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Abstract

Using elementary methods, we provide formulas for evaluating the Brousseau sum
∑n

i=1 i
pFk,i and the shifted Brousseau sum

∑n
i=1 i

pFk,m+i for all integers m, p ≥ 0,
where (Fk,i)i≥0 is the k-Fibonacci sequence defined by the two-term linear recurrence
Fk,i = kFk,i−1 + Fk,i−2 for i ≥ 2 with initial values Fk,0 = 0 and Fk,1 = 1.

1 Introduction

In the second issue of Fibonacci Quarterly in 1963, Brousseau [4] proposed a problem to
discover an expression for the Fibonacci sum of the form

n
∑

i=1

i3Fi,
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where Fi is the ith Fibonacci number. In the following year, Erbacher and Fuchs [7] gave a
solution for this problem in terms of Fn+2 and Fn+3. Later, Ledin [12], Brousseau [5], and
Zeitlin [16] developed various methods to determine expressions for the Brousseau sum

n
∑

i=1

ipFi,

where p is a non-negative integer. Ledin showed that the solution of Erbacher and Fuchs
can be expressed in the form

n
∑

i=1

i3Fi = (n3 − 6n2 + 24n− 50)Fn+1 + (n3 − 3n2 + 15n− 31)Fn + 50. (1)

Recently, Ollerton [13], Shannon [14], Hendel [11], and Adegoke [1] derived expressions
for such sums. Dresden [6] used a different technique to find the sum

∑n

i=1 i
pFi using just

the binomial coefficients. Motivated by this, we develop formulas for the sums

n
∑

i=1

ipFk,i, and
n

∑

i=1

ipFk,m+i,

for integers m, p ≥ 0, where Fk,i is the ith k-Fibonacci number. For a positive integer k, the
k-Fibonacci sequence (see [8]) (Fk,n)n≥0 is defined by the two-term linear recurrence

Fk,n = kFk,n−1 + Fk,n−2, (2)

with initial values Fk,0 = 0 and Fk,1 = 1. The numbers Fk,n are sometimes called the “metal-
lic” or “metallonacci” numbers. The numbers F1,n are the “regular” Fibonacci numbers and
F2,n are the Pell numbers Pn. The Pell numbers F2,n are sometimes called the silver Fi-
bonacci numbers, and the numbers F3,n are sometimes called the bronze Fibonacci numbers.
For k = 1, 2, 3, and 4, the numbers Fk,n are A000045, A000129, A006190, and A001076,
respectively, in the OEIS [15]. The k-Fibonacci numbers can be extended to negative sub-
scripts by

Fk,n = Fk,n+2 − kFk,n+1, for n < 0.

The Lucas sequence
(

Ln

)

n≥0
and the Pell-Lucas sequence

(

Qn

)

n≥0
are defined, respec-

tively, by
L0 = 2, L1 = 1, Ln = Ln−1 + Ln−2 for n ≥ 2,

and
Q0 = Q1 = 2, Qn = 2Qn−1 +Qn−2 for n ≥ 2.

The numbers Ln and Qn are A000032 and A002203, respectively, in the OEIS. Falcón [9]
proved that the 4-Fibonacci numbers F4,n are just F3n/F3, the 11-Fibonacci numbers F11,n

are just F5n/F5, the 29-Fibonacci numbers F29,n are just F7n/F7, and so on. In general,
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for all odd indexed Lucas numbers Lm, the Lm-Fibonacci numbers FLm,n are just Fmn/Fm.
The sequence 1, 4, 11, 29, 76, . . . is A002878 in the OEIS. Falcón [9] also proved that the 14-
Fibonacci numbers F14,n are just P3n/P3, the 82-Fibonacci numbers F82,n are just P5n/P5,
the 478-Fibonacci numbers F478,n are just P7n/P7, and so on. In general, for all odd in-
dexed Pell-Lucas numbers Qm, the Qm-Fibonacci numbers are just Pmn/Pm. The sequence
2, 14, 82, 478, 2786, . . . is A077444 in the OEIS.

Hendel proved that

2 ·
n

∑

i=1

i3Pi = (n3 − 3n2 + 6n− 7)Pn+1 + (n3 + 3n− 3)Pn + 7. (3)

We can see the clear similarities between Eqs. (1) and (3). For further clarity, we rewrite
Eqs. (1) and (3) as

n
∑

i=1

i3Fi = (n3 − 6n2 + 24n− 50)Fn+1 + ((n+ 1)3 − 6(n+ 1)2 + 24(n+ 1)− 50)Fn + 50, (4)

and

2 ·
n

∑

i=1

i3Pi = (n3 − 3n2 + 6n− 7)Pn+1 + ((n+ 1)3 − 3(n+ 1)2 + 6(n+ 1)− 7)Fn + 7. (5)

The identity (4) appears in the OEIS at A259546. If we use the 3-Fibonacci numbers as
another example, then we would have

3·
n

∑

i=1

i3F3,i =

(

n3−2n2+
8

3
n−22

9

)

