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Abstract

We present an algorithm to compute the domination polynomial of the m×n grid,
cylinder, and torus graphs and the king graph. The time complexity of the algorithm
is O(m2n2λ2m) for the torus and O(m3n2λm) for the other graphs, where λ = 1+

√
2.

The space complexity is O(mnλm) for all of these graphs. We use this algorithm to
compute domination polynomials for graphs up to size 24 × 24 and the total number
of dominating sets for even larger graphs. This allows us to give precise estimates of
the asymptotic growth rates of the number of dominating sets. We also extend several
sequences in the On-Line Encyclopedia of Integer Sequences.

1 Introduction

A dominating set in a graph G = (V,E) is a subset S ⊆ V of vertices such that every node
in V is either an element of S or has a neighbor in S.
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Domination is one of the most widely studied topics in graph theory. According to
Haynes, Hedetniemi, and Henning [18], more than 4000 papers on the subject were published
by the year 2020. Domination problems originated in the 19th century in chess [20, 19]. A
placement of chess pieces on a chessboard is called dominating if each free square of the
chessboard is under attack by at least one piece. Figure 1 shows 9 kings dominating the
8× 8 chessboard.

80Z0Z0Z0Z
7ZkZ0j0Zk
60Z0Z0Z0Z
5Z0Z0Z0Z0
40j0ZkZ0j
3Z0Z0Z0Z0
20Z0Z0Z0Z
1ZkZ0j0Zk

a b c d e f g h

Figure 1: Nine kings are required to dominate the chessboard, or equivalently the 8× 8 king
graph.

The link from chess to graph theory is given by graphs like the king graph (Figure 1). In
this graph, the vertices represent the squares of the board, and each edge represents a legal
move of a king. Obviously a dominating placement of kings on the board corresponds to a
dominating set of the king graph. Graphs for other chess pieces can be defined analogously.

In this contribution, we study domination in some related families of graphs: the m× n
grid, cylinder, and torus graph (Figure 2). If Pn denotes the path graph of n vertices, the
grid graph Gm×n is the Cartesian graph product Gm×n = Pm□Pn. The cylinder graph is
Gm×n = Cm□Pn, where Cm is the cycle graph: we use the overbar m to indicate the cyclic
index. The m× n torus graph is Gm×n = Cm□Cn. We also study domination in the m× n
king graph Km×n = Pm ⊠ Pn, the strong graph product of two path graphs Pm and Pn.

Our goal is to compute the domination polynomial of these graphs. The domination
polynomial of a graph G is the generating function of its dominating sets with respect to
their size, i.e.,

DG(z) =
∑
S⊆V

z|S| , (1)

where the sum runs over all dominating sets in G. Like other graph polynomials, the domi-
nation polynomial encodes many interesting properties of a graph [2, 10, 11]. For example,
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Figure 2: Examples of an m× n grid, cylinder and torus graph.

the lowest power of z appearing in DG(z) is the size of the smallest dominating set in G,
which is known as the domination number γ(G). A considerable fraction of the 4000 papers
mentioned above are studies of γ(G) for various graphs.

A closed form for the domination polynomial is known only for a few families of simple
graphs like complete graphs, path and cycle graphs, wheel graphs, star graphs, and friendship
graphs [6, 5, 7, 4]. Recently, rook graphs on m× n chessboards, i.e., Cartesian products of
two complete graphs Km□Kn, were added to this list [23]. As far as we know, the rook is
the first chess piece for which this has been achieved.

The domination polynomial of course can be computed numerically. However, this ap-
proach is challenging because of its computational complexity. In theoretical computer
science, the decision problem Dominating Set asks, given a graph G and an integer k,
whether G has a dominating set of size at most k, i.e., whether γ(G) ≤ k. This problem is
NP-complete, which can be shown by reduction from the Vertex Cover problem [16]. Un-
less P = NP, this means that no polynomial-time algorithm exists to compute γ(G). Indeed,
the fastest known algorithm to find the dominating set of minimum size for general graphs
G = (V,E) has time complexity O(1.4969|V |) [27]. Because determining the domination
number is NP-hard, calculating the domination polynomial is (at least) as hard.

The grid graph is planar and bipartite, and both of these properties often allow polyno-
mial time algorithms for problems that are NP-complete for general graphs [24]. But not
in this case: Dominating Set is NP-complete even on subgraphs of the m × n grid [13].
This suggests that we should not expect to find a polynomial-time algorithm that computes
γ(G) for the grid graph or its relatives, let alone one that computes the entire polynomial
DG(z). But we can try to reduce the exponential running time as much as possible. This is
the main goal of this work.

The paper is organized as follows. We begin by proving in Section 2 that the domination
polynomial of the m×n grid, cylinder, and torus can be expressed in terms of the nth power
of an a× a matrix A, the “transfer matrix”, where a = O(λm) with λ = 1+

√
2 = 2.4142 . . .
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As we show in Section 3, this gives rise to an algorithm for the domination polynomial with
time complexity O(m3n2λm) for the grid and cylinder, and a closely related algorithm with
time complexity O(m3n2λ2m) for the torus. We also explain how this algorithm can be
adapted to compute the domination polynomial of the king graph, with the same time and
space complexity. Since the running times of these algorithms are exponential in the widthm
as opposed to the number of vertices |V | = mn, they represent a considerable improvement
over the algorithm of [27].

In Sections 4 and 5 we discuss some numerical results obtained by our algorithm. In
particular, we estimate the asymptotic growth rate of the total number of dominating sets
for all these graphs. We give Conclusions in Section 6 and provide some combinatorial proofs
and domination polynomials in the appendices.

2 The transfer matrix

The idea of the transfer matrix approach is to compute the domination polynomial of a grid
or cylinder row by row. We do this by defining legal transitions from one row to the next,
identifying which vertices in each row are in the dominating set S. Consider the following
definitions, where we borrow some wording from domination problems in chess.

Definition 1. Given a graph G = (V,E) and a set S ⊆ V , we say a vertex v ∈ V is occupied
if v ∈ S, covered if v /∈ S but some neighbor of v is in S, and uncovered if v /∈ S and no
neighbor of v is in S.

Clearly every vertex is either occupied, covered, or uncovered. As we construct S, some
vertices in the current row may be uncovered, because they will become covered by a neigh-
boring occupied vertex in the next row. This gives us the following definition.

Definition 2. If G is the grid graph Gm×n or the cylinder graph Gm×n, we say S is almost
dominating if every vertex in the subgraph Gm×(n−1) (resp., Gm×(n−1)) consisting of the first
n− 1 rows are occupied or covered.

We label vertices according to their state, namely • (occupied), • (covered), and ◦ (un-
covered). Given an almost dominating set S, we define its signature σ as the string of length
m over the alphabet {◦, •, •} that identifies the states of the vertices in the nth row. How-
ever, not all such strings can occur: since the neighbors of an occupied vertex are covered,
the symbols • and ◦ cannot be adjacent.

Definition 3. A signature of length m is a string σ of length m over the alphabet {◦, •, •}
which does not contain either of the substrings (◦,•) and (•,◦). A cyclic signature is one
where this substring constraint also applies to the pair (σ1, σm).

Signatures apply to the grid, and cyclic signatures apply to the cylinder.
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The time and space complexity of our algorithms depend on the number of signatures or
cyclic signatures. The number a(m) of signatures is given by

a(m) =
1

2

(
1−

√
2
)m+1

+
1

2

(
1 +

√
2
)m+1

(2)

= 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, . . .

This sequence has two entries in the On-Line Encyclopedia of Integer Sequences (OEIS),
A001333 and A078057, differing only in their offset. Since cyclic signatures are constrained
at one more pair, the total number a(m) of cyclic signatures is smaller than a(m) for m ≥ 3,
although with the same asymptotic growth rate:

a(m) = 1 +
(
1−

√
2
)m

+
(
1 +

√
2
)m

(3)

= 3, 7, 15, 35, 83, 199, 479, 1155, 2787, 6727, . . .

