,; = 1 and the
right-hand side is



When n = 2, the left-hand side of Eq. (8) is Fj 2 = k and the right-hand side is

2 (%1
- p p—2j+1
2p k. P __ 2 p—4) F i
+ ;_1 < ? 2 <2j B 1)2 ) k,2

[

[MIS]

1 [51

p p —2j+1
Foy+ (K2 =2 or-2+1 )
<2j - 1)) et ( ; (27’ - 1) ) o

=24 (k—2-2"1 40
= k.

:2p+(k—2

Jj=1

Thus, Eq. (8) holds for n = 1 and n = 2. Now fix n > 2. Assume that Eq. (8) holds for
n — 1 and n. Then

[51

Fym=n"+ Y (’”p -2) (2jp_ 1)ip_2j+l)Fk’"_i’ o)
=1

J=1

[NIiS]

and
k3

n—1
Frpor=(m—17+> <ki” -2 (2],]’_ 1)#’2]'“) Fion1—s. (10)
=1

Since Fy,,—; = 0 for i = n, Eq. (9) can be put in the form

j=1

n—1 f§1

ka = np -+ Z (klp - 2 Z (2]p— 1) ip_2j+1)Fk,n—i' (11)
j=1

i=1

Multiplying Eq. (11) by k& and adding it to Eq. (10), we get

n—1 [%W

kFin+ Frpoy = kn? + (n = 1P + > (lm’p ~-2) (ij_ 1) ip—%“) (kFyni + Frn_i1).
i=1

j=1
Using the k-Fibonacci recurrence (2), this becomes

n—1 (%“

Fk,n—i—l = kn? + (n - 1)p + Z (kip —2 Z (2]p_ 1) ip_Qj_H) Fk,n—i+1- (12)

i=1 j=1
Using the binomial expansion, we have the identity

(41

m+ 1) —(n—-1F= 22 (2 .p 1)np_2j+1,
7j=1



and hence

(41

(n—1) = (n+1)P — 2 2 (ij_ 1) P21, (13)

Now using Eqs. (12) and (13), we obtain

Fipy1 = kn? + (n+1)? —2 < >“J+l
’ 27 —1

j=1

Since Fj; = 1, we rewrite this as

[£]

Frper=(m+1P+) (l{:z’p ~2) (2]_10_ 1>¢p—2j+1)Fk,n+1_i.
i=1 j=1

Since Fjn41-i = 0 when ¢ = n 4+ 1, we may simply add the corresponding term to the
summand on the right-hand side of the above equation to get

n+1 (p]
Finer = (0 + 19+ 3 (mp—zz e

=1

and this completes the induction step. This concludes the proof. O]

3 Convolutions

Applying Theorem 1 along with the k-Fibonacci sum [8, Proposition §]



we can recursively find the following convolution identities:
n
k'ZFk,n—i = Fk,n+1 _I'Fk,n_ 1,

k - Zszn i =~ (2Fpnp1 + (=k +2)Fy,, — (kn +2))

—k+2 kn + 2
Fkn+1+( )Fkn_

k ko

1
1

(8Fnt1 + (K* — 4k + 8)Fy,, — (K°n® + 4kn + 8))
1

k

2

k

2 —
k- Z Fkn z_k_

8 k* — 4k + 8 k*n? + 4kn + 8
<k )Fkn+l+(T)Fk,n_ 12 ;
ja

((2k* + 48) i1 + (—K° + 8k* — 24k + 48) F}, ,

k- Zl Fkn i =
— (K*n® 4 6k*n” + 24kn + 2k* + 48)),

2k? + 48 —k3 4 8k% — 24k + 48
= <—+ )Fk,n—i-l + ( i a )Fk,n

3

k3 k3
E3n3 + 6k*n? + 24kn + 2k* + 48
_ = ’

and so on. Each sum on the left-hand side of the above set of equations is a convolution of
the powers of 7 and the k-Fibonacci numbers. We define

7@ _ > im0 Frn—is if p=0; (14)
B S P Fr, ifp > 1
A pattern is evident in the above set of equations. Note that each equation is of the form

k-T2 = 0P (0)Fypir + @ (—1) i — o) (n), (15)

where <I>,(€p )(n) is a polynomial in n of degree p. To find an explicit formula for (I>,(€p )(n), we

(p)

must define the sequence (Ak as follows:

)pZO

Definition 2. The sequence (A,(Cp ) )p>0 of numbers is defined by the recurrence

1 if p=0;
A](fp) = { ’ [2] 2j+1 . 7 (16)
LS ()AL, i 1



The recurrence Aff ) generates the sequence
2 8 2k*+48 32k* 4 384
, i Y

1.2 =
kTR KB

Note that these numbers are the coefficients of F} 41 in the above set of equations. The

numbers A,(f ) for p=1,2,3, and 4 are given below:
(i) A% 1,2, 8,50,416,4322,53888, .... This sequence is A000557 in the OEIS [15].

