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Abstract

Recently, Matsuhira, Matsusaka, and Tsuchida revisited old studies of the inte-
grality of k-Göbel sequences and showed that the first 19 terms are always integers for
every integer k ≥ 2. In this article, we further explore two topics: Ibstedt’s (k, l)-Göbel
sequences and Zagier’s asymptotic formula for the 2-Göbel sequence, and extend their
results.

1 Introduction

Sloane’s collection of integer sequences [8] inspired Göbel to introduce a sequence defined by
the recursion

gn =
1 + g20 + g21 + · · ·+ g2n−1

n
,

starting with g0 = 1. Despite the initial terms (gn)n = (1, 2, 3, 5, 10, 28, 154, 3520, . . .) ap-
pearing to follow an integer sequence pattern, the sequence’s integrality was not immediately

1This work was supported by JSPS KAKENHI Grant Numbers JP20K14292 and JP21K18141.
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clear, raising doubts about its suitability for inclusion in Sloane’s collection. In 1975, Lenstra
resolved this problem by showing that

gn ∈ Z ⇐⇒ 0 ≤ n ≤ 42.

Unfortunately, Göbel’s sequence is not an integer sequence. Nevertheless, it has since been
registered as an intriguing exception in Sloane’s collection [7, A003504]. (About its history,
also see Matsuhira, Matsusaka, and Tsuchida [6]).

After that, several aspects of Göbel’s sequence were investigated. In 1990, Ibstedt [4]
focused on an alternative recursion:

(n+ 1)gn+1 = gn(n+ gn)

with the initial value g1 = 2, and introduced a generalization.

Definition 1. For integers k, l ≥ 2, the (k, l)-Göbel sequence gk,l(n) is defined by the recur-
sion

(n+ 1)gk,l(n+ 1) = gk,l(n)(n+ gk,l(n)
k−1)

with the initial value gk,l(1) = l.

We can pose the same question as Lenstra: when does its integrality break? To address
the question, we introduce the notation

Nk,l := inf{n ∈ Z>0 : gk,l(n) 6∈ Z} (1)

for k, l ≥ 2. Lenstra’s result is stated as N2,2 = 43. Then Ibstedt provided a method to
compute the values of Nk,l and presented the list of Nk,l for 2 ≤ k, l ≤ 11 as follows. Here
we extend the list to include cases where 2 ≤ k, l ≤ 17. We provide Mathematica codes to
compute Nk,l in Appendix A.

In 1996, Zagier [10] considered the asymptotic behavior of Göbel’s sequence and described
it as

g2,2(n) ∼ C2nn

(

1 +
2

n
−

1

n2
+

4

n3
−

21

n4
+

138

n5
−

1091

n6
+ · · ·

)

(n → ∞) (2)

without proof, where C = 1.0478314475764112295599 . . . is a constant (A115632). Finch [2,
Section 6.10] notes that this asymptotic formula shares the same coefficients (A116603) as
that for the sequence (sn) introduced by Somos. Here, the sequence (sn) is defined by the
recursion

sn = ns2n−1 (3)

starting with s0 = 1 (A052129). It satisfies the relation

sn ∼ σ2nn−1

(

1 +
2

n
−

1

n2
+

4

n3
−

21

n4
+

138

n5
−

1091

n6
+ · · ·

)−1

(n → ∞),
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l\k 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