This is sequence A124696 in the OEIS. We derive the formulas for a(m) and a(m) in the
Appendix.

Slightly abusing notation, we write Gm×n(z) for the domination polynomial of the grid
Gm×n and Gm×n(z) for the domination polynomial of the cylinder Gm×n. We also write
Gσ

m×n(z) and Gσ
m×n(z) for the generating functions of almost dominating sets on Gm×n

(resp., Gm×n) with signature σ. The connection between these dominating polynomials and
almost-dominating polynomials is then given by the following lemma.

Lemma 4. Let ◦(σ) denote the number of uncovered vertices in σ. Then

Gm×n(z) =
∑

σ : ◦(σ)=0

Gσ
m×n(z) , Gm×n(z) =

∑
σ : ◦(σ)=0

Gσ
m×n(z) , (4)

where the sum for the grid (resp., the cylinder) runs over all signatures (resp., cyclic signa-
tures).

Proof. The dominating sets of Gm×n and Gm×n consist of the almost dominating sets which
are in fact dominating, i.e., where there are no uncovered vertices in the nth row.

Now we have all the ingredients to implement the idea of constructing dominating sets
row by row. Consider an almost dominating set in an m×n grid or cylinder with signature σ,
and consider adding an (n+1)st row with signature τ . Only certain pairs σ, τ are compatible.
Wherever σ has an uncovered vertex, its neighbor in τ must be occupied. Similarly, wherever
σ is occupied, its neighbor in τ is occupied or covered by definition. Finally, a vertex in τ
cannot be covered unless it has an occupied neighbor, either above it in σ or to either side
in τ . Thus the new signature τ must be compatible with the previous signature σ according
to the following definition.
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Definition 5. A (cyclic) signature τ = (τ1, . . . , τm) is compatible with a (cyclic) signature
σ = (σ1, . . . , σm) if, for all i = 1, . . . ,m,

σi = ◦ =⇒ τi = • ,
σi = • =⇒ τi ∈ {•, •} ,
τi = • =⇒ (σi = •) or (τi−1 = •) or (τi+1 = •) .

(5)

In the last equation, we compute the indices i ± 1 mod m for cyclic signatures, and ignore
τ0 and τm+1 in the non-cyclic case.

Finally, we define the transfer matrices A and A, whose rows and columns are indexed
by (cyclic) signatures.

Definition 6. Let •(σ) denote the number of occupied vertices in a (cyclic) signature σ.
For a given integer m ≥ 0, the transfer matrix A = (Aτ,σ) is defined as

Aτ,σ =

{
z•(τ), if τ is compatible with σ;

0, otherwise,
(6)

where τ and σ range over all signatures of length m. The transfer matrix A = (Aτ,σ) is
defined similarly with τ and σ ranging over cyclic signatures of length m.

◦◦ ◦• •• •• •◦ •• ••
◦◦ 0 0 0 0 0 0 1
◦• 0 0 0 0 0 1 0
•• z2 z2 z2 z2 z2 z2 z2

•• 0 z z z 0 z z
•◦ 0 0 0 1 0 0 0
•• 0 0 z z z z z
•• 0 0 1 0 0 0 0

Table 1: The transfer matrix A for domination on grids of width m = 2. Rows and columns
are indexed by the new and old signatures τ and σ respectively.

Since the width m of the graph is usually clear from context, we suppress the dependence
of A on m in our notation for the most part. Tables 1 and 2 show the transfer matrices for
grids of width m = 2 and cylinders of width m = 3.

The next two theorems are our key results.

Theorem 7. Let σ• be the (cyclic) signature which is covered everywhere, σ• = (•, •, . . . , •).
Then the domination polynomials Gm×n(z) and Gm×n(z) can be computed as

Gm×n(z) =
∑

σ:◦(σ)=0

(An)σ,σ• , (7a)
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◦◦◦ ◦◦• ◦•◦ ◦•• ••• ••• ••• ••• •◦◦ •◦• ••• ••• ••◦ ••• •••
◦◦◦ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
◦◦• 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
◦•◦ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
◦•• 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
••• z3 z3 z3 z3 z3 z3 z3 z3 z3 z3 z3 z3 z3 z3 z3

••• 0 z2 0 z2 z2 z2 z2 z2 0 z2 z2 z2 0 z2 z2

••• 0 0 z2 z2 z2 z2 z2 z2 0 0 z2 z2 z2 z2 z2

••• 0 0 0 z z z z z 0 0 z z 0 z z
•◦◦ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
•◦• 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
••• 0 0 0 0 z2 z2 z2 z2 z2 z2 z2 z2 z2 z2 z2

••• 0 0 0 0 z z z z 0 z z z 0 z z
••◦ 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
••• 0 0 0 0 z z z z 0 0 z z z z z
••• 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

Table 2: The transfer matrix A for domination on the cylinder of width m = 3. Rows and
columns are indexed by the new and old signatures τ and σ respectively.

Gm×n(z) =
∑

σ:◦(σ)=0

(A
n
)σ,σ• . (7b)

Proof. Consider Gτ
m×n, the generating function of almost dominating sets S in the m × n

grid with signature τ . Now τ is compatible with multiple signatures σ on row n − 1. For
each such σ, placing τ on the nth row increases S by •(τ) and thus multiplies Gσ

m×(n−1) by

a factor z•(τ). Hence we can write

Gτ
m×n(z) =

∑
σ : τ compatible

z•(τ)Gσ
m×(n−1)(z) =

∑
σ

Aτ,σG
σ
m×(n−1)(z) , (8)

and applying this reasoning recursively gives

Gτ
m×n(z) =

∑
σ

(An−1)τ,σG
σ
m×1(z) . (9)

Now Gσ
m×1 is a valid generating function for an almost dominating set, i.e., for signatures σ

with weights z•(σ), with the additional property that σ does not contain any •s. If you look
again at Definition 5, this is equivalent to saying that σ is compatible with σ•. This gives

Gσ
m×1(z) = Aσ,σ• . (10)

Combining this with (9) and (4) completes the proof of (7a). The proof of (7b) is similar.
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Domination on the torus is like domination on the cylinder, except that occupied vertices
in the nth row can cover vertices in the 1st row and vice versa. As the following theorem
shows, this corresponds to taking the trace of the nth power of the transfer matrix.

Theorem 8. Let Gm×n(z) denote the domination polynomial of the m× n torus. Then

Gm×n(z) = TrA
n
. (11)

Proof. On the torus, in addition to requiring that the cyclic signature σ on the tth row
is compatible to the signature in the (t − 1)st row for all 1 < t ≤ n, we also need the
signature on the 1st row to be compatible with the one on the nth row. We can find all
such configurations by adding a 0th row to the graph with signature σ, applying the transfer
matrix n times (note that the first application of A requires that the signature on the 1st
row is compatible with σ) and picking out the entries of A

n
where the signature on the nth

row is also σ. Thus the generating function for dominating sets on the m × n torus with
signature σ on the nth row is

Gσ
m×n(z) = (A

n
)σ,σ , (12)

and summing over all σ gives (11).

Theorems 7 and 8 reduce the problem of computing the domination polynomials for the
m × n grid, cylinder, or torus to computing the nth power of the transfer matrix A or A.
There are several ways to do this efficiently. We can compute the nth power of a matrix A
by squaring it ⌊log2 n⌋ times to obtain A1, A2, A4, . . . , A2⌊log2 n⌋

, and multiplying whichever of
these powers correspond to 1s in the binary expansion of n. Squaring an N×N matrix can be
done in time O(Nω), where ω = 3 for the naive schoolbook method or ω = 2.371552 with the
fastest known algorithm [28]. In our case N = a(m) or a(m), and in both cases N = O(λm)
with λ = 1+

√
2 = 2.4142 . . . This gives a time complexity of essentially O(λωm). In addition,

squaring a matrix whose entries are polynomials of degree nm requires us to multiply such
polynomials, which takes O((nm)2) time using the simplest method of adding all the cross-
terms. However, rather than analyzing the running time of this repeated-squaring approach
in detail, we present a faster algorithm in the next section.