(ii) AP :1,1,2,7,32,181,1232, ... This sequence is A006154 in the OEIS [15].

(i) AP 2 8 22 224 2774 13952
3 737979;27, Ty e e

g e e e

iv) A® . 2 2 2 02
W) AT L5 2T
From the last equation in the set of convolution identities given above, we recognize that
3 6 24 2k* + 48
@,(f)(n) :n3+%n2+ﬁn+T
] 3 3+2 3 2+8 3 +2k2+48 3
— . n — . n - . n - .
0 E\1 k2 \2 k3 3)
k

where 1,2/k,8/k?, (2k? + 48) /k* are the first four terms of the sequence (A

this in mind, we make the following definition:

Definition 3. For all integers p > 0, we define the polynomial CI>,(€p ) (n) as
(p) A](cp), if n = O;

&7 (n) = P AT (P
oAy (r)n , ifn#0.

Rewriting Eq. (15) in terms of A,(f ), we have the following theorem:

Theorem 4. If Tk(p) is as defined in Eq. (14), then for all integers p > 0, we have

(f) (=1)"" Fp — n?™).

p
E.T® — A;p)Fk,n-i-l + Z A](gr)

k.n
r=0

Proof. We use induction on p. When p = 0, the left-hand side of Eq. (18) is

k- Tk(?r)b = kz Fyni = Fipi1 + Frn — 1,

1=0

() :
N )pzo‘ With all
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and the right-hand side is
(0) (0) 1
A Fypr + A (B — 1) = E(Fk‘,n—i-l + Fin — 1).

Thus, Eq. (18) holds for p = 0. Now, fix p > 1. Assume that Eq. (18) holds for all
non-negative integers less than p. First, we rewrite Eq. (8) in Theorem 1 as

n [5]

Fym=n"+k Zn: PP —2) Y (2jp_ 1) P
=1

i=1 j=1
By switching the order of summation in the double summand, we get

[£] n

Frp=nP +k zn: P Fen—i—2) (ij_ 1) > P B
i=1 J=1

=1

Since P F}, ,_; = 0 for i = 0, we can start the first summand at 7 = 0 instead of at ¢ = 1, and
thus we obtain

n H n
Fon=n"+kY #Frni—2) (2],]’_ 1) > I B (19)
i=0 j=1 i=1

If p is even, then Eq. (19) can be put in the form

n

n 21
Fin=n"+k) i"Fini=2) (2jp_ 1) > F, (20)
i=0 j=1

1=0

because the term corresponding to ¢ = 0 in the last summand is 0P"%*1F} . = 0 for all
j=1,2,...,p/2. On the other hand, if p is odd, then Eq. (19) can be written as

n H n
Frp=n"+kY #Frni—2) <2jp_ 1) D I i+ 2F e,
j=1 i=0

1=0

because the term corresponding to i = 0 in the last summation is 0P~%*1F, . = 0 for
j# (p+1)/2 and Fj,, for j = (p+ 1)/2. Therefore, if p is odd, we have

n (5] n
. p p—2j+1
—F n — p k pF nfi_2 P2 F n—i- 21
k, n’ + ZE:O (A jEZl (2]. B 1) ;:0 ? k, (21)

Thus, from Egs. (20) and (21), we conclude that

[51
(1) =P + k-T2 =2 (2jp_ 1) Ty,

=1



and hence

H
2 N
b = (P P = 53 (2jp_ 1) BT,
Jj=1

Now, by induction hypothesis, for 1 < j < [£], we have

p—25+1

(22)

iy Y n(p—2j+1 . A
L. T]gan 2j+1) :Aggp 2j+1 n+1 + Z A( )( J + ) ((—1>p_2]+1_TFk,n . np—2]+1—r)‘