F3,n+1+

(

(n+1)3−2(n+1)2+
8

3
(n+1)−22

9

)

F3,n+
22

9
. (6)

Eqs. (4), (5), and (6) naturally suggest the following interesting generalization about the
Brousseau sums of the k-Fibonacci numbers:

k ·
n

∑

i=1

ipFk,i = (C
(p)
k (n))Fk,n+1 + (C

(p)
k (n+ 1))Fk,n − C

(p)
k (0), (7)

where C
(p)
k (n) is a “coefficient polynomial” in n of degree p with rational coefficients. The

main task is to find an expression for the polynomial C
(p)
k (n). We do this using some simple

recursion formulas involving just binomial coefficients. We use a similar technique as that of
Dresden. Throughout this paper, we assume

(

0
0

)

= 1.
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2 k-Fibonacci numbers and powers

We begin with the following set of identities, which are similar to those with the “regular”
Fibonacci numbers [6].

Fk,n = n+
n

∑

i=1

(

ki− 2 ·
(

1

1

))

Fk,n−i,

Fk,n = n2 +
n

∑

i=1

(

ki2 − 2 ·
(

2

1

)

i

)

Fk,n−i,

Fk,n = n3 +
n

∑

i=1

(

ki3 − 2 ·
(

3

1

)

i2 − 2 ·
(

3

3

))

Fk,n−i,

Fk,n = n4 +
n

∑

i=1

(

ki4 − 2 ·
(

4

1

)

i3 − 2 ·
(

4

3

)

i

)

Fk,n−i,

Fk,n = n5 +
n

∑

i=1

(

ki5 − 2 ·
(

5

1

)

i4 − 2 ·
(

5

3

)

i2 − 2 ·
(

5

5

))

Fk,n−i,

and so on. Our first theorem involves the generalization of these formulas.

Theorem 1. For all integers n, p ≥ 1, we have

Fk,n = np +
n

∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,n−i. (8)

Proof. We use induction on n. When n = 1, the left-hand side of Eq. (8) is Fk,1 = 1 and the
right-hand side is

1 +
1

∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,1−i

= 1 +

(

k − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

))

Fk,0

= 1 + 0

= 1.

4



When n = 2, the left-hand side of Eq. (8) is Fk,2 = k and the right-hand side is

2p +
2

∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,2−i

= 2p +

(

k − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

))

Fk,1 +

(

k2p − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

2p−2j+1

)

Fk,0

= 2p + (k − 2 · 2p−1) + 0

= k.

Thus, Eq. (8) holds for n = 1 and n = 2. Now fix n ≥ 2. Assume that Eq. (8) holds for
n− 1 and n. Then

Fk,n = np +
n

∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,n−i, (9)

and

Fk,n−1 = (n− 1)p +
n−1
∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,n−1−i. (10)

Since Fk,n−i = 0 for i = n, Eq. (9) can be put in the form

Fk,n = np +
n−1
∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,n−i. (11)

Multiplying Eq. (11) by k and adding it to Eq. (10), we get

kFk,n + Fk,n−1 = knp + (n− 1)p +
n−1
∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

(kFk,n−i + Fk,n−i−1).

Using the k-Fibonacci recurrence (2), this becomes

Fk,n+1 = knp + (n− 1)p +
n−1
∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,n−i+1. (12)

Using the binomial expansion, we have the identity

(n+ 1)p − (n− 1)p = 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

np−2j+1,
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and hence

(n− 1)p = (n+ 1)p − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

np−2j+1. (13)

Now using Eqs. (12) and (13), we obtain

Fk,n+1 = knp + (n+ 1)p − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

np−2j+1

+
n−1
∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,n+1−i

= (n+ 1)p +

(

knp − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

np−2j+1

)

+
n−1
∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,n+1−i.

Since Fk,1 = 1, we rewrite this as

Fk,n+1 = (n+ 1)p +
n

∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,n+1−i.

Since Fk,n+1−i = 0 when i = n + 1, we may simply add the corresponding term to the
summand on the right-hand side of the above equation to get

Fk,n+1 = (n+ 1)p +
n+1
∑

i=1

(

kip − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1

)

Fk,n+1−i,

and this completes the induction step. This concludes the proof.

3 Convolutions

Applying Theorem 1 along with the k-Fibonacci sum [8, Proposition 8]

n
∑

i=0

Fk,n =
1

k

(

Fk,n+1 + Fk,n − 1
)

,
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we can recursively find the following convolution identities:

k ·
n

∑

i=0

Fk,n−i = Fk,n+1 + Fk,n − 1,

k ·
n

∑

i=0

iFk,n−i =
1

k

(

2Fk,n+1 + (−k + 2)Fk,n − (kn+ 2)
)

=

(

2

k

)

Fk,n+1 +

(−k + 2

k

)

Fk,n −
kn+ 2

k
,

k ·
n

∑

i=0

i2Fk,n−i =
1

k2

(

8Fk,n+1 + (k2 − 4k + 8)Fk,n − (k2n2 + 4kn+ 8)
)

=

(

8

k2

)

