# On $k$-Fibonacci Brousseau Sums 

Prabha Sivaraman Nair<br>Department of Mathematics<br>Baby John Memorial Government College, Chavara<br>Kerala 691583<br>India<br>prabhamaths@gmail.com<br>Rejikumar Karunakaran<br>Department of Mathematics<br>NSS College, Cherthala<br>Kerala 688541<br>India<br>rkkmaths@gmail.com


#### Abstract

Using elementary methods, we provide formulas for evaluating the Brousseau sum $\sum_{i=1}^{n} i^{p} F_{k, i}$ and the shifted Brousseau sum $\sum_{i=1}^{n} i^{p} F_{k, m+i}$ for all integers $m, p \geq 0$, where $\left(F_{k, i}\right)_{i \geq 0}$ is the $k$-Fibonacci sequence defined by the two-term linear recurrence $F_{k, i}=k F_{k, i-1}+F_{k, i-2}$ for $i \geq 2$ with initial values $F_{k, 0}=0$ and $F_{k, 1}=1$.


## 1 Introduction

In the second issue of Fibonacci Quarterly in 1963, Brousseau [4] proposed a problem to discover an expression for the Fibonacci sum of the form

$$
\sum_{i=1}^{n} i^{3} F_{i}
$$

where $F_{i}$ is the $i^{\text {th }}$ Fibonacci number. In the following year, Erbacher and Fuchs [7] gave a solution for this problem in terms of $F_{n+2}$ and $F_{n+3}$. Later, Ledin [12], Brousseau [5], and Zeitlin [16] developed various methods to determine expressions for the Brousseau sum

$$
\sum_{i=1}^{n} i^{p} F_{i}
$$

where $p$ is a non-negative integer. Ledin showed that the solution of Erbacher and Fuchs can be expressed in the form

$$
\begin{equation*}
\sum_{i=1}^{n} i^{3} F_{i}=\left(n^{3}-6 n^{2}+24 n-50\right) F_{n+1}+\left(n^{3}-3 n^{2}+15 n-31\right) F_{n}+50 \tag{1}
\end{equation*}
$$

Recently, Ollerton [13], Shannon [14], Hendel [11], and Adegoke [1] derived expressions for such sums. Dresden [6] used a different technique to find the sum $\sum_{i=1}^{n} i^{p} F_{i}$ using just the binomial coefficients. Motivated by this, we develop formulas for the sums

$$
\sum_{i=1}^{n} i^{p} F_{k, i}, \text { and } \sum_{i=1}^{n} i^{p} F_{k, m+i}
$$

for integers $m, p \geq 0$, where $F_{k, i}$ is the $i^{\text {th }} k$-Fibonacci number. For a positive integer $k$, the $k$-Fibonacci sequence (see [8]) $\left(F_{k, n}\right)_{n \geq 0}$ is defined by the two-term linear recurrence

$$
\begin{equation*}
F_{k, n}=k F_{k, n-1}+F_{k, n-2}, \tag{2}
\end{equation*}
$$

with initial values $F_{k, 0}=0$ and $F_{k, 1}=1$. The numbers $F_{k, n}$ are sometimes called the "metallic" or "metallonacci" numbers. The numbers $F_{1, n}$ are the "regular" Fibonacci numbers and $F_{2, n}$ are the Pell numbers $P_{n}$. The Pell numbers $F_{2, n}$ are sometimes called the silver Fibonacci numbers, and the numbers $F_{3, n}$ are sometimes called the bronze Fibonacci numbers. For $k=1,2,3$, and 4, the numbers $F_{k, n}$ are A000045, A000129, A006190, and A001076, respectively, in the OEIS [15]. The $k$-Fibonacci numbers can be extended to negative subscripts by

$$
F_{k, n}=F_{k, n+2}-k F_{k, n+1}, \text { for } n<0
$$

The Lucas sequence $\left(L_{n}\right)_{n \geq 0}$ and the Pell-Lucas sequence $\left(Q_{n}\right)_{n \geq 0}$ are defined, respectively, by

$$
L_{0}=2, L_{1}=1, L_{n}=L_{n-1}+L_{n-2} \text { for } n \geq 2,
$$

and

$$
Q_{0}=Q_{1}=2, Q_{n}=2 Q_{n-1}+Q_{n-2} \text { for } n \geq 2
$$

The numbers $L_{n}$ and $Q_{n}$ are A000032 and A002203, respectively, in the OEIS. Falcón [9] proved that the 4-Fibonacci numbers $F_{4, n}$ are just $F_{3 n} / F_{3}$, the 11-Fibonacci numbers $F_{11, n}$ are just $F_{5 n} / F_{5}$, the 29-Fibonacci numbers $F_{29, n}$ are just $F_{7 n} / F_{7}$, and so on. In general,
for all odd indexed Lucas numbers $L_{m}$, the $L_{m}$-Fibonacci numbers $F_{L_{m}, n}$ are just $F_{m n} / F_{m}$. The sequence $1,4,11,29,76, \ldots$ is A002878 in the OEIS. Falcón [9] also proved that the 14 Fibonacci numbers $F_{14, n}$ are just $P_{3 n} / P_{3}$, the 82-Fibonacci numbers $F_{82, n}$ are just $P_{5 n} / P_{5}$, the 478-Fibonacci numbers $F_{478, n}$ are just $P_{7 n} / P_{7}$, and so on. In general, for all odd indexed Pell-Lucas numbers $Q_{m}$, the $Q_{m}$-Fibonacci numbers are just $P_{m n} / P_{m}$. The sequence $2,14,82,478,2786, \ldots$ is A077444 in the OEIS.

Hendel proved that

$$
\begin{equation*}
2 \cdot \sum_{i=1}^{n} i^{3} P_{i}=\left(n^{3}-3 n^{2}+6 n-7\right) P_{n+1}+\left(n^{3}+3 n-3\right) P_{n}+7 \tag{3}
\end{equation*}
$$

We can see the clear similarities between Eqs. (1) and (3). For further clarity, we rewrite Eqs. (1) and (3) as

$$
\begin{equation*}
\sum_{i=1}^{n} i^{3} F_{i}=\left(n^{3}-6 n^{2}+24 n-50\right) F_{n+1}+\left((n+1)^{3}-6(n+1)^{2}+24(n+1)-50\right) F_{n}+50 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \cdot \sum_{i=1}^{n} i^{3} P_{i}=\left(n^{3}-3 n^{2}+6 n-7\right) P_{n+1}+\left((n+1)^{3}-3(n+1)^{2}+6(n+1)-7\right) F_{n}+7 \tag{5}
\end{equation*}
$$

The identity (4) appears in the OEIS at A259546. If we use the 3-Fibonacci numbers as another example, then we would have

$$
\begin{equation*}
3 \cdot \sum_{i=1}^{n} i^{3} F_{3, i}=\left(n^{3}-2 n^{2}+\frac{8}{3} n-\frac{22}{9}\right) F_{3, n+1}+\left((n+1)^{3}-2(n+1)^{2}+\frac{8}{3}(n+1)-\frac{22}{9}\right) F_{3, n}+\frac{22}{9} . \tag{6}
\end{equation*}
$$

Eqs. (4), (5), and (6) naturally suggest the following interesting generalization about the Brousseau sums of the $k$-Fibonacci numbers:

$$
\begin{equation*}
k \cdot \sum_{i=1}^{n} i^{p} F_{k, i}=\left(C_{k}^{(p)}(n)\right) F_{k, n+1}+\left(C_{k}^{(p)}(n+1)\right) F_{k, n}-C_{k}^{(p)}(0) \tag{7}
\end{equation*}
$$

where $C_{k}^{(p)}(n)$ is a "coefficient polynomial" in $n$ of degree $p$ with rational coefficients. The main task is to find an expression for the polynomial $C_{k}^{(p)}(n)$. We do this using some simple recursion formulas involving just binomial coefficients. We use a similar technique as that of Dresden. Throughout this paper, we assume $\binom{0}{0}=1$.