To conclude this section, we briefly discuss another transfer matrix approach to domi-
nation on the grid. Oh [25] proposed what he called the “state matrix recursion method”
for the domination polynomial of the grid. Although the phrase “transfer matrix” does not
appear in [25], it is essentially a transfer matrix method, and Oh’s Theorems 1 and 2 provide
expressions for Gm×n(z) and Gm×n(z) in the same spirit as ours. However, Oh focuses on
the edges of the graph rather than the vertices. In a graph with a dominating set, there are
four types of edges, whose endpoints are labeled (•, •), (•, •), (•, •) and (•, •). Since each of
the m vertical edges connecting one row to the next can be in one of these four states, Oh’s
transfer matrix is 4m-dimensional rather than O(λm)-dimensional, making it less efficient
than our transfer matrix to compute domination polynomials. On the other hand, Oh’s
transfer matrix can be computed by a surprisingly simple recurrence, giving it an elegant
mathematical form.
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3 The algorithm

c

Figure 3: The algorithm adds a new row one vertex at a time from left to right. Here we
illustrate a step where we add a vertex in column c = 5 at the dashed lines. The current
signature is σ = •◦••’◦••• where ’ marks the “kink.” Whether the new vertex is unoccupied
or occupied produces one of two new signatures, σ0 = •◦•••’••• or σ1 = •◦•••’•••. However,
in this example σ[c] = ◦ (the uncovered vertex above the new vertex) so the new vertex must
be occupied and σ0 is invalid.

The repeated-squaring approach for computing the nth power of the transfer matrix, de-
scribed in the previous section, fails to take advantage of A’s (and A’s) structure. First of all,
these matrices are quite sparse, since most pairs of signatures are not compatible. Secondly,
their nonzero entries are powers of z; so, rather than multiplying arbitrary polynomials,
we can multiply by A or A by shifting the coefficients of each polynomial and adding the
results. Thirdly, and most importantly, in this section we will show how to add a row, and
thus multiply by A, using a series of even simpler operations. This will reduce the running
time from O(λωm) to essentially O(λm).

From a bird’s eye perspective, the transfer matrix method turns a two-dimensional prob-
lem into a sequence of n one-dimensional problems. This idea can be applied again. By filling
the new row one vertex at a time, from left to right, we can subdivide the one-dimensional
problem of adding a row into a sequence of m zero-dimensional problems.

At each step, the nth row is filled up to column c − 1. The corresponding signature
contains a “kink” at column c, where it hops up to the (n − 1)st row; see Figure 3. When
we add a vertex in the cth column, this signature can be mapped to two possible signatures,
depending on whether this new vertex is occupied or not.

Across the kink at c, the substrings (◦,•) and (•,◦) are no longer forbidden, so the number
of signatures is a bit larger than a(m) or a(m). And in the case of the non-cyclic signatures,
the number depends on c. However, we show in Appendix A that for each 1 ≤ c ≤ m the
number of signatures grows as O(λm).

Each step of this new transfer matrix algorithm is the addition of a new vertex in a
partially filled or empty row. This gives a subroutine extend(σ, c), which we show for the
grid in Figure 4. This subroutine interprets σ as a signature where the current row is filled

9



subroutine extend (σ, c)
σ1

..= σ
σ1[c] ..= •
if c > 1 and σ1[c− 1] = ◦ then

σ1[c− 1] ..= •
end if
if σ[c] = ◦ then ▷ new vertex needs to cover σ[c]

σ0
..= invalid

else
σ0

..= σ
if σ[c] = • then

σ0[c] ..= •
else if c > 0 and σ0[c− 1] = • then

σ0[c] ..= •
else

σ0[c] ..= ◦
end if

end if
return σ0, σ1

Figure 4: Adding a new vertex at column c in the current row.

up to the (c − 1)st column, and returns up to two signatures σ0, σ1 where σ0 (resp., σ1)
results from σ by adding an unoccupied (resp., occupied) vertex in column c.

The extend subroutine takes care of the compatibility between σ, σ0, and σ1. If the
vertex to the left of the new vertex is uncovered in σ, in σ1 it becomes covered by the new
occupied vertex. It also marks the new vertex as covered in σ0 if the vertex to its left or
above it is occupied in σ. Finally, if σ[c] = ◦, i.e., if the vertex immediately above the new
vertex is uncovered as in Figure 3, then the new vertex must be occupied. In that case σ0 is
defined as invalid, and does not need to be pursued further by the algorithm.

We use the subroutine extend in an algorithm that loops over the n rows and m columns
of the grid (Figure 5). This algorithm builds the rows of the grid one vertex at a time while
maintaining a list of configurations, i.e., pairs (σ,Gσ) where σ is a signature and Gσ is the
corresponding generating function. Whenever we add a new vertex we multiply by z if that
vertex is occupied, adding Gσ to Gσ0 and adding zGσ to Gσ1 . Note that σ0 or σ1 might
already be in the list of new signatures, since adding the new vertex hides the vertex above
it. That is, σ0 = σ′

0 if σ and σ′ differ only in column c, and similarly for σ1 and σ′
1. Each loop

where c ranges from 1 to m thus adds a new row and effectively applies the transfer matrix.
This continues until we complete the nth row and obtain the dominating polynomial for the
entire grid.

In order to carry out these computations for large grids, it turns out that memory,
not time, is the limiting resource. Thus to reach grids as large as possible, we need to
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Lold
..= (σ•, 1) ▷ zeroth row configuration, σ• = (•, •, . . . , •)

for r = 1, . . . , n do
Lnew

..= empty list
for c = 1, . . . ,m do

while Lold not empty do
take (σ,Gσ) out of Lold

σ0, σ1
..= extend(σ, c)

if σ0 = invalid then ignore σ0

else if (σ0, ·) ̸∈ Lnew then add (σ0, G
σ) to Lnew

else replace (σ0, G) in Lnew with (σ0, G+Gσ)
end if
if (σ1, ·) ̸∈ Lnew then add (σ1, zG

σ) to Lnew

else replace (σ1, G) in Lnew with (σ1, G+ zGσ)
end if

end while
Lold

..= Lnew

end for
end for
Gn,m(z) ..=

∑
σ∈Lold, ◦(σ)=0

Gσ(z)

Figure 5: The algorithm to compute the domination polynomial of the grid Gm×n. Complet-
ing each row, i.e., completing the inner loop over the m columns, has the effect of multiplying
by the transfer matrix A. As a programming detail, the assignment Lold

..= Lnew is by ref-
erence (i.e., by moving a pointer) to avoid copying data from one location in memory to
another.

think carefully about how to represent and store both signatures σ and their polynomials
Gσ as efficiently as possible. To some readers the rest of this section will seem like mere
implementation details. But these details play an essential role. While both the time and
space requirements of our algorithm are exponential, they reduce the exponent, and without
them we would have no hope of obtaining the results we present in the next section.

First, to represent the signatures σ, we treat the three symbols ◦, •, and • as ternary
digits, and interpret each σ as an integer between 0 and 3m − 1. Since 340 ≤ 264, the
signatures fit into 64-bit integers as long as m ≤ 40.

We store the polynomials Gσ as vectors of integer coefficients. However, since these
coefficients grow exponentially in mn, they quickly get too large to store as fixed-width
integers with 32, 64, or 128 bits. One could use variable-length integers to deal with this
problem, but this would add a factor nm to both the time and the space complexity.