Fk,n+1 +

(

k2 − 4k + 8

k2

)

Fk,n −
k2n2 + 4kn+ 8

k2
,

k ·
n

∑

i=0

i3Fk,n−i =
1

k3

(

(2k2 + 48)Fk,n+1 + (−k3 + 8k2 − 24k + 48)Fk,n

− (k3n3 + 6k2n2 + 24kn+ 2k2 + 48)
)

,

=

(

2k2 + 48

k3

)

Fk,n+1 +

(−k3 + 8k2 − 24k + 48

k3

)

Fk,n

− k3n3 + 6k2n2 + 24kn+ 2k2 + 48

k3
,

and so on. Each sum on the left-hand side of the above set of equations is a convolution of
the powers of i and the k-Fibonacci numbers. We define

T
(p)
k,n =

{

∑n

i=0 Fk,n−i, if p = 0;
∑n

i=0 i
pFk,n−i, if p ≥ 1.

(14)

A pattern is evident in the above set of equations. Note that each equation is of the form

k · T (p)
k,n = Φ

(p)
k (0)Fk,n+1 + Φ

(p)
k (−1)Fk,n − Φ

(p)
k (n), (15)

where Φ
(p)
k (n) is a polynomial in n of degree p. To find an explicit formula for Φ

(p)
k (n), we

must define the sequence
(

A
(p)
k

)

p≥0
as follows:

Definition 2. The sequence
(

A
(p)
k

)

p≥0
of numbers is defined by the recurrence

A
(p)
k =

{

1, if p = 0;
2
k

∑⌈ p

2
⌉

j=1

(

p

2j−1

)

A
(p−2j+1)
k , if p ≥ 1.

(16)
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The recurrence A
(p)
k generates the sequence

1,
2

k
,
8

k2
,
2k2 + 48

k3
,
32k2 + 384

k4
, . . . .

Note that these numbers are the coefficients of Fk,n+1 in the above set of equations. The

numbers A
(p)
k for p = 1, 2, 3, and 4 are given below:

(i) A
(p)
1 : 1, 2, 8, 50, 416, 4322, 53888, . . .. This sequence is A000557 in the OEIS [15].

(ii) A
(p)
2 : 1, 1, 2, 7, 32, 181, 1232, . . .. This sequence is A006154 in the OEIS [15].

(iii) A
(p)
3 : 1,

2

3
,
8

9
,
22

9
,
224

27
,
2774

81
,
13952

81
, . . ..

(iv) A
(p)
4 : 1,

1

2
,
1

2
,
5

4
,
7

2
,
47

4
,
197

4
, . . ..

From the last equation in the set of convolution identities given above, we recognize that

Φ
(3)
k (n) = n3 +

6

k
n2 +

24

k2
n+

2k2 + 48

k3

= 1 ·
(

3

0

)

n3 +
2

k
·
(

3

1

)

n2 +
8

k2
·
(

3

2

)

n+
2k2 + 48

k3
·
(

3

3

)

,

where 1, 2/k, 8/k2, (2k2 + 48)/k3 are the first four terms of the sequence
(

A
(p)
k

)

p≥0
. With all

this in mind, we make the following definition:

Definition 3. For all integers p ≥ 0, we define the polynomial Φ
(p)
k (n) as

Φ
(p)
k (n) =

{

A
(p)
k , if n = 0;

∑p

r=0A
(r)
k

(

p

r

)

np−r, if n 6= 0.
(17)

Rewriting Eq. (15) in terms of A
(p)
k , we have the following theorem:

Theorem 4. If T
(p)
k,n is as defined in Eq. (14), then for all integers p ≥ 0, we have

k · T (p)
k,n = A

(p)
k Fk,n+1 +

p
∑

r=0

A
(r)
k

(

p

r

)

(

(−1)p−rFk,n − np−r
)

. (18)

Proof. We use induction on p. When p = 0, the left-hand side of Eq. (18) is

k · T (0)
k,n = k

n
∑

i=0

Fk,n−i = Fk,n+1 + Fk,n − 1,

8
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and the right-hand side is

A
(0)
k Fk,n+1 + A

(0)
k (Fk,n − 1) =

1

k
(Fk,n+1 + Fk,n − 1).

Thus, Eq. (18) holds for p = 0. Now, fix p ≥ 1. Assume that Eq. (18) holds for all
non-negative integers less than p. First, we rewrite Eq. (8) in Theorem 1 as

Fk,n = np + k

n
∑

i=1

ipFk,n−i − 2
n

∑

i=1

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

ip−2j+1Fk,n−i.

By switching the order of summation in the double summand, we get

Fk,n = np + k

n
∑

i=1

ipFk,n−i − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

) n
∑

i=1

ip−2j+1Fk,n−i.