## $2 k$-Fibonacci numbers and powers

We begin with the following set of identities, which are similar to those with the "regular" Fibonacci numbers [6].

$$
\begin{aligned}
& F_{k, n}=n+\sum_{i=1}^{n}\left(k i-2 \cdot\binom{1}{1}\right) F_{k, n-i}, \\
& F_{k, n}=n^{2}+\sum_{i=1}^{n}\left(k i^{2}-2 \cdot\binom{2}{1} i\right) F_{k, n-i}, \\
& F_{k, n}=n^{3}+\sum_{i=1}^{n}\left(k i^{3}-2 \cdot\binom{3}{1} i^{2}-2 \cdot\binom{3}{3}\right) F_{k, n-i}, \\
& F_{k, n}=n^{4}+\sum_{i=1}^{n}\left(k i^{4}-2 \cdot\binom{4}{1} i^{3}-2 \cdot\binom{4}{3} i\right) F_{k, n-i}, \\
& F_{k, n}=n^{5}+\sum_{i=1}^{n}\left(k i^{5}-2 \cdot\binom{5}{1} i^{4}-2 \cdot\binom{5}{3} i^{2}-2 \cdot\binom{5}{5}\right) F_{k, n-i},
\end{aligned}
$$

and so on. Our first theorem involves the generalization of these formulas.
Theorem 1. For all integers $n, p \geq 1$, we have

$$
\begin{equation*}
F_{k, n}=n^{p}+\sum_{i=1}^{n}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, n-i} . \tag{8}
\end{equation*}
$$

Proof. We use induction on $n$. When $n=1$, the left-hand side of Eq. (8) is $F_{k, 1}=1$ and the right-hand side is

$$
\begin{aligned}
& 1+\sum_{i=1}^{1}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, 1-i} \\
& =1+\left(k-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1}\right) F_{k, 0} \\
& =1+0 \\
& =1 .
\end{aligned}
$$

When $n=2$, the left-hand side of Eq. (8) is $F_{k, 2}=k$ and the right-hand side is

$$
\begin{aligned}
& 2^{p}+\sum_{i=1}^{2}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\left\lceil\frac{p}{2}\right\rceil\right.}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, 2-i} \\
& =2^{p}+\left(k-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1}\right) F_{k, 1}+\left(k 2^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} 2^{p-2 j+1}\right) F_{k, 0} \\
& =2^{p}+\left(k-2 \cdot 2^{p-1}\right)+0 \\
& =k
\end{aligned}
$$

Thus, Eq. (8) holds for $n=1$ and $n=2$. Now fix $n \geq 2$. Assume that Eq. (8) holds for $n-1$ and $n$. Then

$$
\begin{equation*}
F_{k, n}=n^{p}+\sum_{i=1}^{n}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\left[\frac{p}{2}\right\rceil\right.}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, n-i} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{k, n-1}=(n-1)^{p}+\sum_{i=1}^{n-1}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, n-1-i} . \tag{10}
\end{equation*}
$$

Since $F_{k, n-i}=0$ for $i=n$, Eq. (9) can be put in the form

$$
\begin{equation*}
F_{k, n}=n^{p}+\sum_{i=1}^{n-1}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\left[\frac{p}{2}\right\rceil\right.}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, n-i} . \tag{11}
\end{equation*}
$$

Multiplying Eq. (11) by $k$ and adding it to Eq. (10), we get

$$
k F_{k, n}+F_{k, n-1}=k n^{p}+(n-1)^{p}+\sum_{i=1}^{n-1}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} i^{p-2 j+1}\right)\left(k F_{k, n-i}+F_{k, n-i-1}\right) .
$$

Using the $k$-Fibonacci recurrence (2), this becomes

$$
\begin{equation*}
F_{k, n+1}=k n^{p}+(n-1)^{p}+\sum_{i=1}^{n-1}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, n-i+1} \tag{12}
\end{equation*}
$$

Using the binomial expansion, we have the identity

$$
(n+1)^{p}-(n-1)^{p}=2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} n^{p-2 j+1}
$$

and hence

$$
\begin{equation*}
(n-1)^{p}=(n+1)^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} n^{p-2 j+1} \tag{13}
\end{equation*}
$$

Now using Eqs. (12) and (13), we obtain

$$
\begin{aligned}
F_{k, n+1} & =k n^{p}+(n+1)^{p}-2 \sum_{j=1}^{\left\lceil\left[\frac{p}{2}\right\rceil\right.}\binom{p}{2 j-1} n^{p-2 j+1} \\
& +\sum_{i=1}^{n-1}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, n+1-i} \\
& =(n+1)^{p}+\left(k n^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} n^{p-2 j+1}\right) \\
& +\sum_{i=1}^{n-1}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, n+1-i} .
\end{aligned}
$$

Since $F_{k, 1}=1$, we rewrite this as

$$
F_{k, n+1}=(n+1)^{p}+\sum_{i=1}^{n}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, n+1-i} .
$$

Since $F_{k, n+1-i}=0$ when $i=n+1$, we may simply add the corresponding term to the summand on the right-hand side of the above equation to get

$$
F_{k, n+1}=(n+1)^{p}+\sum_{i=1}^{n+1}\left(k i^{p}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} i^{p-2 j+1}\right) F_{k, n+1-i}
$$

and this completes the induction step. This concludes the proof.