Instead, we stick with fixed-width integers and use modular arithmetic. For some integer
b, there is a set of prime moduli pi < 2b such that

∏
i pi ≥ 2mn. We then carry out our

calculations mod pi using b-bit integers, and use the Chinese remainder theorem [14] to
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recover the coefficients. Even for our largest computations, integers of length b = 16 suffice.
This approach trades space (the length of the integers) for time (one run for each prime
modulus). But the runs for different moduli can be done in parallel, and we do them on
separate processors. The final computation using the Chinese remainder theorem has to be
done with variable-length integers to produce the coefficients of Gσ, but this takes time and
space which is polynomial in their length mn.

To contain lists of configurations of exponential size, an efficient data structure is manda-
tory. There is no point in using tables of size 3m (the number of possible ternary sequences)
when only O(λm) signatures actually appear. We use an ordered associative container like
set or map from the standard C++ library where signatures are ordered according to their
ternary value. These data structures guarantee logarithmic complexity for search, insert and
delete operations, so for lists of size exponential in m they work in O(m) time [14].

Since the maximum degree of Gσ is mn, our integers have fixed width b, and there are
O(λm) different signatures σ, the total space complexity of the algorithm is O(mnλm). The
time complexity of our algorithm is O(m3n2λm). The factor λm comes from the size of the
lists. One factor of mn comes from the loops in Figure 5 that add the mn vertices one at
a time. Another factor of mn comes from copying the polynomials Gσ, shifting them (i.e.,
multiplying them by z) and adding them together. The last factor of m comes from the
logarithmic complexity of the list operations. Ignoring polynomial factors, then, our time
and space complexity is O(λm).

What we have explained so far is the algorithm for the grid. The cylinder requires only a
small change in the subroutine extend. When adding the last vertex of a row at c = m, the
subroutine has to ensure compatibility with the vertex at c = 1 to make the full signature
cyclic. Other than that, no changes are required, and the space and time complexity is the
same as for the grid. In particular the algorithm shown in Figure 5 stays the same.

The time complexity increases, however, when we adapt our algorithm to the torus.
Here we have to run the algorithm of Figure 5 for each cyclic signature σ in the zeroth
row, instead of just starting with σ•. Hence we need an additional outer loop of length
a(m) = O(λm), resulting in an overall time complexity of O(m3n2λ2m), or O(λ2m) ignoring
polynomial factors. The space complexity remains the same.

c

Figure 6: In the king graph, the new vertex at c has to ensure compatibility with 4 neighbors.
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For the king graph Km×n, we just need to modify the extend subroutine, since it must
consider all four neighbors of the new vertex to ensure compatibility (Figure 6). Because
of the neighbor in the north-west, the number of signatures is now a(m + 1). The main
algorithm in Figure 5 stays the same, and the time and space complexity are the same as
for the grid and the cylinder.

To push our computations further, we take advantage of symmetries. We can identify
each signature of a full row (c = n) with its mirror image, which roughly halves the number
of signatures. For cyclic signatures we have also translational symmetry, which reduces the
number of cyclic signatures by a factor of approximately 1/m. See Appendix A for the
precise factors.

To give the reader an idea about the actual computational resources needed, consider the
computationally largest task we solved. Using 16-bit integers for the coefficients, computing
G24×24(z) mod pi for each prime modulus took 125 hours of wall-clock time and required 481
GB of memory. Finally, we needed 36 parallel runs for different moduli pi to recover the
coefficients using the Chinese remainder theorem.

4 Results

m ≤ n ≤ m+ n ≤
Gm×n(z) 44
Gm×n(z) 24 24
Gm×n(z) 17 17
Km×n(z) 44
Gn×n(1) 24
Gm×n(1) 22 100
Gm×n(1) 22 100
Gn×n(1) 26
Km×n(1) 22 100

Table 3: Sizes of graphs for which we have computed domination polynomials or the total
number of dominating sets.

Our algorithm allowed us to compute domination polynomials and the total number
of dominating sets for the graphs listed in Table 3. We show the complete domination
polynomials for examples of size m = n ≤ 8 in Appendix B. The complete data is available
from the author’s website [1].

The varying sizes for which we can carry out these computations are due to two facts.
First, the number of cyclic signatures a(m) is less than the number of signatures a(m),
making computations for the cylinder somewhat easier than those for the grid. Secondly, as
discussed above, the computation time for the torus has an extra factor of λm due to the
need to sum over all starting signatures.
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To compute the total number of dominating sets, we used a modified version of our
algorithm, in which we do not store the full domination polynomial with each signature, but
only its value at z = 1. This saves us a factor of mn in time and space complexity and
allows us to solve larger systems. In particular, we calculated the number of dominating sets
for m ≤ 22 and n ≤ 100 for the grid, the cylinder, and the king graph. This allowed us to
compute precise numerical estimates for the growth rate of these graphs (see Section 5).

m
n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8
2 1 2 2 2 3 4 4 4 5 6 6 6 7 8 8 8 9 10 10 10 11 12 12 12
3 1 2 3 3 4 5 6 6 7 8 9 9 10 11 12 12 13 14 15 15 16 17 18 18
4 2 3 4 4 6 6 7 8 10 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
5 2 3 4 5 7 8 9 10 12 12 14 15 17 17 19 20 21 22 24 24 26 27 29 29
6 2 4 5 6 8 9 11 12 14 15 16 18 20 20 22 24 25 26 28 30 31 32 34 35
7 3 4 6 7 9 10 12 14 16 17 19 20 22 24 25 27 29 30 32 34 36 37 39 40
8 3 5 7 8 10 12 14 16 18 19 21 23 25 27 29 30 32 34 36 38 40 42 44 46
9 3 5 7 9 11 13 15 18 20 21 24 26 28 30 32 34 36 38 41 42 44 46 49 51
10 4 6 8 10 12 14 17 20 22 24 26 28 31 33 36 38 40 42 45 47 49 51 54 56
11 4 6 9 11 13 16 18 21 24 26 28 31 34 36 39 41 44 46 49 52 54 56 59 62
12 4 7 10 12 14 17 20 23 26 28 31 34 37 39 42 45 48 50 53 56 59 61 64 67
13 5 7 10 13 15 18 21 25 28 30 33 36 40 42 45 48 51 54 57 60 63 66 69 72
14 5 8 11 14 16 20 23 27 30 32 36 39 42 45 48 52 55 58 61 64 68 70 74 77
15 5 8 12 15 17 21 24 28 32 34 38 41 45 48 51 55 58 62 65 68 72 75 79 82
16 6 9 13 16 18 22 26 30 34 36 40 44 48 51 54 58 62 66 69 72 76 80 84 87
17 6 9 13 17 19 24 27 32 36 38 43 46 51 54 57 62 65 70 73 76 81 84 89 92
18 6 10 14 18 20 25 29 34 38 40 45 49 54 57 60 65 69 73 77 80 85 89 93 97
19 7 10 15 19 21 26 30 36 40 42 47 51 57 60 63 68 72 77 81 84 89 93 98 102
20 7 11 16 20 22 28 32 38 42 44 50 54 60 63 66 72 76 81 85 88 94 98 103 107
21 7 11 16 21 23 29 33 39 44 46 52 56 62 66 69 75 79 85 89 92 98 102 108 112
22 8 12 17 22 24 30 35 41 46 48 54 59 65 69 72 78 83 89 93 96 102 107 113 117
23 8 12 18 23 25 32 36 43 48 50 57 61 68 72 75 82 86 92 97 100 107 111 117 122
24 8 13 19 24 26 33 38 45 50 52 59 64 71 75 78 85 90 96 101 104 111 116 122 127

Table 4: Domination numbers γ(Gm×n) of the cylinder graph. The array γ(Gm×n) is sequence
A375603 in the OEIS, the sequence γ(Gn×n) is sequence A375601

.