2 43 89 97 214 19 239 37 79 83 239 31 431 19 79 23 827

3 7 89 17 43 83 191 7 127 31 389 109 431 7 79 83 683

4 17 89 23 139 13 359 23 158 41 169 103 643 31 79 167 118

5 34 89 97 107 19 419 37 79 83 137 31 431 19 41 23 59

6 17 31 149 269 13 127 23 103 71 239 41 431 31 79 23 499

7 17 151 13 107 37 127 37 103 83 239 101 167 19 79 13 59

8 51 79 13 214 13 239 17 163 71 239 41 431 31 79 13 118

9 17 89 83 139 37 191 23 103 23 239 41 431 47 79 29 177

10 7 79 23 251 347 239 7 163 41 239 53 251 7 251 23 59

11 34 601 13 107 19 461 37 79 31 389 101 479 19 79 13 59

12 17 197 97 263 37 191 17 79 41 263 82 167 29 79 53 59

13 17 151 23 263 37 127 37 158 31 137 61 431 19 41 83 271

14 43 158 67 139 37 191 23 158 41 239 29 383 29 79 23 683

15 67 197 173 139 37 239 37 127 31 1097 82 431 31 419 23 347

16 59 151 157 107 59 359 37 103 46 137 29 431 29 79 23 607

17 7 89 67 43 13 127 7 179 41 263 31 431 7 79 59 59

Table 1: The list of Nk,l. As noted in OEIS (A097398), the articles of Ibstedt [4] and Guy [3,
E15] contain some mistakes in the values.

where

σ :=
∞
∏

n=1

n1/2n = 1.6616879496 . . . (4)

is called the Somos constant (A112302).
After a period of silence, in 2023, inspired by the Japanese manga “Seisu-tan” [5], Mat-

suhira, Tsuchida, and the second author [6] addressed the problem of determining the min-
imum value of Nk,2 and showed that

min
k≥2

Nk,2 = 19. (5)

Once again, Göbel’s sequence returned as a subject of research.
In this article, we combine the above results and extend them as suggested by the previous

work [6] in the last remarks. First, we consider the minimum value of all Nk,l and show the
following:

Theorem 2. We have mink,l≥2Nk,l = 7, which implies that gk,l(n) ∈ Z for all integers

k, l ≥ 2 and 1 ≤ n ≤ 6. Moreover, we have Nk,l = 7 if and only if k ≡ 2 (mod 6) and l ≡ 3
(mod 7).
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Secondly, we give a complete proof of Zagier’s asymptotic formula (2) and generalize it
for (k, l)-Göbel sequences. Before stating the theorem, we recall the definition of asymptotic
expansions.

Definition 3. Assume that the sequence (λr(n))r satisfies λr+1(n) = o(λr(n)) as n → ∞,
that is,

lim
n→∞

λr+1(n)

λr(n)
= 0

for every r. For a sequence (cn)n, we call (ar)r its asymptotic coefficients and write

cn ∼
∞
∑

r=0

arλr(n)

if

cn −
R
∑

r=0

arλr(n) = O(λR+1(n)) (n → ∞)

holds for every R ≥ 0.

By adapting the sequence λr(n) = Ckn

k,ln
1

k−1n−r, we obtain the following asymptotic
expansion.

Theorem 4. For integers k, l ≥ 2, there exist a constant Ck,l > 1 and a sequence (ak,r)r
such that

gk,l(n) ∼ Ckn

k,ln
1

k−1

(

1 +
∞
∑

r=1

ak,r
nr

)

(n → ∞).

The constant Ck,l and the sequence (ak,r)r is explicitly defined in Proposition 10 and
Theorem 15, respectively.

In Section 2 and Section 3, we give proofs of the above theorems, respectively. In
Section 4, we provide further observations on a variability of gk,l(n) modulo a higher power
of p.

2 How long can (k, l)-Göbel sequences remain integers?

In this section, we provide a proof of Theorem 2, drawing on Ibstedt’s method for computing
Nk,l and the argument presented by Matsuhira, Matsusaka, and Tsuchida [6]. First, we
prepare some notation.
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2.1 Notation and key properties

Let P be the set of all prime numbers. For each p ∈ P , we let Z(p) denote the localization
of Z at the prime ideal (p), that is, Z(p) = {a/b ∈ Q : p ∤ b}. By the fact that

⋂

p∈P

Z(p) = Z, (6)

for x ∈ Q, we have x ∈ Z if and only if x ∈ Z(p) for all p ∈ P . Let νp(x) be the p-adic
valuation of x ∈ Q. More precisely, for an integer n, νp(n) is the exponent of the largest
power of p that divides n, and it is extended to rational numbers by νp(a/b) = νp(a)− νp(b).
The following lemma is the key for our proof of Theorem 2. For convenience, we also include
the cases when k = 1 or l = 1, in which gk,l(n) is a constant sequence.