Since ipFk,n−i = 0 for i = 0, we can start the first summand at i = 0 instead of at i = 1, and
thus we obtain

Fk,n = np + k

n
∑

i=0

ipFk,n−i − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

) n
∑

i=1

ip−2j+1Fk,n−i. (19)

If p is even, then Eq. (19) can be put in the form

Fk,n = np + k

n
∑

i=0

ipFk,n−i − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

) n
∑

i=0

ip−2j+1Fk,n−i, (20)

because the term corresponding to i = 0 in the last summand is 0p−2j+1Fk,n = 0 for all
j = 1, 2, . . . , p/2. On the other hand, if p is odd, then Eq. (19) can be written as

Fk,n = np + k

n
∑

i=0

ipFk,n−i − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

) n
∑

i=0

ip−2j+1Fk,n−i + 2Fk,n,

because the term corresponding to i = 0 in the last summation is 0p−2j+1Fk,n = 0 for
j 6= (p+ 1)/2 and Fk,n for j = (p+ 1)/2. Therefore, if p is odd, we have

−Fk,n = np + k

n
∑

i=0

ipFk,n−i − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

) n
∑

i=0

ip−2j+1Fk,n−i. (21)

Thus, from Eqs. (20) and (21), we conclude that

(−1)pFk,n = np + k · T (p)
k,n − 2

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

T
(p−2j+1)
k,n ,

9



and hence

k · T (p)
k,n = (−1)pFk,n − np +

2

k

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

k · T (p−2j+1)
k,n . (22)

Now, by induction hypothesis, for 1 ≤ j ≤ ⌈p

2
⌉, we have

k · T (p−2j+1)
k,n =A

(p−2j+1)
k Fk,n+1 +

p−2j+1
∑

r=0

A
(r)
k

(

p− 2j + 1

r

)

(

(−1)p−2j+1−rFk,n − np−2j+1−r
)

.

Substituting this in Eq. (22), we get

k · T (p)
k,n = (−1)pFk,n − np +

2

k

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

)

A
(p−2j+1)
k Fk,n+1

+
2

k

⌈ p

2
⌉

∑

j=1

(

p

2j − 1

) p−2j+1
∑

r=0

A
(r)
k

(

p− 2j + 1

r

)

(

(−1)p−2j+1−rFk,n − np−2j+1−r
)

.

Using the Definition 2, this can be written as

k · T (p)
k,n = (−1)pFk,n − np + A

(p)
k Fk,n+1

+
2

k

⌈ p

2
⌉

∑

j=1

p−2j+1
∑

r=0

A
(r)
k

(

p

2j − 1

)(

p− 2j + 1

r

)

(

(−1)p−2j+1−rFk,n − np−2j+1−r
)

.

If we execute the change of variable r′ = 2j + r − 1, this becomes

k · T (p)
k,n = (−1)pFk,n − np + A

(p)
k Fk,n+1

+
2

k

⌈ p

2
⌉

∑

j=1

p
∑

r′=2j−1

A
(r′−2j+1)
k

(

p

2j − 1

)(

p− 2j + 1

r′ − 2j + 1

)

(

(−1)p−r′Fk,n − np−r′).

Now, by switching the order of summation, we obtain

k · T (p)
k,n = (−1)pFk,n − np + A

(p)
k Fk,n+1

+
2

k

p
∑

r′=1

⌈ r
′

2
⌉

∑

j=1

A
(r′−2j+1)
k

(

p

2j − 1

)(

p− 2j + 1

r′ − 2j + 1

)

(

(−1)p−r′Fk,n − np−r′
)

.

Using the well-known binomial identity
(

n

r

)

=
(

n

n−r

)

, we rewrite this as

k · T (p)
k,n = (−1)pFk,n − np + A

(p)
k Fk,n+1

+
2

k

p
∑

r′=1

⌈ r
′

2
⌉

∑

j=1

A
(r′−2j+1)
k

(

p

p− 2j + 1

)(

p− 2j + 1

p− r′

)

(

(−1)p−r′Fk,n − np−r′
)

.
(23)
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Next, using the binomial identity [2, Identity 134, p. 67]
(

p

q

)(

q

r

)

=
(

p

r

)(

p−r

p−q

)

, we have

(

p

p− 2j − 1

)(

p− 2j + 1

p− r′

)

=

(

p

p− r′

)(

r′

2j − 1

)

=

(

p

r′

)(

r′

2j − 1

)

.

When we substitute this in Eq. (23), we obtain

k · T (p)
k,n = (−1)pFk,n − np + A

(p)
k Fk,n+1

+
2

k

p
∑

r′=1

⌈ r
′

2
⌉

∑

j=1

A
(r′−2j+1)
k

(

p

r′

)(

r′

2j − 1

)

(

(−1)p−r′Fn,k − np−r′
)

= (−1)pFk,n − np + A
(p)
k Fk,n+1

+

p
∑

r′=1

(

2

k

⌈ r
′

2
⌉

∑

j=1

(

r′

2j − 1

)

A
(r′−2j+1)
k

)(

p

r′

)

(

(−1)p−r′Fn,k − np−r′
)

.

Now, using Definition 2, this becomes

k · T (p)
k,n = A

(p)
k Fk,n+1 +

(

(−1)pFk,n − np
)

+

p
∑

r′=1

A
(r′)
k

(

p

r′

)

(

(−1)p−r′Fn,k − np−r′
)

).