From the domination polynomials we can get other parameters like the domination num-
ber γ (the minimum cardinality of a dominating set) and the number of these minimum
dominating sets. There are, however, more efficient algorithms to compute γ without com-
puting the full domination polynomial. For example, Alanko et al. [3] computed γ(Gm×n)
for m,n ≤ 29. And in the same year, Gonçalves et al. [17] proved the general formula

γ(Gm×n) =

⌊
(m+ 2)(n+ 2)

5

⌋
− 4 (n,m ≥ 16) . (13)

The sequence γ(Gn×n) is sequence A104519 in the OEIS.
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For the cylinder, we did not find any results for the domination number in the literature.
Therefore we present Table 4 obtained with our algorithm, giving γ(Gm×n) for all m,n ≤ 24.

For the torus, Shao et al. [26] computed γ(Gn×n) for n ≤ 24. The corresponding sequence
A094087 in the OEIS lists values up to n = 27. Crevals and Österg̊ard [15] found formulae
for γ(Gm×n) for m < 20 and arbitrary n.

Finally, for the king graph, no computation is necessary to find γ. Arshad, Hayat, and
Jamil [8] showed

γ(Km×n) =
⌈m
3

⌉ ⌈n
3

⌉
. (14)

The sequence γ(Km×n) is sequence A075561 in the OEIS.

OEIS this work
sequence # elements # elements

Nγ(Gm×n) A350820 276 946
Nγ(Gn×n) A347632 12 22
Nγ(Gm×n) A375566 300
Nγ(Gn×n) A375569 24
Nγ(Gn×n) A347557 8 17
Nγ(Km×n) A350815 276 946
Nγ(Kn×n) A347554 12 22

Table 5: The number of minimum dominating sets, OEIS vs. our results.

Much less is known about the number Nγ of dominating sets of minimum size γ in these
graphs. As often, the OEIS is the only source of knowledge for these sequences. Table 5
shows the OEIS results in comparison to our data. Note that the OEIS stores 2-dimensional
sequences in linear order read by antidiagonals. Hence if one knows a 2-dimensional sequence
Am,n for all m+ n ≤ k, the linear sequence contains k(k − 1)/2 elements.

Table 6 shows our results for Nγ on n×n grids, cylinders, tori, and king graphs for various
n. Interestingly, all these sequences are non monotonic. This is most easily understood
for the king graph: whenever n is divisible by 3, the board can be tiled by (n/3)2 king’s
neighborhoods of size 3 × 3, and the unique minimum dominating set has one king in the
center of each tile. For other values of n, there are many more arrangements of kings to cope
with the interactions between them, including “defects” where the same vertex is covered by
more than one king.

As for Nγ, the OEIS is the only source of knowledge for the total number of dominating
sets. Table 7 compares the OEIS entries and our results, and Table 8 shows the total number
on square grids, i.e., Gn×n(1), for all n ≤ 24. Results on cylinders, tori, and king graphs are
available from the author’s website [1].
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n grid Gn×n cylinder Gn×n torus Gn×n king Kn×n

2 6 6 6 4
3 10 34 48 1
4 2 16 40 256
5 22 320 10 79
6 288 36 18 1
7 2 56 686 243856
8 52 5565 129224 3600
9 32 20196 36 1
10 4 32210 10 581571283
11 32 88 6292 281585
12 21600 121428 162 1
13 18 388284 2704 2722291223553
14 540360 224 56 32581328
15 34528 1489960 10 1
16 100406 12800 916736 21706368614058886
17 70266144 251464 29327728 5112264019
18 1380216154 2304 1
19 1682689266 36784 268740319616196074546
20 77900162 73062090 1028516654620
21 233645826 29787744 1
22 200997249200 738959760 4839916638142874877046813
23 73600
24 884736

Table 6: The number of minimum dominating sets Nγ in various n× n graphs.

5 Growth rates

The length of the integers in Table 8 demonstrates visually that the total number of domi-
nating sets Gn×n(1) grows exponentially in the area, i.e., as µn2

for some µ. In fact, it follows
from supermultiplicativity and Fekete’s Lemma that

lim
m,n→∞

Gm×n(1)
1

mn = supGm×n(1)
1

mn , (15)

Since 1 ≤ Gm×n(1) ≤ 2mn, the supremum is finite and the limit

µ = lim
m,n→∞

Gm×n(1)
1

mn (16)

exists. By the same argument, for any fixed m the limit

µm = lim
n→∞

Gm×n(1)
1

mn (17)
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OEIS this work
sequence # elements # elements

Gm×n(1) A218354 198 946
Gn×n(1) A133515 15 24
Gm×n(1) A286514 91 325
Gn×n(1) A286914 12 26
Gn×n(1) A303334 8 17
Km×n(1) A218663 240 946
Kn×n(1) A133791 18 22

Table 7: The total number of dominating sets, OEIS vs. our results.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

m−1

1.9375

1.9400

1.9425

1.9450

1.9475

1.9500

1.9525

1.9550

µm

Figure 7: Growth constants µm (17) for the grid versus m−1.

exists, and that limm→∞ µm = µ. The same arguments apply to growth rates on the cylinder,
torus, and king graph.

Thus, in order to estimate µ numerically, we compute µm for some finite values of m and
then extrapolate to m = ∞. Numerically, we find that the sequence on the right-hand side
of

µm = lim
n→∞

(
Gm×n(1)

Gm×(n−1)(1)

)1/m

(18)

converges very quickly: the first 50 decimals no longer change for n > 30. A plot of these
estimates of µm as a function of m−1 (Figure 7) suggests that

µm ≃ µ+
µ(1)

m
(19)

for some negative constant µ(1).
We could use a linear fit in Figure 7 to estimate µ. But we proceed more carefully, and
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take higher order terms into account. We assume that

µm = µ+
∞∑
k=1

µ(k)

mk
(20)

and then use Bulirsch-Stoer extrapolation [12], a reliable, rapidly converging method based
on rational interpolation. See [22, Sec. 4.3] for a detailed description of this method applied
in a similar situation. As result we get

µ = 1.9547511954080(8) . (21)

For the growth rate of the cylinder we get

µ = 1.9547511954085(3) , (22)

which equals the growth rate for the grid within the error bars. Based on the assumption
that the vertical boundaries of the grid have a decaying effect as m → ∞, we conjecture
that these two growth rates are in fact equal.

Our data for the torus is not sufficient to compute its growth constant with the same
accuracy, but we do not have to! If you look at (7b) and (11), you see that in the limit
n → ∞, both right-hand sides are dominated by the largest eigenvalue of the matrix A for
z = 1, which equals the growth rate µm. Hence the growth rate for the torus equals that for
the cylinder (22).

Let η denote the growth rate of the king graph. With the same methods, we estimate

η = 1.997064386596(3) . (23)

This value fits right between the bounds proved by Baumann et al. [9],

1.9969 ≤ η ≤ 1.9972 , (24)

and we conjecture that the first ten decimal digits of (23) are correct.

6 Conclusions

We have presented a transfer matrix algorithm for computing dominating polynomials, and
in particular counting dominating sets and minimum dominating sets, on the grid, cylinder,
and torus graphs, and on the king graph. While our algorithm takes exponential time and
requires exponential space, we are able to significantly reduce the exponent by breaking the
induction over rows into an induction over single vertices.

Along with a careful use of representations and data structures, including representing
large integers using the Chinese remainder theorem, this reduces the running time (ignoring
polynomial factors) to O(λm) for the grid, cylinder, and king graph, and O(λ2m) for the
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torus, where λ = 1 +
√
2 = 2.4142... We use this algorithm to count dominating sets on

these graphs, where the number of rows n and columns m range up to 24. This allows us to
extend several OEIS sequences considerably, and to obtain high-precision estimates of the
growth rate µ, where the number of dominating sets on m× n graphs grows asymptotically
as µmn. We believe that similar techniques can be applied to many other periodic graphs
based on low-dimensional lattices, and to other kinds of sets of interest in graph theory.
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A The number of signatures

Let a◦(m), a•(m) and a•(m) denote the number of signatures of length m that end with ◦,
•, and • respectively. Obviously a(m) = a◦(m) + a•(m) + a•(m). We also have

a◦(m) = a◦(m− 1) + a•(m− 1) ,

a•(m) = a◦(m− 1) + a•(m− 1) + a•(m− 1) = a(m− 1) ,

a•(m) = a•(m− 1) + a•(m− 1) .