Lemma 5. Let N be a positive integer. For each p ∈ P, we put r = νp(N !). Let

k, k1, k2, l, l1, l2 ≥ 1 and 1 ≤ n ≤ N be integers. Then we have the following.

(1) If p > N , then gk,l(N) ∈ Z(p).

(2) If gk,l(n) 6∈ Z(p), then gk,l(n+ 1) 6∈ Z(p).

(3) Assume that p ≤ N , that is, r ≥ 1. If k1, k2 ≥ r and k1 ≡ k2 (mod ϕ(pr)), then

gk1,l(n) ∈ Z(p) if and only if gk2,l(n) ∈ Z(p), where ϕ(n) is the Euler totient function.

Moreover, in this case, we have gk1,l(n)− gk2,l(n) ∈ pr−νp(n!)Z(p).

(4) Assume that p ≤ N . If l1 ≡ l2 (mod pr), then gk,l1(n) ∈ Z(p) if and only if gk,l2(n) ∈
Z(p). Moreover, in this case, we have gk,l1(n)− gk,l2(n) ∈ pr−νp(n!)Z(p).

Proof.

(1) Obvious from Definition 1.

(2) If gk,l(n) 6∈ Z(p), that is, νp(gk,l(n)) < 0, then we have

νp(gk,l(n+ 1)) = νp(gk,l(n)) + νp(n+ gk,l(n)
k−1)− νp(n+ 1)

= kνp(gk,l(n))− νp(n+ 1) < 0.

(3) follows from Euler’s theorem, (a generalization of Fermat’s little theorem), and induc-
tion on n. For the initial case, we have gk1,l(1) = l = gk2,l(1). Assume that the claim
holds for some 1 ≤ n < N . If gk1,l(n) 6∈ Z(p), then both of gk1,l(n+1) and gk2,l(n+1) are
not in Z(p) by the induction hypothesis and (2). On the other hand, if gk1,l(n) ∈ Z(p),
then

(n+ 1)

(

gk1,l(n+ 1)− gk2,l(n+ 1)

)

= n(gk1,l(n)− gk2,l(n)) + (gk1,l(n)
k1 − gk2,l(n)

k2).
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By the induction hypothesis, the first term is in pr−νp(n!)Z(p). As for the second term,
if gk1,l(n) 6∈ pZ(p), then by applying Euler’s theorem, it belongs to pr−νp(n!)Z(p). If
gk1,l(n) ∈ pZ(p), then since k1, k2 ≥ r, it is also in pr−νp(n!)Z(p). Therefore, by dividing
the both sides by (n + 1), we get gk1,l(n + 1) − gk2,l(n + 1) ∈ pr−νp((n+1)!)Z(p). In
particular, if gk1,l(n+ 1) 6∈ Z(p), then gk2,l(n+ 1) 6∈ Z(p), and vice versa.

(4) Since gk,l1(n) and gk,l2(n) satisfy the same recursion with the same initial value modulo
pr, the claim immediately follows in a similar manner to (3).

2.2 Proof of Theorem 2

We have to check the following two claims.

1. For integers k, l ≥ 2 and 1 ≤ n ≤ 6, gk,l(n) ∈ Z.

2. gk,l(7) 6∈ Z if and only if k ≡ 2 (mod 6) and l ≡ 3 (mod 7).

By applying Lemma 5 with N = 7 and combining it with (6), these claims can be
translated as follows.

Lemma 6. Theorem 2 is equivalent to the following claims for p = 2, 3, 5, 7.