Since A
(r′)
k = 1 at r′ = 0, we conclude that

k · T (p)
k,n = A

(p)
k Fk,n+1 +

p
∑

r′=0

A
(r′)
k

(

p

r′

)

(

(−1)p−r′Fn,k − np−r′
)

.

Hence, by induction, Eq. (18) holds for all p ≥ 0. This completes the proof.

4 The Brousseau sums

Let us begin this section with finding the identities about the Brousseau sums
∑n

i=0 i
pFk,i

for p = 1, 2, 3, . . .. Consider the case p = 1.

k ·
n

∑

i=0

iFk,i = k ·
n

∑

i=0

(n− i)Fk,n−i

= nk ·
n

∑

i=0

Fk,n−i − k ·
n

∑

i=0

iFk,n−i

= n
(

Fk,n+1 + Fk,n − 1
)

−
(

2

k
Fk,n+1 +

−k + 2

k
Fk,n −

kn+ 2

k

)

=
1

k

(

(kn− 2)Fk,n+1 + (kn+ k − 2)Fk,n + 2
)

.

11



Proceeding like this, we get the following set of identities:

k ·
n

∑

i=0

Fk,i = Fk,n+1 + Fk,n − 1,

k ·
n

∑

i=0

iFk,i =
1

k

(

(kn− 2)Fk,n+1 + (kn+ k − 2)Fk,n + 2
)

=
1

k

(

(kn− 2)Fk,n+1 + (k(n+ 1)− 2)Fk,n + 2
)

,

k ·
n

∑

i=0

i2Fk,i =
1

k2

((

k2n2 − 4kn+ 8
)

Fk,n+1 +
(

k2n2 + 2k(k − 2)n+ k2 − 4k + 8
)

Fk,n − 8
)

=
1

k2

(

(k2n2 − 4kn+ 8)Fk,n+1 +
(

k2(n+ 1)2 − 4k(n+ 1) + 8
)

Fk,n − 8
)

,

k ·
n

∑

i=0

i3Fk,i =
1

k3

((

k3n3 − 6k2n2 + 24kn− 2k2 − 48
)

Fk,n+1

+
(

k3n3 + 3k2(k − 2)n2 + 3k(k2 − 4k + 8)n+ k3 − 8k2 + 24k − 48
)

Fk,n

+ 2k2 + 48
)

=
1

k3

((

k3n3 − 6k2n2 + 24kn− 2k2 − 48
)

Fk,n+1

+
(

k3(n+ 1)3 − 6k2(n+ 1)2 + 24k(n+ 1)− 2k2 − 48
)

Fk,n + 2k2 + 48
)

,

(24)

and so on. As we expected, these equations also follow a pattern. If we define the sums S
(p)
k,n

as

S
(p)
k,n =

{

∑n

i=0 Fk,i, if p = 0;
∑n

i=0 i
pFk,i, if p ≥ 1,

(25)

then each equation is of the form

k · S(p)
k,n = C

(p)
k (n)Fk,n+1 + C

(p)
k (n+ 1)Fk,n − C

(p)
k (0),

where C
(p)
k (n) is a polynomial in n of degree p. Let us try to investigate the rule of formation

of the coefficients of this polynomial, C
(p)
k (n). From the last equation in Eq. (24), we identify

that

C
(3)
k (n) =

1

k3
(k3n3 − 6k2n2 + 24kn− 2k2 − 48)

= n3 −
(

6

k

)

n2 +

(

24

k2

)

n− 2k2 + 48

k3

= 1 ·
(

3

0

)

n3 − 2

k
·
(

3

1

)

n2 +
8

k2
·
(

3

2

)

n− 2k2 + 48

k3
·
(

3

3

)

,

12



where the numbers 1, 2/k, 8/k2, (2k2 + 48)/k3 are the first four terms of the sequence
(

A
(p)
k

)

p≥0
. With this in mind, we define the coefficient polynomial, C

(p)
k (n), in n of degree p

as follows:

Definition 5. For all integers p ≥ 0, we define

C
(p)
k (n) =

{

(−1)pA(p), if n = 0;
∑p

r=0(−1)rA
(r)
k

(

p

r

)

np−r, if n 6= 0.
(26)

It should be noted that, for k > 2, the polynomial C
(p)
k (n) generally doesn’t have integer

coefficients. From Eqs. (17) and (26), it is clear that Φ
(p)
k (n) = (−1)pC

(p)
k (−n). Consequently,

we may rewrite Eq. (15) as

k · T (p)
k,n = (−1)p

(

C
(p)
k (0)Fk,n+1 + C

(p)
k (1)Fk,n − C

(p)
k (−n)

)

.

The central result (7) about the Brousseau sums of the k-Fibonacci numbers can now be
established.