Adding these three equations yields

a(m) = 2a(m− 1) + a•(m− 1) ,

and inserting the equation for a•(m− 1) provides us with the Pell-type recurrence

a(m) = 2a(m− 1) + a(m− 2) . (25)

The characteristic polynomial of the recurrence is P (λ) = λ2 − 2λ − 1 with zeroes 1 ±
√
2.

Hence the solution of (25) is

a(m) = A−

(
1−

√
2
)m

+ A+

(
1 +

√
2
)m

, (26a)

where the coefficients A+ and A− are fixed by the base cases a(0) and a(1),

A− =

(
1 +

√
2
)
a(0)− a(1)

2
√
2

A+ =
a(0)−

(
1−

√
2
)
a(1)

2
√
2

(26b)

20



In our case, a(1) = 3 and a(2) = 7, which implies a(0) = 1 and yields (2).
As we discussed, we can identify a signature with its mirror image. Taking into account

this reflection symmetry, the resulting number of signatures is

â(m) =
1

2

(
a(m) + a(⌊m+1

2
⌋)
)
, (27)

which is sequence A030270. This formula is easily understood. Reflection symmetry gives us
a factor of 1/2 for all non-symmetric signatures. If we apply the factor 1/2 to all signatures,
we need to add back the number of symmetric signatures, which are completely specified by
their first half.

For signatures with a kink between c− 1 and c, the recurrence reads

ac(m) =

{
3ac(m− 1), if m = c;

2ac(m− 1) + ac(m− 2), otherwise.
(28)

Obviously, ac(m) follows (2) for m < c and for m > c. Hence, ac(m) is also solved by (26a),
but with change of A− and A+ as m passes c. The asymptotic scaling O(λm) persists.

For cyclic signatures, the derivation of (3) is a bit more involved. Knopfmacher et al.
[21] used Chebyshev polynomials to derive the generating function for a(m). Here we give a
more elementary derivation.

Let aσm,σ1(m) denote the number of cyclic signatures of length m with values σ1 and σm

at their 1st and mth position. Then

a◦,◦(m) = a◦,◦(m− 1) + a•,◦(m− 1) ,

a◦,•(m) = a◦,•(m− 1) + a•,•(m− 1) ,

a•,◦(m) = a◦,◦(m− 1) + a•,◦(m− 1) ,

a•,•(m) = a◦,•(m− 1) + a•,•(m− 1) + a•,•(m− 1) ,

a•,•(m) = a•,•(m− 1) + a•,•(m− 1) ,

a•,•(m) = a◦,◦(m− 1) + a•,◦(m− 1) + a◦,•(m− 1) + a•,•(m− 1) + a•,•(m− 1) ,

a•,•(m) = a•,•(m− 1) + a•,•(m− 1) .

(29)

On the right-hand sides, a•,•, a•,• and a•,• appear twice, and all other σ’s appear three times.
Hence, adding all these equations yields

a(m) = 3a(m− 1)−
[
a•,•(m− 1) + a•,•(m− 1) + a•,•(m− 1)

]
. (30)

When we apply the recurrence (29) to the terms in brackets, we notice that a•,• and a••
appear twice, and all other σ’s appear exactly once. This gives

[· · · ] = a(m− 2) +
{
a•,•(m− 2) + a••(m− 2)

}
. (31)

If we apply (29) to the terms in the curly brackets, we get {· · · } = a(m− 3), and finally

a(m) = 3a(m− 1)− a(m− 2)− a(m− 3) . (32)
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The characteristic polynomial of this recurrence is

P (λ) = λ3 − 3λ2 + λ+ 1 = (λ− 1)(λ2 − 2λ− 1) , (33)

with zeroes 1, 1−
√
2, and 1 +

√
2. Hence the solution of (32) is

a(m) = C1 + C−

(
1−

√
2
)m

+ C+

(
1 +

√
2
)m

, (34)

where C1, C−, and C+ depend on the base case a(0), a(1), and a(2):

C1 =
1

2
a(0) + a(1)− 1

2
a(2) ,

C− =
2 +

√
2

4
√
2

a(0)− 2 + 2
√
2

4
√
2

a(1) +
1

4
a(2) ,

C+ = −2−
√
2

4
√
2

a(0) +
2− 2

√
2

4
√
2

a(1) +
1

4
a(2) .

(35)

In our case we have a(1) = 3, a(2) = 7 and a(3) = 15 which implies a(0) = 3 and therefore
C1 = C− = C+ = 1, which gives (3).

If one takes into account circular and reflection symmetry, the number of signatures is
approximately a(m)/2m, as can be checked by dividing sequence A208716 by A124696.

B Domination polynomials

Tables 9, 10, 11 and 12 show the domination polynomials of the n× n grid, cylinder, torus
and king graph for n ≤ 8. The domination polynomials for larger and rectangular graphs
can be downloaded from the author’s website [1].
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G1×1(z)= z

G2×2(z)= 6 z2 + 4 z3 + z4

G3×3(z)= 10 z3 + 57 z4 + 98 z5 + 80 z6 + 36 z7 + 9 z8 + z9

G4×4(z)= 20 z4 + 40 z5 + 554 z6 + 2484 z7 + 5494 z8 + 7268 z9 + 6402 z10+
3964 z11 + 1760 z12 + 556 z13 + 120 z14 + 16 z15 + z16

G5×5(z)= 22 z7 + 1545 z8 + 22 594 z9 + 140 304 z10 + 492 506 z11 + 1126 091 z12+
1823 057 z13 + 2204 694 z14 + 2063 202 z15 + 1528 544 z16 + 908 623 z17+
435 832 z18 + 168 426 z19 + 51 953 z20 + 12 550 z21 + 2296 z22 + 300 z23+
25 z24 + z25

G6×6(z)= 288 z10 + 20 896 z11 + 478 624 z12 + 5119 512 z13 + 32 070 018 z14+
133 299 396 z15 + 397 278 079 z16 + 894 777 804 z17 + 1581 325 412 z18+
2254 665 800 z19 + 2648 227 540 z20 + 2602 834 832 z21 + 2165 708 332 z22+
1538 223 528 z23 + 937 732 160 z24 + 492 091 912 z25 + 222 401 360 z26+
86 397 060 z27 + 28 715 172 z28 + 8101 900 z29 + 1917 814 z30 + 374 360 z31+
58 757 z32 + 7136 z33 + 630 z34 + 36 z35 + z36

G7×7(z)= 2 z12 + 682 z13 + 69 818 z14 + 2809 634 z15 + 58 346 490 z16 + 722 332 499 z17+
5873 091 754 z18 + 33 720 209 068 z19 + 144 326 231 696 z20 + 479 699 210 510 z21+
1277 484 819 726 z22 + 2793 279 785 490 z23 + 5112 738 876 944 z24+
7956 389 260 884 z25 + 10 659 803 571 300 z26 + 12 421 321 161 300 z27+
12 692 372 752 380 z28 + 11 448 278 299 084 z29 + 9162 679 913 216 z30+
6533 166 152 352 z31 + 4161 998 104 421 z32 + 2373 420 930 490 z33+
1212 661 131 156 z34 + 555 107 862 078 z35 + 227 428 059 844 z36+
83 222 666 789 z37 + 27 112 560 820 z38 + 7828 049 130 z39 + 1990 771 673 z40+
442 325 654 z41 + 84 949 536 z42 + 13 902 582 z43 + 1901 827 z44 + 211 672 z45+
18 420 z46 + 1176 z47 + 49 z48 + z49