## 3 Convolutions

Applying Theorem 1 along with the $k$-Fibonacci sum [8, Proposition 8]

$$
\sum_{i=0}^{n} F_{k, n}=\frac{1}{k}\left(F_{k, n+1}+F_{k, n}-1\right)
$$

we can recursively find the following convolution identities:

$$
\begin{aligned}
k \cdot \sum_{i=0}^{n} F_{k, n-i} & =F_{k, n+1}+F_{k, n}-1, \\
k \cdot \sum_{i=0}^{n} i F_{k, n-i} & =\frac{1}{k}\left(2 F_{k, n+1}+(-k+2) F_{k, n}-(k n+2)\right) \\
& =\left(\frac{2}{k}\right) F_{k, n+1}+\left(\frac{-k+2}{k}\right) F_{k, n}-\frac{k n+2}{k}, \\
k \cdot \sum_{i=0}^{n} i^{2} F_{k, n-i} & =\frac{1}{k^{2}}\left(8 F_{k, n+1}+\left(k^{2}-4 k+8\right) F_{k, n}-\left(k^{2} n^{2}+4 k n+8\right)\right) \\
& =\left(\frac{8}{k^{2}}\right) F_{k, n+1}+\left(\frac{k^{2}-4 k+8}{k^{2}}\right) F_{k, n}-\frac{k^{2} n^{2}+4 k n+8}{k^{2}}, \\
k \cdot \sum_{i=0}^{n} i^{3} F_{k, n-i} & =\frac{1}{k^{3}}\left(\left(2 k^{2}+48\right) F_{k, n+1}+\left(-k^{3}+8 k^{2}-24 k+48\right) F_{k, n}\right. \\
& \left.-\left(k^{3} n^{3}+6 k^{2} n^{2}+24 k n+2 k^{2}+48\right)\right), \\
& =\left(\frac{2 k^{2}+48}{k^{3}}\right) F_{k, n+1}+\left(\frac{-k^{3}+8 k^{2}-24 k+48}{k^{3}}\right) F_{k, n} \\
& -\frac{k^{3} n^{3}+6 k^{2} n^{2}+24 k n+2 k^{2}+48}{k^{3}},
\end{aligned}
$$

and so on. Each sum on the left-hand side of the above set of equations is a convolution of the powers of $i$ and the $k$-Fibonacci numbers. We define

$$
T_{k, n}^{(p)}= \begin{cases}\sum_{i=0}^{n} F_{k, n-i}, & \text { if } p=0  \tag{14}\\ \sum_{i=0}^{n} i^{p} F_{k, n-i}, & \text { if } p \geq 1\end{cases}
$$

A pattern is evident in the above set of equations. Note that each equation is of the form

$$
\begin{equation*}
k \cdot T_{k, n}^{(p)}=\Phi_{k}^{(p)}(0) F_{k, n+1}+\Phi_{k}^{(p)}(-1) F_{k, n}-\Phi_{k}^{(p)}(n), \tag{15}
\end{equation*}
$$

where $\Phi_{k}^{(p)}(n)$ is a polynomial in $n$ of degree $p$. To find an explicit formula for $\Phi_{k}^{(p)}(n)$, we must define the sequence $\left(A_{k}^{(p)}\right)_{p \geq 0}$ as follows:

Definition 2. The sequence $\left(A_{k}^{(p)}\right)_{p \geq 0}$ of numbers is defined by the recurrence

$$
A_{k}^{(p)}= \begin{cases}1, & \text { if } p=0  \tag{16}\\ \frac{2}{k} \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} A_{k}^{(p-2 j+1)}, & \text { if } p \geq 1\end{cases}
$$

The recurrence $A_{k}^{(p)}$ generates the sequence

$$
1, \frac{2}{k}, \frac{8}{k^{2}}, \frac{2 k^{2}+48}{k^{3}}, \frac{32 k^{2}+384}{k^{4}}, \ldots
$$

Note that these numbers are the coefficients of $F_{k, n+1}$ in the above set of equations. The numbers $A_{k}^{(p)}$ for $p=1,2,3$, and 4 are given below:
(i) $A_{1}^{(p)}: 1,2,8,50,416,4322,53888, \ldots$ This sequence is A 000557 in the OEIS [15].
(ii) $A_{2}^{(p)}: 1,1,2,7,32,181,1232, \ldots$. This sequence is $\underline{\text { A006154 }}$ in the OEIS [15].
(iii) $A_{3}^{(p)}: 1, \frac{2}{3}, \frac{8}{9}, \frac{22}{9}, \frac{224}{27}, \frac{2774}{81}, \frac{13952}{81}, \ldots$.
(iv) $A_{4}^{(p)}: 1, \frac{1}{2}, \frac{1}{2}, \frac{5}{4}, \frac{7}{2}, \frac{47}{4}, \frac{197}{4}, \ldots$

From the last equation in the set of convolution identities given above, we recognize that

$$
\begin{aligned}
\Phi_{k}^{(3)}(n) & =n^{3}+\frac{6}{k} n^{2}+\frac{24}{k^{2}} n+\frac{2 k^{2}+48}{k^{3}} \\
& =1 \cdot\binom{3}{0} n^{3}+\frac{2}{k} \cdot\binom{3}{1} n^{2}+\frac{8}{k^{2}} \cdot\binom{3}{2} n+\frac{2 k^{2}+48}{k^{3}} \cdot\binom{3}{3},
\end{aligned}
$$

where $1,2 / k, 8 / k^{2},\left(2 k^{2}+48\right) / k^{3}$ are the first four terms of the sequence $\left(A_{k}^{(p)}\right)_{p \geq 0}$. With all this in mind, we make the following definition:

Definition 3. For all integers $p \geq 0$, we define the polynomial $\Phi_{k}^{(p)}(n)$ as

$$
\Phi_{k}^{(p)}(n)= \begin{cases}A_{k}^{(p)}, & \text { if } n=0  \tag{17}\\ \sum_{r=0}^{p} A_{k}^{(r)}\binom{p}{r} n^{p-r}, & \text { if } n \neq 0\end{cases}
$$

Rewriting Eq. (15) in terms of $A_{k}^{(p)}$, we have the following theorem:
Theorem 4. If $T_{k, n}^{(p)}$ is as defined in Eq. (14), then for all integers $p \geq 0$, we have

$$
\begin{equation*}
k \cdot T_{k, n}^{(p)}=A_{k}^{(p)} F_{k, n+1}+\sum_{r=0}^{p} A_{k}^{(r)}\binom{p}{r}\left((-1)^{p-r} F_{k, n}-n^{p-r}\right) . \tag{18}
\end{equation*}
$$

Proof. We use induction on $p$. When $p=0$, the left-hand side of Eq. (18) is

$$
k \cdot T_{k, n}^{(0)}=k \sum_{i=0}^{n} F_{k, n-i}=F_{k, n+1}+F_{k, n}-1,
$$

and the right-hand side is

$$
A_{k}^{(0)} F_{k, n+1}+A_{k}^{(0)}\left(F_{k, n}-1\right)=\frac{1}{k}\left(F_{k, n+1}+F_{k, n}-1\right)
$$

Thus, Eq. (18) holds for $p=0$. Now, fix $p \geq 1$. Assume that Eq. (18) holds for all non-negative integers less than $p$. First, we rewrite Eq. (8) in Theorem 1 as

$$
F_{k, n}=n^{p}+k \sum_{i=1}^{n} i^{p} F_{k, n-i}-2 \sum_{i=1}^{n} \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} i^{p-2 j+1} F_{k, n-i} .
$$

By switching the order of summation in the double summand, we get

$$
F_{k, n}=n^{p}+k \sum_{i=1}^{n} i^{p} F_{k, n-i}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} \sum_{i=1}^{n} i^{p-2 j+1} F_{k, n-i} .
$$

Since $i^{p} F_{k, n-i}=0$ for $i=0$, we can start the first summand at $i=0$ instead of at $i=1$, and thus we obtain

$$
\begin{equation*}
F_{k, n}=n^{p}+k \sum_{i=0}^{n} i^{p} F_{k, n-i}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} \sum_{i=1}^{n} i^{p-2 j+1} F_{k, n-i} \tag{19}
\end{equation*}
$$