1. For 2 ≤ k ≤ 11 and 1 ≤ l ≤ 16, we have gk,l(7) ∈ Z(2).

2. For 2 ≤ k ≤ 7 and 1 ≤ l ≤ 9, we have gk,l(7) ∈ Z(3).

3. For 1 ≤ k ≤ 4 and 1 ≤ l ≤ 5, we have gk,l(7) ∈ Z(5).

4. For 1 ≤ k ≤ 6 and 1 ≤ l ≤ 7, gk,l(7) 6∈ Z(7) if and only if k = 2 and l = 3.

Proof. Since it is obvious that Theorem 2 implies the claims, we now show the converse
implication. By Lemma 5 (1), gk,l(7) ∈ Z(p) for every p > 7. Since the discussion remains
similar for the remaining cases of p = 2, 3, 5, and 7, let us focus here on explaining the case
when p = 2. By Lemma 5 (2), gk,l(7) ∈ Z(2) if and only if gk,l(n) ∈ Z(2) for all 1 ≤ n ≤ 7.
By the periodicity shown in Lemma 5 (3) and (4), it is enough to show that gk,l(7) ∈ Z(2)

for k = 2, 3, and 4 ≤ k < 4 + ϕ(24), and 1 ≤ l ≤ 24, where we note that ν2(7!) = 4. This is
the claim for p = 2.

Proof of Theorem 2. Since there are only a finite (and relatively small) number of cases to
consider, it can be checked by using Mathematica. The codes to compute them are available
in Appendix A. Alternatively, it is enough (and possible) to check that gk,l(7) ∈ Z if and
only if (k, l) 6= (2, 3), (2, 10), (8, 3), (8, 10) for 1 ≤ k ≤ 11 and 1 ≤ l ≤ 16 because gk,l(7) is
not too large in these cases.
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3 Zagier’s asymptotic formula and its generalization

In this section, we prove Theorem 4 by defining the constant Ck,l and the asymptotic coef-
ficients ak,r explicitly.

3.1 The constant Ck,l

We first show the monotonic behavior of Ck,l(n) := gk,l(n)
1/kn .

2 4 6 8 10 12 14

1.1

1.2

1.3

1.4

(k, l) = (2, 2)

2 4 6 8 10 12 14

1.12

1.14

1.16

1.18

1.20

(k, l) = (3, 2)

2 4 6 8 10 12 14

1.2

1.3

1.4

1.5

1.6

1.7

(k, l) = (2, 3)

Figure 1: The plots of Ck,l(n) for 1 ≤ n ≤ 15.

Lemma 7. For integers k, l ≥ 2 and n ≥ 1, we have Ck,l(n) > Ck,l(n+ 1) > 1.

Proof. First, we check that Ck,l(n) > 1, that is, gk,l(n) > 1 by induction on n. The initial
condition is satisfied by gk,l(1) = l ≥ 2. Assume that gk,l(n) > 1. Then we have

gk,l(n+ 1) =
1

n+ 1

(

ngk,l(n) + gk,l(n)
k

)

>
n+ 1

n+ 1
= 1.

Next, we check for monotonicity. Since gk,l(n) > 1, we have gk,l(n)
k−1 > 1, and then

1

n+ 1

(

n

gk,l(n)k−1
+ 1

)

< 1.

Hence, we have

(

Ck,l(n+ 1)

Ck,l(n)

)kn+1

=
gk,l(n+ 1)

gk,l(n)k
=

1

n+ 1

ngk,l(n) + gk,l(n)
k

gk,l(n)k
< 1, (7)

which concludes the proof.

The above lemma shows that Ck,l(n) converges. We denote the limit as

Ck,l := lim
n→∞

Ck,l(n) ≥ 1. (8)
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Next, we introduce some notation to show the strict inequality Ck,l > 1. For k ≥ 2, we
define the k-Somos constant σk by

σk := exp

( ∞
∑

m=1

logm

km

)

> 1, (9)

(see also Sondow-Hadjicostas’s article [9] and A123852). For a real number t0 > 1, we define
a Somos-like sequence tk(n) by the recursion:

tk(n+ 1) =
1

n+ 1
tk(n)

k (10)

with the initial value tk(0) = t0.

Lemma 8. If t0 > σk, then there exists a constant c > 1 such that tk(n)
1/kn decreases

monotonically and tends to c as n → ∞.