G8×8(z)= 52 z16 + 15 864 z17 + 1722 568 z18 + 88 226 896 z19 + 2530 732 136 z20+
45 375 987 524 z21 + 550 599 054 884 z22 + 4804 379 992 724 z23+
31 600 623 255 338 z24 + 162 562 260 288 736 z25 + 673 394 654 370 166 z26+
2299 264 864 482 900 z27 + 6594 998 844 457 680 z28 + 16 140 569 091 024 412 z29+
34 145 122 808 773 410 z30 + 63 119 173 723 897 716 z31 + 102 895 753 969 864 066 z32+
149 077 597 217 535 156 z33 + 193 230 536 934 785 376 z34 + 225 335 102 676 614 928 z35+
237 544 411 406 921 016 z36 + 227 287 805 873 540 304 z37 + 198 057 834 976 389 932 z38+
157 618 769 172 704 668 z39 + 114 817 612 849 042 346 z40 + 76 694 678 728 213 904 z41+
47 038 041 070 108 638 z42 + 26 511 846 459 068 480 z43 + 13 738 205 846 668 894 z44+
6545 243 405 852 040 z45 + 2865 791 004 809 792 z46 + 1152 143 554 074 948 z47+
424 740 089 888 210 z48 + 143 310 533 096 044 z49 + 44 147 026 143 576 z50+
12 377 560 349 296 z51 + 3146 185 878 694 z52 + 721 528 535 044 z53+
148 407 392 344 z54 + 27 176 088 292 z55 + 4389 826 708 z56 + 618 261 932 z57+
74 786 314 z58 + 7615 724 z59 + 635 108 z60 + 41 660 z61 + 2016 z62 + 64 z63 + z64

Table 9: Domination polynomials of the grid graph Gn×n.
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G1×1(z)= z

G2×2(z)= 6 z2 + 4 z3 + z4

G3×3(z)= 34 z3 + 99 z4 + 120 z5 + 84 z6 + 36 z7 + 9 z8 + z9

G4×4(z)= 16 z4 + 248 z5 + 1560 z6 + 4752 z7 + 8308 z8 + 9376 z9 + 7404 z10 + 4264 z11 + 1812 z12+
560 z13 + 120 z14 + 16 z15 + z16

G5×5(z)= 320 z7 + 8525 z8 + 77 240 z9 + 354 768 z10 + 1000 860 z11 + 1934 895 z12 + 2744 825 z13+
2988 230 z14 + 2571 838 z15 + 1783 400 z16 + 1007 095 z17 + 464 780 z18 + 174 710 z19+
52 905 z20 + 12 640 z21 + 2300 z22 + 300 z23 + 25 z24 + z25

G6×6(z)= 36 z9 + 5304 z10 + 182 640 z11 + 2674 472 z12 + 20 888 976 z13 + 102 474 888 z14 + 349 290 996 z15+
883 272 549 z16 + 1733 585 388 z17 + 2727 960 890 z18 + 3525 246 624 z19 + 3808 843 866 z20+
3487 178 896 z21 + 2732 164 086 z22 + 1844 521 704 z23 + 1077 669 852 z24 + 545 975 556 z25+
239 780 520 z26 + 91 042 704 z27 + 29 727 648 z28 + 8277 408 z29 + 1941 108 z30 + 376 584 z31+
58 893 z32 + 7140 z33 + 630 z34 + 36 z35 + z36

G7×7(z)= 56 z12 + 17 878 z13 + 1155 252 z14 + 31 054 898 z15 + 456 455 958 z16 + 4228 396 193 z17+
27 003 670 764 z18 + 126 567 019 852 z19 + 455 787 743 684 z20 + 1305 495 024 212 z21+
3054 799 279 140 z22 + 5964 099 864 170 z23 + 9880 494 881 782 z24 + 14 079 356 852 554 z25+
17 447 648 954 876 z26 + 18 972 152 485 706 z27 + 18 232 693 610 636 z28 + 15 575 358 475 348 z29+
11 880 424 274 852 z30 + 8119 023 303 202 z31 + 4982 943 200 557 z32 + 2750 423 714 766 z33+
1366 055 406 058 z34 + 610 263 826 646 z35 + 244 883 991 996 z36 + 88 057 328 933 z37+
28 275 236 934 z38 + 8068 294 570 z39 + 2032 827 433 z40 + 448 443 744 z41 + 85 669 472 z42+
13 968 430 z43 + 1906 219 z44 + 211 862 z45 + 18 424 z46 + 1176 z47 + 49 z48 + z49

G8×8(z)= 5 556 z16 + 877 312 z17 + 53 209 280 z18 + 1705 112 768 z19 + 33 445 432 384 z20+
439 072 279 040 z21 + 4109 617 399 080 z22 + 28 780 589 281 584 z23 + 156 652 617 731 416 z24+
683 114 966 762 944 z25 + 2445 690 796 232 104 z26 + 7333 807 159 180 640 z27 + 18 724 721 152 985 788 z28+
41 265 837 337 782 160 z29 + 79 400 630 946 848 664 z30 + 134 680 399 945 312 528 z31+
203 039 926 797 499 914 z32 + 273 950 585 370 935 584 z33 + 332 770 579 433 142 856 z34+
365 749 751 152 851 088 z35 + 365 293 505 626 221 476 z36 + 332 720 567 077 905 776 z37+
277 203 692 560 942 216 z38 + 211 771 844 116 575 568 z39 + 148 641 968 502 148 908 z40+
96 000 555 048 304 144 z41 + 57 112 559 682 929 880 z42 + 31 318 418 200 248 960 z43+
15 833 769 466 628 176 z44 + 7379 242 217 245 312 z45 + 3168 290 754 707 192 z46+
1251 914 193 916 144 z47 + 454 574 372 292 346 z48 + 151 368 545 763 424 z49+
46 103 561 935 240 z50 + 12 802 119 434 064 z51 + 3227 917 903 348 z52 + 735 359 555 024 z53+
150 440 930 640 z54 + 27 431 963 344 z55 + 4416 833 096 z56 + 620 587 536 z57 + 74 943 232 z58+
7623 504 z59 + 635 360 z60 + 41 664 z61 + 2016 z62 + 64 z63 + z64

Table 10: Domination polynomials of the cylinder graph Gn×n.
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G1×1(z)= z

G2×2(z)= 6 z2 + 4 z3 + z4

G3×3(z)= 48 z3 + 117 z4 + 126 z5 + 84 z6 + 36 z7 + 9 z8 + z9

G4×4(z)= 40 z4 + 560 z5 + 2736 z6 + 6800 z7 + 10 310 z8 + 10 560 z9 + 7832 z10 + 4352 z11 + 1820 z12+
560 z13 + 120 z14 + 16 z15 + z16

G5×5(z)= 10 z5 + 200 z6 + 3050 z7 + 31 525 z8 + 188 700 z9 + 677 690 z10 + 1610 700 z11 + 2740 775 z12+
3527 075 z13 + 3562 700 z14 + 2895 610 z15 + 1923 600 z16 + 1053 175 z17 + 475 950 z18+
176 600 z19 + 53 105 z20 + 12 650 z21 + 2300 z22 + 300 z23 + 25 z24 + z25

G6×6(z)= 18 z8 + 792 z9 + 42 480 z10 + 901 692 z11 + 9417 660 z12 + 57 622 212 z13 + 234 273 096 z14+
686 972 304 z15 + 1535 339 241 z16 + 2718 976 500 z17 + 3925 148 718 z18 + 4717 557 288 z19+
4795 710 066 z20 + 4172 271 408 z21 + 3133 155 636 z22 + 2042 728 812 z23 + 1160 244 930 z24+
574 802 640 z25 + 248 126 706 z26 + 93 014 644 z27 + 30 098 664 z28 + 8330 940 z29 + 1946 676 z30+
376 956 z31 + 58 905 z32 + 7140 z33 + 630 z34 + 36 z35 + z36