Theorem 6. If S
(p)
k,n is defined as in Eq. (25), then for all p ≥ 0, we have

k · S(p)
k,n = C

(p)
k (n)Fk,n+1 + C

(p)
k (n+ 1)Fk,n − C

(p)
k (0), (27)

where C
(p)
k (n) is the “coefficient polynomial” as defined in Eq. (26).

Proof. If p = 0, then the left-hand side of Eq. (27) is

k · S(p)
k,n = k ·

n
∑

i=0

Fk,i = Fk,n+1 + Fk,n − 1,

and the right-hand side is

C
(0)
k (n)Fk,n+1 + C

(0)
k (n+ 1)Fk,n − C

(0)
k (0) = A

(0)
k Fk,n+1 + A

(0)
k Fk,n − 1

= Fk,n+1 + Fk,n − 1.

Thus, Eq. (27) holds for p = 0. Now fix p ≥ 1. Then, using the binomial expansion, we have

S
(p)
k,n =

n
∑

i=0

ipFk,i

=
n

∑

i=0

(n− i)pFk,n−i

=
n

∑

i=0

( p
∑

r=0

(

p

r

)

np−r(−i)r
)

Fk,n−i

=

p
∑

r=0

(−1)r
(

p

r

)

np−r

( n
∑

i=0

irFk,n−i

)

=

p
∑

r=0

(−1)r
(

p

r

)

np−rT
(r)
k,n.

13



Thus,

k · S(p)
k,n =

p
∑

r=0

(−1)r
(

p

r

)

np−r

(

k · T (r)
k,n

)

. (28)

Now, using Theorem 4, we have

k · T (r)
k,n = A

(r)
k Fk,n+1 +

r
∑

j=0

A
(j)
k

(

r

j

)

(

(−1)r−jFk,n − nr−j
)

.

When we substitute this in Equation (28), we obtain

k · S(p)
k,n =

p
∑

r=0

(−1)r
(

p

r

)

np−r

(

A
(r)
k Fk,n+1 +

r
∑

j=0

A
(j)
k

(

r

j

)

(

(−1)r−jFk,n − nr−j
)

)

=

( p
∑

r=0

(−1)rA
(r)
k

(

p

r

)

np−r

)

Fk,n+1

+

p
∑

r=0

r
∑

j=0

(−1)rA
(j)
k

(

p

r

)(

r

j

)

(

(−1)r−jFk,n − nr−j
)

np−r

= C
(p)
k (n)Fk,n+1 +

p
∑

r=0

r
∑

j=0

(−1)rA
(j)
k

(

p

r

)(

r

j

)

(

(−1)r−jFk,n − nr−j
)

np−r.

By switching the order of summation, this becomes

k · S(p)
k,n = C

(p)
k (n)Fk,n+1 +

p
∑

j=0

p
∑

r=j

(−1)jA
(j)
k

(

p

r

)(

r

j

)

np−rFk,n

−
p

∑

j=0

p
∑

r=j

(−1)rA
(j)
k

(

p

r

)(

r

j

)

np−j

= C
(p)
k (n)Fk,n+1 +

p
∑

j=0

(−1)jA
(j)
k

( p
∑

r=j

(

p

r

)(

r

j

)

np−r

)

Fk,n

−
p

∑

j=0

A
(j)
k np−j

( p
∑

r=j

(

p

r

)(

r

j

)

(−1)r
)

= C
(p)
k (n)Fk,n+1 +

( p
∑

j=0

(−1)jA
(j)
k

(

p

j

)

(n+ 1)p−j

)

Fk,n − (−1)pA
(p)
k ,

where the last equality follows from the binomial identities

p
∑

r=j

(

p

r

)(

r

j

)

np−r =

(

p

j

)

(n+ 1)p−j,

14



and

p
∑

r=j

(

p

r

)(

r

j

)

(−1)r =

{

0, if j 6= p;

(−1)p, if j = p,

from Gould’s collection [10, Identities 3.118, 3.119, p. 36]. Thus, we conclude that

k · S(p)
k,n = C

(p)
k (n)Fk,n+1 + C

(p)
k (n+ 1)Fk,n − C

(p)
k (0).

Example 7. Setting p = 2 in Eq. (27) we get

k ·
n

∑

i=1

i2Fk,i =

(

n2 − 4

k
n+

8

k2

)

Fk,n+1 +

(

(n+ 1)2 − 4

k
(n+ 1) +

8

k2

)

Fk,n −
8

k2
.

In particular, when k = 11 this becomes

11 ·
n

∑

i=1

i2F11,i =

(

n2 − 4

11
n+

8

121

)

F11,n+1 +

(

(n+ 1)2 − 4

11
(n+ 1) +

8

121

)

F11,n −
8

121
.

Since F11,i = F5i/F5 = F5i/5 (see [9]), we obtain

11 ·
n

∑

i=1

i2F5i =

(

n2 − 4

11
n+

8

121

)

F5n+5 +

(

(n+ 1)2 − 4

11
(n+ 1) +

8

121

)

F5n −
5 · 8
121

,

which gives the identity about the Brousseau sums of the sequence
(

F5i

)

i≥1
.