If $p$ is even, then Eq. (19) can be put in the form

$$
\begin{equation*}
F_{k, n}=n^{p}+k \sum_{i=0}^{n} i^{p} F_{k, n-i}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} \sum_{i=0}^{n} i^{p-2 j+1} F_{k, n-i} \tag{20}
\end{equation*}
$$

because the term corresponding to $i=0$ in the last summand is $0^{p-2 j+1} F_{k, n}=0$ for all $j=1,2, \ldots, p / 2$. On the other hand, if $p$ is odd, then Eq. (19) can be written as

$$
F_{k, n}=n^{p}+k \sum_{i=0}^{n} i^{p} F_{k, n-i}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} \sum_{i=0}^{n} i^{p-2 j+1} F_{k, n-i}+2 F_{k, n},
$$

because the term corresponding to $i=0$ in the last summation is $0^{p-2 j+1} F_{k, n}=0$ for $j \neq(p+1) / 2$ and $F_{k, n}$ for $j=(p+1) / 2$. Therefore, if $p$ is odd, we have

$$
\begin{equation*}
-F_{k, n}=n^{p}+k \sum_{i=0}^{n} i^{p} F_{k, n-i}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} \sum_{i=0}^{n} i^{p-2 j+1} F_{k, n-i} \tag{21}
\end{equation*}
$$

Thus, from Eqs. (20) and (21), we conclude that

$$
(-1)^{p} F_{k, n}=n^{p}+k \cdot T_{k, n}^{(p)}-2 \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} T_{k, n}^{(p-2 j+1)},
$$

and hence

$$
\begin{equation*}
k \cdot T_{k, n}^{(p)}=(-1)^{p} F_{k, n}-n^{p}+\frac{2}{k} \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} k \cdot T_{k, n}^{(p-2 j+1)} . \tag{22}
\end{equation*}
$$

Now, by induction hypothesis, for $1 \leq j \leq\left\lceil\frac{p}{2}\right\rceil$, we have

$$
k \cdot T_{k, n}^{(p-2 j+1)}=A_{k}^{(p-2 j+1)} F_{k, n+1}+\sum_{r=0}^{p-2 j+1} A_{k}^{(r)}\binom{p-2 j+1}{r}\left((-1)^{p-2 j+1-r} F_{k, n}-n^{p-2 j+1-r}\right) .
$$

Substituting this in Eq. (22), we get

$$
\begin{aligned}
k \cdot T_{k, n}^{(p)} & =(-1)^{p} F_{k, n}-n^{p}+\frac{2}{k} \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} A_{k}^{(p-2 j+1)} F_{k, n+1} \\
& +\frac{2}{k} \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil}\binom{p}{2 j-1} \sum_{r=0}^{p-2 j+1} A_{k}^{(r)}\binom{p-2 j+1}{r}\left((-1)^{p-2 j+1-r} F_{k, n}-n^{p-2 j+1-r}\right)
\end{aligned}
$$

Using the Definition 2, this can be written as

$$
\begin{aligned}
k \cdot T_{k, n}^{(p)} & =(-1)^{p} F_{k, n}-n^{p}+A_{k}^{(p)} F_{k, n+1} \\
& +\frac{2}{k} \sum_{j=1}^{\left\lceil\left[\frac{p}{2}\right\rceil\right.} \sum_{r=0}^{p-2 j+1} A_{k}^{(r)}\binom{p}{2 j-1}\binom{p-2 j+1}{r}\left((-1)^{p-2 j+1-r} F_{k, n}-n^{p-2 j+1-r}\right) .
\end{aligned}
$$

If we execute the change of variable $r^{\prime}=2 j+r-1$, this becomes

$$
\begin{aligned}
k \cdot T_{k, n}^{(p)} & =(-1)^{p} F_{k, n}-n^{p}+A_{k}^{(p)} F_{k, n+1} \\
& +\frac{2}{k} \sum_{j=1}^{\left\lceil\frac{p}{2}\right\rceil} \sum_{r^{\prime}=2 j-1}^{p} A_{k}^{\left(r^{\prime}-2 j+1\right)}\binom{p}{2 j-1}\binom{p-2 j+1}{r^{\prime}-2 j+1}\left((-1)^{p-r^{\prime}} F_{k, n}-n^{p-r^{\prime}}\right)
\end{aligned}
$$

Now, by switching the order of summation, we obtain

$$
\begin{aligned}
k \cdot T_{k, n}^{(p)} & =(-1)^{p} F_{k, n}-n^{p}+A_{k}^{(p)} F_{k, n+1} \\
& +\frac{2}{k} \sum_{r^{\prime}=1}^{p} \sum_{j=1}^{\left\lceil\frac{r^{\prime}}{2}\right\rceil} A_{k}^{\left(r^{\prime}-2 j+1\right)}\binom{p}{2 j-1}\binom{p-2 j+1}{r^{\prime}-2 j+1}\left((-1)^{p-r^{\prime}} F_{k, n}-n^{p-r^{\prime}}\right) .
\end{aligned}
$$

Using the well-known binomial identity $\binom{n}{r}=\binom{n}{n-r}$, we rewrite this as

$$
\begin{align*}
k \cdot T_{k, n}^{(p)} & =(-1)^{p} F_{k, n}-n^{p}+A_{k}^{(p)} F_{k, n+1} \\
& +\frac{2}{k} \sum_{r^{\prime}=1}^{p} \sum_{j=1}^{\left\lceil\frac{\left.r^{\prime}\right\rceil}{2}\right\rceil} A_{k}^{\left(r^{\prime}-2 j+1\right)}\binom{p}{p-2 j+1}\binom{p-2 j+1}{p-r^{\prime}}\left((-1)^{p-r^{\prime}} F_{k, n}-n^{p-r^{\prime}}\right) . \tag{23}
\end{align*}
$$

Next, using the binomial identity [2, Identity 134, p. 67] $\binom{p}{q}\binom{q}{r}=\binom{p}{r}\binom{p-r}{p-q}$, we have

$$
\binom{p}{p-2 j-1}\binom{p-2 j+1}{p-r^{\prime}}=\binom{p}{p-r^{\prime}}\binom{r^{\prime}}{2 j-1}=\binom{p}{r^{\prime}}\binom{r^{\prime}}{2 j-1}
$$

When we substitute this in Eq. (23), we obtain

$$
\begin{aligned}
k \cdot T_{k, n}^{(p)} & =(-1)^{p} F_{k, n}-n^{p}+A_{k}^{(p)} F_{k, n+1} \\
& +\frac{2}{k} \sum_{r^{\prime}=1}^{p} \sum_{j=1}^{\left\lceil r^{\prime}\right\rceil} A_{k}^{\left(r^{\prime}-2 j+1\right)}\binom{p}{r^{\prime}}\binom{r^{\prime}}{2 j-1}\left((-1)^{p-r^{\prime}} F_{n, k}-n^{p-r^{\prime}}\right) \\
& =(-1)^{p} F_{k, n}-n^{p}+A_{k}^{(p)} F_{k, n+1} \\
& +\sum_{r^{\prime}=1}^{p}\left(\frac{2}{k} \sum_{j=1}^{\left\lceil\frac{\left.r^{\prime}\right\rceil}{2}\right\rceil}\binom{r^{\prime}}{2 j-1} A_{k}^{\left(r^{\prime}-2 j+1\right)}\right)\binom{p}{r^{\prime}}\left((-1)^{p-r^{\prime}} F_{n, k}-n^{p-r^{\prime}}\right) .
\end{aligned}
$$