Proof. It is equivalent to show that ak(n) := k−n log tk(n) decreases and tends to a positive
constant. Since ak(n) satisfies the recursion

ak(n) = ak(n− 1)−
log n

kn

for n ≥ 1, the sequence decreases monotonically. By our assumption, we have ak(0) > log σk,
which implies that

lim
n→∞

ak(n) = ak(0)−
∞
∑

n=1

log n

kn
> 0.

We can estimate (k, l)-Göbel sequences gk,l(n) by using the sequence tk(n) as follows.

Lemma 9. If l ≥ tk0, then gk,l(n) ≥ tk(n) for all n ≥ 1.

Proof. It immediately follows from induction on n. Indeed, we have gk,l(1) = l ≥ tk0 = tk(1).
Assume that gk,l(n) ≥ tk(n). Then we obtain

gk,l(n+ 1) >
1

n+ 1
gk,l(n)

k ≥
1

n+ 1
tk(n)

k = tk(n+ 1).

Proposition 10. For integers k, l ≥ 2, the constant Ck,l defined in (8) satisfies Ck,l > 1.

8
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Proof. We prove the claim by considering three cases.

(1) For k ≥ 3 and l ≥ 2, since σ3
3 = 1.5462 . . . and σk

k decreases monotonically, there
exists a real number t0 > 1 such that l ≥ tk0 > σk

k . For such a t0, by applying Lemma 8 and
Lemma 9, we obtain

Ck,l(n) = gk,l(n)
1/kn ≥ tk(n)

1/kn ≥ c > 1,

which implies that Ck,l > 1.

(2) For k = 2 and l ≥ 3, since σ2
2 = 2.7612 . . ., there exists a real number t0 > 1 such

that l ≥ t20 > σ2
2. By the same argument, we also obtain Ck,l > 1.

(3) For k = l = 2, we need to modify the argument. We define another sequence t′2(n)
by the same recursion as in (10) with the initial value t′2(3) = 5. Then the inequality
g2,2(n) ≥ t′2(n) for n ≥ 3 is shown in a manner similar to Lemma 9. Thus, we obtain

C2,2(n) = g2,2(n)
1/2n ≥ t′2(n)

1/2n

and

lim
n→∞

1

2n
log t′2(n) =

1

23
log 5−

∞
∑

n=4

log n

2n
= 0.00395 . . . > 0.

Hence, we conclude that C2,2 > 1.

3.2 Asymptotic behavior

In the previous subsection, we defined the constant Ck,l > 1. By definition, we obtain

gk,l(n)

Ckn
k,l

=

(

Ck,l(n)

Ck,l

)kn

. (11)

Thus, it is sufficient to evaluate the right-hand side to prove Theorem 4. The aim of this
subsection is to establish a connection to a simpler sequence.

Theorem 11. For every real number R > 0, we have

exp

( ∞
∑

m=1

log (m+ n)

km

)

−

(

Ck,l(n)

Ck,l

)kn

= O

(

1

nR

)

as n → ∞.

First, we prepare a lemma with the aim of proving this theorem. Let

ǫk,l(n) :=
∞
∑

m=1

log (m+ n)

km
− kn(logCk,l(n)− logCk,l).
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Lemma 12. We have

ǫk,l(n) =
∞
∑

m=1

1

km
log

(

1 +
m+ n− 1

gk,l(m+ n− 1)k−1

)

≤
2n

C
(k−1)kn

k,l

.

Proof. By (7), we have

logCk,l(m+ n)− logCk,l(m+ n− 1) =
1

km+n
log

(

m+ n− 1

gk,l(m+ n− 1)k−1
+ 1

)

−
log(m+ n)

km+n
.

By summing each side over m, we obtain

kn(logCk,l − logCk,l(n)) =
∞
∑

m=1

1

km
log

(

m+ n− 1

gk,l(m+ n− 1)k−1
+ 1

)

−
∞
∑

m=1

log(m+ n)

km
,

which implies the first equality.
Next, the inequality log(1 + x) < x for x > 0 implies that

∞
∑

m=1

1

km
log

(

1 +
m+ n− 1

gk,l(m+ n− 1)k−1

)

<

∞
∑

m=1

1

km

m+ n− 1

gk,l(m+ n− 1)k−1
.