Example 8. Setting p = 2 and k = 14 in Eq. (27) we get

14 ·
n

∑

i=1

i2F14,i =

(

n2 − 2

7
n+

2

49

)

F14,n+1 +

(

(n+ 1)2 − 2

7
(n+ 1) +

2

49

)

F14,n −
2

49
.

Since F14,i = P3i/P3 = P3i/5 (see [9]), we obtain

14 ·
n

∑

i=1

i2P3i =

(

n2 − 2

7
n+

2

49

)

P3n+3 +

(

(n+ 1)2 − 2

7
(n+ 1) +

2

49

)

P3n −
5 · 2
49

,

which gives the identity about the Brousseau sums of the sequence
(

P3i

)

i≥1
.

Examples 7 and 8 suggest two interesting identities Eqs. (29) and (31). Eq. (29) is about
the Brousseau sums of every mth Fibonacci number, and Eq. (31) is that of every mth Pell
number, when m is odd.
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Corollary 9. Let m ≥ 1 be an odd integer. Then for all integers p ≥ 0, the following identity
holds:

Lm ·
n

∑

i=1

ipFmi = C
(p)
Lm

(n)Fm(n+1) + C
(p)
Lm

(n+ 1)Fmn − C
(p)
Lm

(0)Fm, (29)

where Lm is the mth Lucas number.

Proof. Setting k = Lm in Eq. (27) yields

Lm ·
n

∑

i=1

ipFLm,i = C
(p)
Lm

(n)FLm,n+1 + C
(p)
Lm

(n+ 1)FLm,n − C
(p)
Lm

(0). (30)

If m is odd, then we have (see [9])

FLm,i =
Fmi

Fm

.

Applying this in Eq. (30) and multiplying through by Fm, we get Eq. (29).

Corollary 10. Let m ≥ 1 be an odd number. Then for all integers p ≥ 0, the following
identity holds:

Qm ·
n

∑

i=1

ipPmi = C
(p)
Qm

(n)Pm(n+1) + C
(p)
Qm

(n+ 1)Pmn − C
(p)
Qm

(0)Pm, (31)

where Qm is the mth Pell-Lucas number.

Proof. The proof is similar to the proof of Corollary (9) by using the fact that (see [9])

FQm,i =
Pmi

Pm

,

when m is odd.

5 Shifted Brousseau sums

In this section, we find the formula for the shifted Brousseau sums

n
∑

i=1

ipFk,m+i,
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for all integers m, p ≥ 0. For example, if we take p = 1, then

k ·
n

∑

i=1

iFk,m+i = k ·
m+n
∑

i=m+1

(i−m)Fk,i

= k ·
m+n
∑

i=m+1

iFk,i −mk ·
m+n
∑

i=m+1

Fk,i

= k

(m+n
∑

i=0

iFk,i −
m
∑

i=0

iFk,i

)

−mk

(m+n
∑

i=0

Fk,i −
m
∑

i=0

Fk,i

)

.

Now, using the first two identities in Eq. (24), we have

k ·
n

∑

i=1

iFk,m+i =
1

k

(

(k(m+ n)− 2)Fk,m+n+1 + (k(m+ n+ 1)− 2)Fk,m+n − (km− 2)Fk,m+1

− (k(m+ 1)− 2)Fk,m

)

−m
(

Fk,m+n+1 + Fk,m+n − Fk,m+1 − Fk,m

)

=
1

k

(

(kn− 2)Fk,m+n+1 + (k(n+ 1)− 2)Fk,m+n + 2Fk,m+1 + (−k + 2)Fk,m

)

.

We generalize this identity for all integers p ≥ 0 in the next theorem.

Theorem 11. For all integers m, p ≥ 0, we have

k ·
n

∑

i=1

ipFk,m+i = C
(p)
k (n)Fk,m+n+1 +C

(p)
k (n+ 1)Fk,m+n −C

(p)
k (0)Fk,m+1 −C

(p)
k (1)Fk,m. (32)

Proof. Since Fk,0 = 0 and Fk,1 = 1, the case m = 0 follows from Theorem 6. Now fix m ≥ 1.
Then, using the binomial expansion, we have

n
∑

i=1

ipFk,m+i =
m+n
∑

i=m+1

(i−m)pFk,i

=
m+n
∑

i=m+1

p
∑

j=0

(

p

j

)

ip−j(−m)jFk,i

=

p
∑

j=0

(

p

j

)

(−m)j
m+n
∑

i=m+1

ip−jFk,i

=

p
∑

j=0

(

p

j

)

(−m)j
(

S
(p−j)
k,m+n − S

(p−j)
k,m

)

.