Now, using Definition 2, this becomes

$$
\left.k \cdot T_{k, n}^{(p)}=A_{k}^{(p)} F_{k, n+1}+\left((-1)^{p} F_{k, n}-n^{p}\right)+\sum_{r^{\prime}=1}^{p} A_{k}^{\left(r^{\prime}\right)}\binom{p}{r^{\prime}}\left((-1)^{p-r^{\prime}} F_{n, k}-n^{p-r^{\prime}}\right)\right)
$$

Since $A_{k}^{\left(r^{\prime}\right)}=1$ at $r^{\prime}=0$, we conclude that

$$
k \cdot T_{k, n}^{(p)}=A_{k}^{(p)} F_{k, n+1}+\sum_{r^{\prime}=0}^{p} A_{k}^{\left(r^{\prime}\right)}\binom{p}{r^{\prime}}\left((-1)^{p-r^{\prime}} F_{n, k}-n^{p-r^{\prime}}\right)
$$

Hence, by induction, Eq. (18) holds for all $p \geq 0$. This completes the proof.

## 4 The Brousseau sums

Let us begin this section with finding the identities about the Brousseau sums $\sum_{i=0}^{n} i^{p} F_{k, i}$ for $p=1,2,3, \ldots$. Consider the case $p=1$.

$$
\begin{aligned}
k \cdot \sum_{i=0}^{n} i F_{k, i} & =k \cdot \sum_{i=0}^{n}(n-i) F_{k, n-i} \\
& =n k \cdot \sum_{i=0}^{n} F_{k, n-i}-k \cdot \sum_{i=0}^{n} i F_{k, n-i} \\
& =n\left(F_{k, n+1}+F_{k, n}-1\right)-\left(\frac{2}{k} F_{k, n+1}+\frac{-k+2}{k} F_{k, n}-\frac{k n+2}{k}\right) \\
& =\frac{1}{k}\left((k n-2) F_{k, n+1}+(k n+k-2) F_{k, n}+2\right) .
\end{aligned}
$$

Proceeding like this, we get the following set of identities:

$$
\begin{align*}
k \cdot \sum_{i=0}^{n} F_{k, i} & =F_{k, n+1}+F_{k, n}-1, \\
k \cdot \sum_{i=0}^{n} i F_{k, i} & =\frac{1}{k}\left((k n-2) F_{k, n+1}+(k n+k-2) F_{k, n}+2\right) \\
& =\frac{1}{k}\left((k n-2) F_{k, n+1}+(k(n+1)-2) F_{k, n}+2\right), \\
k \cdot \sum_{i=0}^{n} i^{2} F_{k, i} & =\frac{1}{k^{2}}\left(\left(k^{2} n^{2}-4 k n+8\right) F_{k, n+1}+\left(k^{2} n^{2}+2 k(k-2) n+k^{2}-4 k+8\right) F_{k, n}-8\right) \\
& =\frac{1}{k^{2}}\left(\left(k^{2} n^{2}-4 k n+8\right) F_{k, n+1}+\left(k^{2}(n+1)^{2}-4 k(n+1)+8\right) F_{k, n}-8\right), \\
k \cdot \sum_{i=0}^{n} i^{3} F_{k, i} & =\frac{1}{k^{3}}\left(\left(k^{3} n^{3}-6 k^{2} n^{2}+24 k n-2 k^{2}-48\right) F_{k, n+1}\right. \\
& +\left(k^{3} n^{3}+3 k^{2}(k-2) n^{2}+3 k\left(k^{2}-4 k+8\right) n+k^{3}-8 k^{2}+24 k-48\right) F_{k, n} \\
& \left.+2 k^{2}+48\right) \\
& =\frac{1}{k^{3}}\left(\left(k^{3} n^{3}-6 k^{2} n^{2}+24 k n-2 k^{2}-48\right) F_{k, n+1}\right. \\
& \left.+\left(k^{3}(n+1)^{3}-6 k^{2}(n+1)^{2}+24 k(n+1)-2 k^{2}-48\right) F_{k, n}+2 k^{2}+48\right), \tag{24}
\end{align*}
$$

and so on. As we expected, these equations also follow a pattern. If we define the sums $S_{k, n}^{(p)}$ as

$$
S_{k, n}^{(p)}= \begin{cases}\sum_{i=0}^{n} F_{k, i}, & \text { if } p=0  \tag{25}\\ \sum_{i=0}^{n} i^{p} F_{k, i}, & \text { if } p \geq 1,\end{cases}
$$

then each equation is of the form

$$
k \cdot S_{k, n}^{(p)}=C_{k}^{(p)}(n) F_{k, n+1}+C_{k}^{(p)}(n+1) F_{k, n}-C_{k}^{(p)}(0)
$$

where $C_{k}^{(p)}(n)$ is a polynomial in $n$ of degree $p$. Let us try to investigate the rule of formation of the coefficients of this polynomial, $C_{k}^{(p)}(n)$. From the last equation in Eq. (24), we identify that

$$
\begin{aligned}
C_{k}^{(3)}(n) & =\frac{1}{k^{3}}\left(k^{3} n^{3}-6 k^{2} n^{2}+24 k n-2 k^{2}-48\right) \\
& =n^{3}-\left(\frac{6}{k}\right) n^{2}+\left(\frac{24}{k^{2}}\right) n-\frac{2 k^{2}+48}{k^{3}} \\
& =1 \cdot\binom{3}{0} n^{3}-\frac{2}{k} \cdot\binom{3}{1} n^{2}+\frac{8}{k^{2}} \cdot\binom{3}{2} n-\frac{2 k^{2}+48}{k^{3}} \cdot\binom{3}{3},
\end{aligned}
$$

where the numbers $1,2 / k, 8 / k^{2},\left(2 k^{2}+48\right) / k^{3}$ are the first four terms of the sequence $\left(A_{k}^{(p)}\right)_{p \geq 0}$. With this in mind, we define the coefficient polynomial, $C_{k}^{(p)}(n)$, in $n$ of degree $p$ as follows:

Definition 5. For all integers $p \geq 0$, we define

$$
C_{k}^{(p)}(n)= \begin{cases}(-1)^{p} A(p), & \text { if } n=0  \tag{26}\\ \sum_{r=0}^{p}(-1)^{r} A_{k}^{(r)}\binom{p}{r} n^{p-r}, & \text { if } n \neq 0\end{cases}
$$