Substituting this in Eq. (22), we get

b Tyl = (<1 Fen =P+ Z (2 _ 1) AL R

Using the Definition 2, this can be written as

k- Tlgpn), = (=1)PFppn —nP + A(p)Fk,n+1

f p—25+1 .
Z Z ( jp_ 1> (p — 27:7 + 1) ((_1)p—2j+1—7“Fk7n _ np—?j-l—l—r)‘

If we execute the Change of variable " = 2j + r — 1, this becomes

kTP = (1) Fyy — 1P + AP Fy

W u P p—27+1
(r'—2j+1) - 1 p_T/F R —
0 PR A e [ e

Now, by switching the order of summation, we obtain
kT = (=10 — 0P + AP By
51 .
2 e & I_o; P p—27+1 / /
= A(T j+1) e A )
+k:zl; G 2j = 1)\ = 2 1) (I Frn =)
Using the well-known binomial identity (Z) = (n’ir), we rewrite this as
k- Tk(prz _ (_1)pF —nP + A(p)kaH
—2j+1 , /
A ' —2j+1) p p 1Y 'E L — ="\
T Z:Uz; p—27+1 p—r (( ) o " )

10

P p—2j+1 »— 2] 4 1 A A
R I o e L T ]

(23)



Next, using the binomial identity [2, Identity 134, p. 67| (z ) (:{) = (f ) (z :;), we have

p p—2j+1\ [ »p "N _(p r’
p—2j—1 p—r ) \p—-r)\2j-1) \w)\2j—-1)
When we substitute this in Eq. (23), we obtain

k . Tk(?z = <_1)ka,n — np + A]S;p)Fk,n—f—l

2 b /94 P T, ’ ’
“ E : A(T 2j+1) —1)P T F, . —nP"
Tk ¥ r)\2j —1 ((=1) k=)

Now, using Definition 2, this becomes

p
kT2 = AP Fiir + (R Frp —17) + > AY )(

r’'=1

D) (0 B =)

r

Since A,(:l) =1 at v’ = 0, we conclude that

P
k- Tlgﬁ = Alg;p)Fk,n-‘,-l + Z A,(: ) (f/) ((—1)1'"—“,{?’“7,C _ np—r/)'

r'=0

Hence, by induction, Eq. (18) holds for all p > 0. This completes the proof. ]

4 The Brousseau sums

Let us begin this section with finding the identities about the Brousseau sums )" " F}
for p=1,2,3,.... Consider the case p = 1.

k- zn:ZF’k;’Z =k- i(n — ’L')ka_i
=0 1=0

=nk - iFk,n—i — k- iiFk,n—i
=0 1=0

2 —k+2 kn + 2
= n(F Fon—1)—(ZF Ay
TL( kn+1 + k.n ) (k kn+1 + k k,n k )
1
— E((kn —2)Fypi1 + (kn+k — 2)F, +2).

11



Proceeding like this, we get the following set of identities:
k- ZFIH = Frny1 + Frn — 1,
=0

k - Z'LFk’z =

((kn — 2)Fppi1 + (kn+ k — 2)Fy, + 2)

WIr—k WIr—k

((kn —2)Fppni1 + (k(n+1) — 2)Frp + 2),
k- Z 2Fi = — ((k°n® — dkn + 8) Fy iy + (K*n® + 2k(k — 2)n + k* — 4k + 8) F,, — 8)

(20 = 4k + 8)Fings + (K0 + 17— 4k{n+ 1) + 8) B — ),

((k*n® — 6k°n® 4 24kn — 2k* — 48) Fy 41

?g — w|H w|.—

k- ZZ F]“—

+ (K*n® + 3k*(k — 2)n® + 3k(k* — 4k + 8)n + k* — 8k* + 24k — 48) F ,
+ 2k* 4 48)
1
=3 — ((K’n® — 6k’n® + 24kn — 2k* — 48) Fy 51
+ (K*(n+1)® — 6k*(n + 1)* + 24k(n + 1) — 2k* — 48) F},,, + 2k* + 48),

(24)
and so on. As we expected, these equations also follow a pattern. If we define the sums S ,(Cp %
as

gP _ > o Fieiy i p=0; (25)
o Yor g PEy, ifp>1,

then each equation is of the form
koS = CF () Py + CF (n+ 1) Fy,, — C(0),

where O,S’ ) (n) is a polynomial in n of degree p. Let us try to investigate the rule of formation
of the coefficients of this polynomial, C,gp ) (n). From the last equation in Eq. (24), we identify
that

1
C®(n) = 25 (K*n® — 6k?n® + 24kn — 21° — 48)

k k2 k3
1 (3)n3_2. (3)n2+§. <3>n_2’€2_+48. (3)
0 ko \1 k2 \2 k3 3)

12



where the numbers 1, 2/k, 8/k* (2k*+ 48)/k® are the first four terms of the sequence
(A,gp))p>0. With this in mind, we define the coefficient polynomial, C’,gp) (n), in n of degree p
as follows:

Definition 5. For all integers p > 0, we define

w, ) (=1)PA(p), if n =0
“ (n)_{ P (1A P, it n £ 0, (26)

It should be noted that, for £ > 2, the polynomial C’,ip )(n) generally doesn’t have integer

coefficients. From Egs. (17) and (26), it is clear that <I>,(€p) (n) = (—1)Pc,§p)(—n). Consequently,
we may rewrite Eq. (15) as

kT = (1P (CP(0) s + G (D F = G (<)),
The central result (7) about the Brousseau sums of the k-Fibonacci numbers can now be
established.
Theorem 6. If S,gf?z is defined as in Eq. (25), then for all p > 0, we have

k- S\ = CF () Py + CF (n+ 1) Fy,, — C(0), (27)

where C’lgp)(n) is the “coefficient polynomial” as defined in Eq. (26).
Proof. Tf p = 0, then the left-hand side of Eq. (27) is

ko SE =k Fii= Foper+ Fon — 1,
i=0
and the right-hand side is
CO(n)Frnir + CO(n+ 1) Fy, — C0) = AV Fy + AVE,, — 1
- Fk,n+1 + Fk,n -1
Thus, Eq. (27) holds for p = 0. Now fix p > 1. Then, using the binomial expansion, we have

n

si=3-n.

= é(n — 1) By i
EEO
-3 (?) o)

13



Thus,

p
I p —r T
kS = ;(—1) (T)np (k-Tk(g).
Now, using Theorem 4, we have

T r - i r r—i i
k- TIET)L = A,(C )Fk,n+1 + ZA;’) (]) ((_1) 1Py —m ])_
§=0

When we substitute this in Equation (28), we obtain

p T
r (T r—j r—j
kS =Y (-1) (f) ! <AL P+ AY (3) (1) Fy, —n J))

r=0 7=0
P
- ( Z(—l)’”AI(:) (f) ”pr) Fint1
r=0

Pl r . .
+ (-1 Ay (p > ( ) (=19 Fppy — 0" 9P

r=0 7=0 " J

P r
r ) (P r r—j r— r

= CP (n)Fypir + z; ;(—1) AY) (T) (J) (1) Fy, — ") n?

SEr()()

= O () Fii + ]i;(—l)%é” (Z () () )
e (2 () ()e)

_ Jc_ém (1) Fonin + J(]Zpo:(ly AV (1;>( N 1)]”-) o — (—1)7AD,

where the last equality follows from the binomial identities

~ (p\ (7 p ~
EE0 Qe
—\r)\U J

14



and

i (p) (T) (1) = 0, if j # p;
r=j r ] B (_1)1)’ 1f.] =D,
from Gould’s collection [10, Identities 3.118, 3.119, p. 36]. Thus, we conclude that

k- S = OF () Pyt + O (n+ 1) Fy, — CP(0).

Example 7. Setting p = 2 in Eq. (27) we get

408 , 4 8 8
k- ZZF’“_<” T )Fk,n+1+<(”+1) _E(n“‘l)‘l’ﬁ)Fk,n_ﬁ-

In particular, when k£ = 11 this becomes

= 4 8 4 8 8
11-Y F,; = — = Fiin 1)? — — )+ — | Pl — —.
;Z 1, (" 11”+121> 1, *1+((”+ T )+121) T

Since Fiy; = Fy;/Fs = F5;/5 (see [9]), we obtain

408 1 8 5.8
11-5S 2F = (02— —n+ — | Fy, 12— —(n+ 1)+ — ) Fyy — 22
Z ; <" T +121) 5+5+<(”+ ot >+121) T 1917

which gives the identity about the Brousseau sums of the sequence (F5,-)i>1
Example 8. Setting p =2 and k = 14 in Eq. (27) we get

" 2 2 2 2 2
14 - ;ZQF14’Z- = <n — ?n -+ 49)F147n+1 + ((n + 1)2 — ?(n -+ 1) 49>F14n — E

Since Fi4; = Ps;/ Py = P3;/5 (see [9]), we obtain

2 2 2 2 5-2
14 - Py = - = Ps, 1) — = 1 Pg, — —,
ZZ 3 <n 7n+ 49) 3n+3 T <(n+ ) 7(n+ ) 49) 3 19

which gives the identity about the Brousseau sums of the sequence (Pgi)i>1.

Examples 7 and 8 suggest two interesting identities Eqgs. (29) and (31). Eq. (29) is about
the Brousseau sums of every m'™® Fibonacci number, and Eq. (31) is that of every m'" Pell
number, when m is odd.