Thus,

k ·
n

∑

i=1

ipFk,m+i =

p
∑

j=0

(

p

j

)

(−m)j
(

k · S(p−j)
k,m+n − k · S(p−j)

k,m

)

.
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Now, applying Theorem 6, this becomes

k ·
n

∑

i=1

ipFk,m+i =

p
∑

j=0

(

p

j

)

(−m)j
(

C
(p−j)
k (m+ n)Fk,m+n+1 + C

(p−j)
k (m+ n+ 1)Fk,m+n

− C
(p−j)
k (m)Fk,m+1 − C

(p−j)
k (m+ 1)Fk,m

)

(33)

Consider

p
∑

j=0

(

p

j

)

(−m)jC
(p−j)
k (m+ n) =

p
∑

j=0

(

p

j

)

(−m)j
p−j
∑

r=0

(−1)rA
(r)
k

(

p− j

r

)

(m+ n)p−j−r.

By switching the order of summation, this becomes

p
∑

j=0

(

p

j

)

(−m)jC
(p−j)
k (m+ n) =

p
∑

r=0

p−r
∑

j=0

(−1)rA
(r)
k

(

p

j

)(

p− j

r

)

(m+ n)p−j−r(−m)j. (34)

Next, we use the binomial identity [2, Identity 134, p. 67] to get
(

p

j

)(

p− j

r

)

=

(

p

p− j

)(

p− j

r

)

=

(

p

r

)(

p− r

j

)

.

Substituting this in Eq. (34), we obtain

p
∑

j=0

(

p

j

)

(−m)jC
(p−j)
k (m+ n) =

p
∑

r=0

(−1)rA
(r)
k

(

p

r

)( p−r
∑

j=0

(

p− r

j

)

(m+ n)p−r−j(−m)j
)

=

p
∑

r=0

(−1)rA
(r)
k

(

p

r

)

np−r

= C
(p)
k (n).

(35)

Similarly, we can show that

p
∑

j=0

(

p

j

)

(−m)jC
(p−j)
k (m+ n+ 1) = C

(p)
k (n+ 1), (36)

p
∑

j=0

(

p

j

)

(−m)jC
(p−j)
k (m) = C

(p)
k (0), (37)

and
p

∑

j=0

(

p

j

)

(−m)jC
(p−j)
k (m+ 1) = C

(p)
k (1). (38)

Thus, Eq. (32) follows by substituting Eq. (35) through Eq. (38) in Eq. (33).
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6 Conclusion

While all the results presented above assume that k is a positive integer, there is no reason not
to extend them to nonzero real numbers as well. The only drawback is that the numbers Fk,n

are not necessarily integers. The k-Fibonacci numbers are just the Fibonacci polynomials
Fn(x) (see [3]) calculated at x = k. Hence, we strongly believe that all the above results are
still valid if we allow non-integer values of k. For example, we can have the identity

√
2 ·

n
∑

i=1

i2Fi

(
√
2
)

=
(

n2 − 2
√
2n+ 4

)

Fn+1

(
√
2
)

+
(

(n+ 1)2 − 2
√
2(n+ 1) + 4

)

Fn

(
√
2
)

− 4.
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[8] S. Falcón and Á. Plaza, On the Fibonacci k-numbers, Chaos Solitons Fractals 32 (2007),
1615–1624.

[9] S. Falcón, Relationships between some k-Fibonacci sequences, Appl. Math. 5 (2014),
2226–2234.

19

https://arxiv.org/abs/2108.04113


[10] H. W. Gould, Combinatorial Identities, Revised edition published by the author, 1972.

[11] R. L. Hendel, A system of four simultaneous recursions: Generalization of the Ledin-
Shannon-Ollerton identity, Fibonacci Quart. 60 (2022), 172–180.

[12] G. Ledin, On a certain kind of Fibonacci sums, Fibonacci Quart. 5 (1967), 45–58.

[13] R. L. Ollerton and A. G. Shannon, A note on Brousseau’s summation problem, Fibonacci
Quart. 58 (2020), 190–199.

[14] A. G. Shannon and R. L. Ollerton, A note on Ledin’s summation problem, Fibonacci
Quart. 59 (2021), 47–56.

[15] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2023. Published
electronically at https://oeis.org.

[16] D. Zeitlin, On summation formulas and identities for Fibonacci numbers, Fibonacci
Quart. 5 (1967), 1–43.

2020 Mathematics Subject Classification: Primary 11B39; Secondary 11B37, 11B65, 11B83.
Keywords : Brousseau sum, Fibonacci number, Fibonacci polynomial, k−Fibonacci number,
binomial coefficient, metallic number.

(Concerned with sequences A000032, A000045, A000129, A000557, A001076, A002203, A002878,
A006154, A006190 A077444, and A259546.)

Received October 11 2023; revised versions received February 23 2024; July 17 2024. Pub-
lished in Journal of Integer Sequences, July 17 2024.

Return to Journal of Integer Sequences home page.

20

https://oeis.org
https://oeis.org/A000032
https://oeis.org/A000045
https://oeis.org/A000129
https://oeis.org/A000557
https://oeis.org/A001076
https://oeis.org/A002203
https://oeis.org/A002878
https://oeis.org/A006154
https://oeis.org/A006190
https://oeis.org/A077444
https://oeis.org/A259546
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	k-Fibonacci numbers and powers
	Convolutions
	The Brousseau sums
	Shifted Brousseau sums
	Conclusion
	Acknowledgment