It should be noted that, for $k>2$, the polynomial $C_{k}^{(p)}(n)$ generally doesn't have integer coefficients. From Eqs. (17) and (26), it is clear that $\Phi_{k}^{(p)}(n)=(-1)^{p} C_{k}^{(p)}(-n)$. Consequently, we may rewrite Eq. (15) as

$$
k \cdot T_{k, n}^{(p)}=(-1)^{p}\left(C_{k}^{(p)}(0) F_{k, n+1}+C_{k}^{(p)}(1) F_{k, n}-C_{k}^{(p)}(-n)\right)
$$

The central result (7) about the Brousseau sums of the $k$-Fibonacci numbers can now be established.
Theorem 6. If $S_{k, n}^{(p)}$ is defined as in Eq. (25), then for all $p \geq 0$, we have

$$
\begin{equation*}
k \cdot S_{k, n}^{(p)}=C_{k}^{(p)}(n) F_{k, n+1}+C_{k}^{(p)}(n+1) F_{k, n}-C_{k}^{(p)}(0) \tag{27}
\end{equation*}
$$

where $C_{k}^{(p)}(n)$ is the "coefficient polynomial" as defined in Eq. (26).
Proof. If $p=0$, then the left-hand side of Eq. (27) is

$$
k \cdot S_{k, n}^{(p)}=k \cdot \sum_{i=0}^{n} F_{k, i}=F_{k, n+1}+F_{k, n}-1,
$$

and the right-hand side is

$$
\begin{aligned}
C_{k}^{(0)}(n) F_{k, n+1}+C_{k}^{(0)}(n+1) F_{k, n}-C_{k}^{(0)}(0) & =A_{k}^{(0)} F_{k, n+1}+A_{k}^{(0)} F_{k, n}-1 \\
& =F_{k, n+1}+F_{k, n}-1
\end{aligned}
$$

Thus, Eq. (27) holds for $p=0$. Now fix $p \geq 1$. Then, using the binomial expansion, we have

$$
\begin{aligned}
S_{k, n}^{(p)} & =\sum_{i=0}^{n} i^{p} F_{k, i} \\
& =\sum_{i=0}^{n}(n-i)^{p} F_{k, n-i} \\
& =\sum_{i=0}^{n}\left(\sum_{r=0}^{p}\binom{p}{r} n^{p-r}(-i)^{r}\right) F_{k, n-i} \\
& =\sum_{r=0}^{p}(-1)^{r}\binom{p}{r} n^{p-r}\left(\sum_{i=0}^{n} i^{r} F_{k, n-i}\right) \\
& =\sum_{r=0}^{p}(-1)^{r}\binom{p}{r} n^{p-r} T_{k, n}^{(r)} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
k \cdot S_{k, n}^{(p)}=\sum_{r=0}^{p}(-1)^{r}\binom{p}{r} n^{p-r}\left(k \cdot T_{k, n}^{(r)}\right) \tag{28}
\end{equation*}
$$

Now, using Theorem 4, we have

$$
k \cdot T_{k, n}^{(r)}=A_{k}^{(r)} F_{k, n+1}+\sum_{j=0}^{r} A_{k}^{(j)}\binom{r}{j}\left((-1)^{r-j} F_{k, n}-n^{r-j}\right)
$$

When we substitute this in Equation (28), we obtain

$$
\begin{aligned}
k \cdot S_{k, n}^{(p)} & =\sum_{r=0}^{p}(-1)^{r}\binom{p}{r} n^{p-r}\left(A_{k}^{(r)} F_{k, n+1}+\sum_{j=0}^{r} A_{k}^{(j)}\binom{r}{j}\left((-1)^{r-j} F_{k, n}-n^{r-j}\right)\right) \\
& =\left(\sum_{r=0}^{p}(-1)^{r} A_{k}^{(r)}\binom{p}{r} n^{p-r}\right) F_{k, n+1} \\
& +\sum_{r=0}^{p} \sum_{j=0}^{r}(-1)^{r} A_{k}^{(j)}\binom{p}{r}\binom{r}{j}\left((-1)^{r-j} F_{k, n}-n^{r-j}\right) n^{p-r} \\
& =C_{k}^{(p)}(n) F_{k, n+1}+\sum_{r=0}^{p} \sum_{j=0}^{r}(-1)^{r} A_{k}^{(j)}\binom{p}{r}\binom{r}{j}\left((-1)^{r-j} F_{k, n}-n^{r-j}\right) n^{p-r}
\end{aligned}
$$

By switching the order of summation, this becomes

$$
\begin{aligned}
k \cdot S_{k, n}^{(p)} & =C_{k}^{(p)}(n) F_{k, n+1}+\sum_{j=0}^{p} \sum_{r=j}^{p}(-1)^{j} A_{k}^{(j)}\binom{p}{r}\binom{r}{j} n^{p-r} F_{k, n} \\
& -\sum_{j=0}^{p} \sum_{r=j}^{p}(-1)^{r} A_{k}^{(j)}\binom{p}{r}\binom{r}{j} n^{p-j} \\
& =C_{k}^{(p)}(n) F_{k, n+1}+\sum_{j=0}^{p}(-1)^{j} A_{k}^{(j)}\left(\sum_{r=j}^{p}\binom{p}{r}\binom{r}{j} n^{p-r}\right) F_{k, n} \\
& -\sum_{j=0}^{p} A_{k}^{(j)} n^{p-j}\left(\sum_{r=j}^{p}\binom{p}{r}\binom{r}{j}(-1)^{r}\right) \\
& =C_{k}^{(p)}(n) F_{k, n+1}+\left(\sum_{j=0}^{p}(-1)^{j} A_{k}^{(j)}\binom{p}{j}(n+1)^{p-j}\right) F_{k, n}-(-1)^{p} A_{k}^{(p)},
\end{aligned}
$$

where the last equality follows from the binomial identities

$$
\sum_{r=j}^{p}\binom{p}{r}\binom{r}{j} n^{p-r}=\binom{p}{j}(n+1)^{p-j}
$$

and

$$
\sum_{r=j}^{p}\binom{p}{r}\binom{r}{j}(-1)^{r}= \begin{cases}0, & \text { if } j \neq p \\ (-1)^{p}, & \text { if } j=p\end{cases}
$$

from Gould's collection [10, Identities 3.118, 3.119, p. 36]. Thus, we conclude that

$$
k \cdot S_{k, n}^{(p)}=C_{k}^{(p)}(n) F_{k, n+1}+C_{k}^{(p)}(n+1) F_{k, n}-C_{k}^{(p)}(0) .
$$

Example 7. Setting $p=2$ in Eq. (27) we get

$$
k \cdot \sum_{i=1}^{n} i^{2} F_{k, i}=\left(n^{2}-\frac{4}{k} n+\frac{8}{k^{2}}\right) F_{k, n+1}+\left((n+1)^{2}-\frac{4}{k}(n+1)+\frac{8}{k^{2}}\right) F_{k, n}-\frac{8}{k^{2}} .
$$

In particular, when $k=11$ this becomes

$$
11 \cdot \sum_{i=1}^{n} i^{2} F_{11, i}=\left(n^{2}-\frac{4}{11} n+\frac{8}{121}\right) F_{11, n+1}+\left((n+1)^{2}-\frac{4}{11}(n+1)+\frac{8}{121}\right) F_{11, n}-\frac{8}{121} .
$$