15



Corollary 9. Let m > 1 be an odd integer. Then for all integers p > 0, the following identity
holds:

Ly " Fpi = CF () Fynrny + CF (0 + 1) Fry — CF(0) Fp, (29)
=1

where L,, is the m*" Lucas number.

Proof. Setting k = L,, in Eq. (27) yields

Lm : Z Z.pFLnLyi = Cép,,)l (n)FL77L7n+1 + CE/IZZL (n + 1)FL‘"L7n - C}/I:T)l (0) <30)
i=1
If m is odd, then we have (see [9])
Fmi
FLm,i - Fm .
Applying this in Eq. (30) and multiplying through by F,,, we get Eq. (29). O

Corollary 10. Let m > 1 be an odd number. Then for all integers p > 0, the following
tdentity holds:

Q= Y P = Cg (0) Prnin) + CG) (4 1) P = CF) (0) P, (31)
i=1
where Q,, is the m™ Pell-Lucas number.

Proof. The proof is similar to the proof of Corollary (9) by using the fact that (see [9])

Pmi

Fo,.i= D
m

when m is odd. n

5 Shifted Brousseau sums

In this section, we find the formula for the shifted Brousseau sums

n
E ika,m+i7
=1
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for all integers m,p > 0. For example, if we take p = 1, then

m-+n

k- ZZka-H_k Z Z_ sz
i=m+1
m-+n m-+n
i=m-+1 i=m-+1
m+n m m+n
=0 1=0

Now, using the first two identities in Eq. (24), we have

k- Zlem-H -

—(k(m+1) — 2)Fk,m) — m(Fk,m+n+1 + Frmgn — Frme1 — ka)

((k(m+n) = 2)Frmins1 + (k(m+n+41) = 2)Fymin — (km — 2) F i

?vl»—‘

1
== ((kn = 2)Fmins1 + (k(n + 1) = 2) Fymin + 2F5mi1 + (—k + 2) Fim)-
We generalize this identity for all integers p > 0 in the next theorem.

Theorem 11. For all integers m,p > 0, we have
ko> P Fp = CP(n)F CP(n+1)Fymon — O (0) Fymis — CP (1) Fy. (32
VL g m4i = ( ) km+n+1+ (n+ ) k,m+n k ( ) k,m+1 k ( ) k,m- ( )

Proof. Since Fj, o = 0 and F}; = 1, the case m = 0 follows from Theorem 6. Now fix m > 1.
Then, using the binomial expansion, we have

n m-+n
Zika,mH = Z (i —m)PFy,
i=1 1=m+1
m—+n P
= Z Z<p>zp J( m)JF;“
i=m-+1 j=0 J

I
(]
-
v |
Mi—
N"B

Thus,



Now, applying Theorem 6, this becomes

k - Z Zka m+i — Z (p) <_m)] <Clgp]) (m + n)Fk,ernJrl + Clgpij) (m +n+ 1)Fk,m+n

Y (33)
_ C}ipij)(m)Fk,erl _ C}gp*j)(m + 1)Fk,m)
Consider
P . ) 4 ‘p*j o ‘
> (p) (=mY G (m+n) = (p) (=m)? > (~1) Ay (p ]) (m + n)p=i,
=0 =0 N o r

By switching the order of summation, this becomes

> ()t meem = 5 0l (9) () Ym ey o

j=0 r=0 7=0

Next, we use the binomial identity [2, Identity 134, p. 67] to get

GIC)=6E)0)=00)

Substituting this in Eq. (34), we obtain

> (M) empcgmam =S crad (M) (3 (7Y imos mpiomy)

P

= Z(_l)rA(r) p nP-r (35)
r=0 ’ r

=G (n)

Similarly, we can show that

(f) mJC’p ])m—l—n—l—l) C,gp)(n—l—l) (36)
~ (p
( ) mpC ) (m) = GP(0), (37)
j=0 J
and
p » ‘ '
(") mpce s =P (59
Jj=0 J
Thus, Eq. (32) follows by substituting Eq. (35) through Eq. (38) in Eq. (33). O
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6 Conclusion

While all the results presented above assume that k is a positive integer, there is no reason not
to extend them to nonzero real numbers as well. The only drawback is that the numbers F},,,
are not necessarily integers. The k-Fibonacci numbers are just the Fibonacci polynomials
F,(z) (see [3]) calculated at x = k. Hence, we strongly believe that all the above results are
still valid if we allow non-integer values of k. For example, we can have the identity

V2. iﬁﬂ(\/ﬁ) = (n* = 2V2n+4)Fy1 (V2) + (n+ 1) = 2V2(n + 1) + 4) F,(V2) — 4.
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