G7×7(z)= 686 z12 + 205 996 z13 + 9203 432 z14 + 182 205 912 z15 + 2082 222 660 z16 + 15 633 666 139 z17+
83 589 101 666 z18 + 336 543 504 122 z19 + 1062 883 834 964 z20 + 2715 977 010 936 z21+
5751 616 552 262 z22 + 10 287 521 966 512 z23 + 15 778 748 654 928 z24 + 21 007 961 215 738 z25+
24 521 234 114 524 z26 + 25 294 410 442 980 z27 + 23 207 364 109 062 z28 + 19 035 405 413 402 z29+
14 013 460 448 554 z30 + 9286 179 999 558 z31 + 5549 897 026 821 z32 + 2994 639 956 448 z33+
1459 111 542 322 z34 + 641 506 327 014 z35 + 254 073 916 530 z36 + 90 407 322 159 z37+
28 792 214 486 z38 + 8164 773 470 z39 + 2047 811 969 z40 + 450 329 306 z41 + 85 854 230 z42+
13 981 660 z43 + 1906 835 z44 + 211 876 z45 + 18 424 z46 + 1176 z47 + 49 z48 + z49

G8×8(z)= 129 224 z16 + 14 681 344 z17 + 651 801 600 z18 + 15 758 203 520 z19 + 240 372 029 072 z20+
2528 654 078 528 z21 + 19 500 205 324 032 z22 + 115 290 942 264 448 z23 + 540 832 229 850 464 z24+
2068 173 372 971 840 z25 + 6588 920 903 240 288 z26 + 17 801 592 852 676 672 z27+
41 390 172 398 524 272 z28 + 83 839 998 055 557 568 z29 + 149 484 557 713 246 144 z30+
236 656 119 110 649 024 z31 + 335 142 837 708 961 654 z32 + 427 236 939 021 347 072 z33+
492 905 450 386 702 720 z34 + 517 004 156 810 313 664 z35 + 494 919 960 091 734 336 z36+
433 802 866 482 847 616 z37 + 349 085 443 267 295 680 z38 + 258 463 881 482 739 136 z39+
176 377 167 134 882 296 z40 + 111 074 953 233 247 104 z41 + 64 609 763 870 627 264 z42+
34 728 863 089 747 456 z43 + 17 251 322 181 046 784 z44 + 7916 762 958 356 992 z45+
3353 820 958 699 552 z46 + 1310 034 044 881 664 z47 + 471 036 957 313 244 z48+
155 565 089 543 040 z49 + 47 060 663 909 504 z50 + 12 995 994 842 880 z51 + 3262 480 436 912 z52+
740 719 463 168 z53 + 151 153 208 768 z54 + 27 511 470 912 z55 + 4424 085 048 z56 + 621 106 688 z57+
74 970 592 z58 + 7624 448 z59 + 635 376 z60 + 41 664 z61 + 2016 z62 + 64 z63 + z64

Table 11: Domination polynomials of the torus graph Gn×n.
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K1×1(z)= z

K2×2(z)= 4 z1 + 6 z2 + 4 z3 + z4

K3×3(z)= z1 + 10 z2 + 48 z3 + 106 z4 + 122 z5 + 84 z6 + 36 z7 + 9 z8 + z9

K4×4(z)= 256 z4 + 1536 z5 + 4480 z6 + 8320 z7 + 10 896 z8 + 10 560 z9 + 7744 z10 + 4320 z11 + 1816 z12+
560 z13 + 120 z14 + 16 z15 + z16

K5×5(z)= 79 z4 + 1593 z5 + 14 672 z6 + 81 524 z7 + 307 244 z8 + 842 506 z9 + 1764 068 z10 + 2918 828 z11+
3909 834 z12 + 4311 034 z13 + 3955 232 z14 + 3038 092 z15 + 1957 940 z16 + 1056 965 z17+
475 304 z18 + 176 256 z19 + 53 046 z20 + 12 646 z21+
2300 z22 + 300 z23 + 25 z24 + z25

K6×6(z)= z4 + 56 z5 + 1652 z6 + 31 664 z7 + 404 770 z8 + 3416 472 z9 + 19 840 300 z10 + 84 209 540 z11+
275 031 868 z12 + 718 655 796 z13 + 1546 177 306 z14 + 2797 874 908 z15 + 4326 011 372 z16+
5782 863 816 z17 + 6741 695 574 z18 + 6897 654 436 z19 + 6220 635 186 z20 + 4958 580 672 z21+
3498 131 846 z22 + 2184 049 652 z23 + 1205 216 450 z24 + 586 259 808 z25 + 250 349 560 z26+
93 305 796 z27 + 30 113 038 z28 + 8327 600 z29 + 1945 800 z30 + 376 864 z31 + 58 901 z32+
7140 z33 + 630 z34 + 36 z35 + z36

K7×7(z)= 243 856 z9 + 7483 274 z10 + 108 525 780 z11 + 995 661 210 z12 + 6526 376 452 z13 + 32 723 647 242 z14+
131 188 032 404 z15 + 433 817 785 292 z16 + 1211 009 331 050 z17 + 2904 839 371 392 z18+
6071 176 663 246 z19 + 11 178 937 768 294 z20 + 18 295 752 974 580 z21+
26 804 759 801 972 z22 + 35 356 180 710 524 z23 + 42 178 267 079 370 z24+
45 670 952 317 403 z25 + 45 011 034 604 106 z26 + 40 458 849 573 846 z27+
33 215 036 685 152 z28 + 24 925 366 211 032 z29 + 17 102 403 546 926 z30+
10 726 989 678 404 z31 + 6145 751 104 023 z32 + 3212 103 217 512 z33+
1528 690 222 560 z34 + 660 843 701 416 z35 + 258 681 402 216 z36 + 91 330 527 514 z37+
28 943 075 360 z38 + 8183 779 088 z39 + 2049 421 399 z40 + 450 371 272 z41 + 85 843 308 z42+
13 979 844 z43 + 1906 704 z44 + 211 872 z45 + 18 424 z46 + 1176 z47 + 49 z48 + z49

K8×8(z)= 3 600 z9 + 260 234 z10 + 9161 844 z11 + 205 624 178 z12 + 3259 026 956 z13 + 38 509 091 104 z14+
351 743 132 940 z15 + 2555 393 428 502 z16 + 15 128 696 395 436 z17 + 74 541 297 707 306 z18+
311 267 686 259 112 z19 + 1118 844 024 839 124 z20 + 3507 981 273 108 664 z21+
9702 498 525 018 636 z22 + 23 899 882 018 866 672 z23 + 52 858 603 217 834 524 z24+
105 690 774 510 597 180 z25 + 192 179 344 747 568 048 z26 + 319 368 084 410 733 612 z27+
487 117 660 190 269 044 z28 + 684 379 499 046 113 744 z29 + 888 386 977 466 277 426 z30+
1068 217 222 601 672 912 z31 + 1192 321 377 072 934 280 z32 + 1237 548 909 927 735 548 z33+
1196 127 084 749 768 650 z34 + 1077 740 592 175 963 352 z35 + 905 994 491 238 380 692 z36+
710 965 651 477 267 076 z37 + 520 969 168 389 552 836 z38 + 356 483 920 242 132 856 z39+
227 748 014 955 114 180 z40 + 135 792 828 381 540 616 z41 + 75 513 548 059 989 048 z42+
39 130 117 374 538 132 z43 + 18 872 828 052 876 618 z44 + 8460 284 139 138 604 z45+
3518 912 510 054 954 z46 + 1355 245 912 038 020 z47 + 482 129 585 758 940 z48+
157 983 537 865 980 z49 + 47 524 258 972 966 z50 + 13 073 010 514 020 z51+
3273 341 812 692 z52 + 741 978 339 844 z53 + 151 266 210 264 z54 + 27 518 246 208 z55+
4424 188 406 z56 + 621 078 384 z57 + 74 967 272 z58 + 7624 272 z59 + 635 372 z60 + 41 664 z61+
2016 z62 + 64 z63 + z64

Table 12: Domination polynomials of the king graph Kn×n.
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