Since $F_{11, i}=F_{5 i} / F_{5}=F_{5 i} / 5$ (see [9]), we obtain

$$
11 \cdot \sum_{i=1}^{n} i^{2} F_{5 i}=\left(n^{2}-\frac{4}{11} n+\frac{8}{121}\right) F_{5 n+5}+\left((n+1)^{2}-\frac{4}{11}(n+1)+\frac{8}{121}\right) F_{5 n}-\frac{5 \cdot 8}{121},
$$

which gives the identity about the Brousseau sums of the sequence $\left(F_{5 i}\right)_{i \geq 1}$.
Example 8. Setting $p=2$ and $k=14$ in Eq. (27) we get

$$
14 \cdot \sum_{i=1}^{n} i^{2} F_{14, i}=\left(n^{2}-\frac{2}{7} n+\frac{2}{49}\right) F_{14, n+1}+\left((n+1)^{2}-\frac{2}{7}(n+1)+\frac{2}{49}\right) F_{14, n}-\frac{2}{49} .
$$

Since $F_{14, i}=P_{3 i} / P_{3}=P_{3 i} / 5$ (see [9]), we obtain

$$
14 \cdot \sum_{i=1}^{n} i^{2} P_{3 i}=\left(n^{2}-\frac{2}{7} n+\frac{2}{49}\right) P_{3 n+3}+\left((n+1)^{2}-\frac{2}{7}(n+1)+\frac{2}{49}\right) P_{3 n}-\frac{5 \cdot 2}{49},
$$

which gives the identity about the Brousseau sums of the sequence $\left(P_{3 i}\right)_{i \geq 1}$.
Examples 7 and 8 suggest two interesting identities Eqs. (29) and (31). Eq. (29) is about the Brousseau sums of every $m^{\text {th }}$ Fibonacci number, and Eq. (31) is that of every $m^{\text {th }}$ Pell number, when $m$ is odd.

Corollary 9. Let $m \geq 1$ be an odd integer. Then for all integers $p \geq 0$, the following identity holds:

$$
\begin{equation*}
L_{m} \cdot \sum_{i=1}^{n} i^{p} F_{m i}=C_{L_{m}}^{(p)}(n) F_{m(n+1)}+C_{L_{m}}^{(p)}(n+1) F_{m n}-C_{L_{m}}^{(p)}(0) F_{m}, \tag{29}
\end{equation*}
$$

where $L_{m}$ is the $m^{\text {th }}$ Lucas number.
Proof. Setting $k=L_{m}$ in Eq. (27) yields

$$
\begin{equation*}
L_{m} \cdot \sum_{i=1}^{n} i^{p} F_{L_{m}, i}=C_{L_{m}}^{(p)}(n) F_{L_{m}, n+1}+C_{L_{m}}^{(p)}(n+1) F_{L_{m}, n}-C_{L_{m}}^{(p)}(0) \tag{30}
\end{equation*}
$$

If $m$ is odd, then we have (see [9])

$$
F_{L_{m}, i}=\frac{F_{m i}}{F_{m}}
$$

Applying this in Eq. (30) and multiplying through by $F_{m}$, we get Eq. (29).
Corollary 10. Let $m \geq 1$ be an odd number. Then for all integers $p \geq 0$, the following identity holds:

$$
\begin{equation*}
Q_{m} \cdot \sum_{i=1}^{n} i^{p} P_{m i}=C_{Q_{m}}^{(p)}(n) P_{m(n+1)}+C_{Q_{m}}^{(p)}(n+1) P_{m n}-C_{Q_{m}}^{(p)}(0) P_{m} \tag{31}
\end{equation*}
$$

where $Q_{m}$ is the $m^{\text {th }}$ Pell-Lucas number.
Proof. The proof is similar to the proof of Corollary (9) by using the fact that (see [9])

$$
F_{Q_{m}, i}=\frac{P_{m i}}{P_{m}}
$$

when $m$ is odd.

## 5 Shifted Brousseau sums

In this section, we find the formula for the shifted Brousseau sums

$$
\sum_{i=1}^{n} i^{p} F_{k, m+i}
$$

for all integers $m, p \geq 0$. For example, if we take $p=1$, then

$$
\begin{aligned}
k \cdot \sum_{i=1}^{n} i F_{k, m+i} & =k \cdot \sum_{i=m+1}^{m+n}(i-m) F_{k, i} \\
& =k \cdot \sum_{i=m+1}^{m+n} i F_{k, i}-m k \cdot \sum_{i=m+1}^{m+n} F_{k, i} \\
& =k\left(\sum_{i=0}^{m+n} i F_{k, i}-\sum_{i=0}^{m} i F_{k, i}\right)-m k\left(\sum_{i=0}^{m+n} F_{k, i}-\sum_{i=0}^{m} F_{k, i}\right) .
\end{aligned}
$$

Now, using the first two identities in Eq. (24), we have

$$
\begin{aligned}
k \cdot \sum_{i=1}^{n} i F_{k, m+i} & =\frac{1}{k}\left((k(m+n)-2) F_{k, m+n+1}+(k(m+n+1)-2) F_{k, m+n}-(k m-2) F_{k, m+1}\right. \\
& \left.-(k(m+1)-2) F_{k, m}\right)-m\left(F_{k, m+n+1}+F_{k, m+n}-F_{k, m+1}-F_{k, m}\right) \\
& =\frac{1}{k}\left((k n-2) F_{k, m+n+1}+(k(n+1)-2) F_{k, m+n}+2 F_{k, m+1}+(-k+2) F_{k, m}\right) .
\end{aligned}
$$

We generalize this identity for all integers $p \geq 0$ in the next theorem.
Theorem 11. For all integers $m, p \geq 0$, we have

$$
\begin{equation*}
k \cdot \sum_{i=1}^{n} i^{p} F_{k, m+i}=C_{k}^{(p)}(n) F_{k, m+n+1}+C_{k}^{(p)}(n+1) F_{k, m+n}-C_{k}^{(p)}(0) F_{k, m+1}-C_{k}^{(p)}(1) F_{k, m} \tag{32}
\end{equation*}
$$

Proof. Since $F_{k, 0}=0$ and $F_{k, 1}=1$, the case $m=0$ follows from Theorem 6. Now fix $m \geq 1$. Then, using the binomial expansion, we have

$$
\begin{aligned}
\sum_{i=1}^{n} i^{p} F_{k, m+i} & =\sum_{i=m+1}^{m+n}(i-m)^{p} F_{k, i} \\
& =\sum_{i=m+1}^{m+n} \sum_{j=0}^{p}\binom{p}{j} i^{p-j}(-m)^{j} F_{k, i} \\
& =\sum_{j=0}^{p}\binom{p}{j}(-m)^{j} \sum_{i=m+1}^{m+n} i^{p-j} F_{k, i} \\
& =\sum_{j=0}^{p}\binom{p}{j}(-m)^{j}\left(S_{k, m+n}^{(p-j)}-S_{k, m}^{(p-j)}\right) .
\end{aligned}
$$

Thus,

$$
k \cdot \sum_{i=1}^{n} i^{p} F_{k, m+i}=\sum_{j=0}^{p}\binom{p}{j}(-m)^{j}\left(k \cdot S_{k, m+n}^{(p-j)}-k \cdot S_{k, m}^{(p-j)}\right) .
$$

Now, applying Theorem 6, this becomes

$$
\begin{align*}
k \cdot \sum_{i=1}^{n} i^{p} F_{k, m+i} & =\sum_{j=0}^{p}\binom{p}{j}(-m)^{j}\left(C_{k}^{(p-j)}(m+n) F_{k, m+n+1}+C_{k}^{(p-j)}(m+n+1) F_{k, m+n}\right.  \tag{33}\\
& \left.-C_{k}^{(p-j)}(m) F_{k, m+1}-C_{k}^{(p-j)}(m+1) F_{k, m}\right)
\end{align*}
$$

Consider

$$
\sum_{j=0}^{p}\binom{p}{j}(-m)^{j} C_{k}^{(p-j)}(m+n)=\sum_{j=0}^{p}\binom{p}{j}(-m)^{j} \sum_{r=0}^{p-j}(-1)^{r} A_{k}^{(r)}\binom{p-j}{r}(m+n)^{p-j-r} .
$$

By switching the order of summation, this becomes

$$
\begin{equation*}
\sum_{j=0}^{p}\binom{p}{j}(-m)^{j} C_{k}^{(p-j)}(m+n)=\sum_{r=0}^{p} \sum_{j=0}^{p-r}(-1)^{r} A_{k}^{(r)}\binom{p}{j}\binom{p-j}{r}(m+n)^{p-j-r}(-m)^{j} . \tag{34}
\end{equation*}
$$

Next, we use the binomial identity [2, Identity 134, p. 67] to get

$$
\binom{p}{j}\binom{p-j}{r}=\binom{p}{p-j}\binom{p-j}{r}=\binom{p}{r}\binom{p-r}{j} .
$$

Substituting this in Eq. (34), we obtain

$$
\begin{align*}
\sum_{j=0}^{p}\binom{p}{j}(-m)^{j} C_{k}^{(p-j)}(m+n) & =\sum_{r=0}^{p}(-1)^{r} A_{k}^{(r)}\binom{p}{r}\left(\sum_{j=0}^{p-r}\binom{p-r}{j}(m+n)^{p-r-j}(-m)^{j}\right) \\
& =\sum_{r=0}^{p}(-1)^{r} A_{k}^{(r)}\binom{p}{r} n^{p-r}  \tag{35}\\
& =C_{k}^{(p)}(n) .
\end{align*}
$$

Similarly, we can show that

$$
\begin{gather*}
\sum_{j=0}^{p}\binom{p}{j}(-m)^{j} C_{k}^{(p-j)}(m+n+1)=C_{k}^{(p)}(n+1)  \tag{36}\\
\sum_{j=0}^{p}\binom{p}{j}(-m)^{j} C_{k}^{(p-j)}(m)=C_{k}^{(p)}(0) \tag{37}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{p}\binom{p}{j}(-m)^{j} C_{k}^{(p-j)}(m+1)=C_{k}^{(p)}(1) \tag{38}
\end{equation*}
$$

Thus, Eq. (32) follows by substituting Eq. (35) through Eq. (38) in Eq. (33).

## 6 Conclusion

While all the results presented above assume that $k$ is a positive integer, there is no reason not to extend them to nonzero real numbers as well. The only drawback is that the numbers $F_{k, n}$ are not necessarily integers. The $k$-Fibonacci numbers are just the Fibonacci polynomials $F_{n}(x)$ (see [3]) calculated at $x=k$. Hence, we strongly believe that all the above results are still valid if we allow non-integer values of $k$. For example, we can have the identity

$$
\sqrt{2} \cdot \sum_{i=1}^{n} i^{2} F_{i}(\sqrt{2})=\left(n^{2}-2 \sqrt{2} n+4\right) F_{n+1}(\sqrt{2})+\left((n+1)^{2}-2 \sqrt{2}(n+1)+4\right) F_{n}(\sqrt{2})-4
$$

## 7 Acknowledgment

The authors would like to thank the anonymous referee for valuable comments and suggestions for improving the quality of the original version of this manuscript.

## References

[1] K. Adegoke, On Ledin and Brousseau's summation problems, arxiv preprint arXiv: 2108.04113 [math.CO], 2022. Available at https://arxiv.org/abs/2108.04113.
[2] A. T. Benjamin and J. J. Quinn, Proofs That Really Count: The Art of Combinatorial Proof, The Dolciani Mathematical Expositions, Vol. 27, The Mathematical Association of America, 2003.
[3] M. Bicknell, A Primer for the Fibonacci numbers: Part VII, An introduction to Fibonacci polynomials and their divisibility properties, Fibonacci Quart. 8 (1970), 407420.
[4] A. Brousseau, Problem H-17, Fibonacci Quart. 1 (1963), 55.
[5] A. Brousseau, Summation of $\sum_{k=1}^{n} k^{m} F_{k+r}$ finite difference approach, Fibonacci Quart. 5 (1967), 91-98.
[6] G. Dresden, On the Brousseau sums $\sum_{i=1}^{n} i^{p} F_{i}$, Integers 22 (2022).
[7] J. Erbacher and J. A. Fuchs, Solution to problem H-17, Fibonacci Quart. 2 (1964), 51-52.
[8] S. Falcón and Á. Plaza, On the Fibonacci $k$-numbers, Chaos Solitons Fractals 32 (2007), 1615-1624.
[9] S. Falcón, Relationships between some $k$-Fibonacci sequences, Appl. Math. 5 (2014), 2226-2234.
[10] H. W. Gould, Combinatorial Identities, Revised edition published by the author, 1972.
[11] R. L. Hendel, A system of four simultaneous recursions: Generalization of the Ledin-Shannon-Ollerton identity, Fibonacci Quart. 60 (2022), 172-180.
[12] G. Ledin, On a certain kind of Fibonacci sums, Fibonacci Quart. 5 (1967), 45-58.
[13] R. L. Ollerton and A. G. Shannon, A note on Brousseau's summation problem, Fibonacci Quart. 58 (2020), 190-199.
[14] A. G. Shannon and R. L. Ollerton, A note on Ledin's summation problem, Fibonacci Quart. 59 (2021), 47-56.
[15] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2023. Published electronically at https://oeis.org.
[16] D. Zeitlin, On summation formulas and identities for Fibonacci numbers, Fibonacci Quart. 5 (1967), 1-43.

2020 Mathematics Subject Classification: Primary 11B39; Secondary 11B37, 11B65, 11B83. Keywords: Brousseau sum, Fibonacci number, Fibonacci polynomial, $k$-Fibonacci number, binomial coefficient, metallic number.
(Concerned with sequences A000032, $\underline{\text { A } 000045}, \underline{A 000129, ~} \underline{A 000557, ~} \underline{A 001076, ~} \underline{A 002203}, \underline{A 002878}$, A006154, A006190 A077444, and A259546.)

Received October 11 2023; revised versions received February 23 2024; July 17 2024. Published in Journal of Integer Sequences, July 172024.

Return to Journal of Integer Sequences home page.