Since Ck,l(n) ≥ Ck,l > 1 and gk,l(n) = Ck,l(n)
kn , we have

gk,l(m+ n− 1)k−1 = Ck,l(m+ n− 1)(k−1)km+n−1

≥ C
(k−1)kn

k,l .

Therefore, by using m+ n− 1 ≤ mn for m,n ≥ 1, we obtain

ǫk,l(n) <
n

C
(k−1)kn

k,l

∞
∑

m=1

m

km
=

n

C
(k−1)kn

k,l

k

(k − 1)2
≤

2n

C
(k−1)kn

k,l

for k ≥ 2.

Proof of Theorem 11. By using the expression
(

Ck,l(n)

Ck,l

)kn

= exp

( ∞
∑

m=1

log(m+ n)

km
− ǫk,l(n)

)

and the inequality ex − ex−ǫ ≤ ǫex, we have

exp

( ∞
∑

m=1

log (m+ n)

km

)

−

(

Ck,l(n)

Ck,l

)kn

≤ ǫk,l(n) exp

( ∞
∑

m=1

log(m+ n)

km

)

.

Moreover, by applying m+ n ≤ m(n+ 1) for m,n ≥ 1, it is bounded by

≤ ǫk,l(n)σk · exp

( ∞
∑

m=1

log(n+ 1)

km

)

= ǫk,l(n)σk · (n+ 1)
1

k−1 ,

where σk is the k-Somos constant defined in (9). Finally, by Lemma 12, we obtain the
theorem.
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3.3 The asymptotic coefficients ak,r

Finally, to complete the statement of Theorem 4 and its proof, we provide the asymptotic
expansion of the first term of Theorem 11. First, we review the relevant parts of the studies
by Sondow and Hadjicostas [9] regarding a generalization of Somos’s sequence introduced in
(3). Then we establish a connection between their results and our (k, l)-Göbel sequences.
To state their claims explicitly, we recall the Eulerian polynomials.

Definition 13. For any integer r ≥ 0 and t > 1, there exists a polynomial Ar(t) such that

∞
∑

m=1

mr

tm
=

Ar(t)

(t− 1)r+1
.

We call the polynomial Ar(t) the Eulerian polynomial.

Example 14. The first few examples are given by A0(t) = 1 and

A1(t) = t,

A2(t) = t2 + t,

A3(t) = t3 + 4t2 + t,

A4(t) = t4 + 11t3 + 11t2 + t,

A5(t) = t5 + 26t4 + 66t3 + 26t2 + t.

For more examples, see A008292.

Then the following is known.

Theorem 15 ([9, Theorem 9 and Lemma 1]). For an integer k ≥ 2, we define the sequence

(ak,r)r to be

ak,r :=
∑

m1,...,mr≥0
m1+2m2+···+rmr=r

r
∏

j=1

1

mj!

(

(−1)j−1

j

Aj(k)

(k − 1)j+1

)mj

. (12)

Then we have

exp

( ∞
∑

m=1

log(m+ n)

km

)

∼ n
1

k−1

(

1 +
∞
∑

r=1

ak,r
nr

)

(n → ∞).
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Example 16. The first several terms are calculated as follows.

ak,1 =
k

(k − 1)2
,

ak,2 = −
k(k2 − k − 1)

2(k − 1)4
,

ak,3 =
k(2k4 + k3 − 11k2 + 7k + 2)

6(k − 1)6
,

ak,4 = −
k(6k6 + 37k5 − 124k4 + 53k3 + 92k2 − 59k − 6)

24(k − 1)8
,

ak,5 =
k(24k8 + 478k7 − 1013k6 − 1324k5 + 4411k4 − 2724k3 − 453k2 + 578k + 24)

120(k − 1)10
.

In particular, when k = 2, we observe that (a2,r)
5
r=1 = (2,−1, 4,−21, 138), which matches

the asymptotic coefficients in (2).

Proof of Theorem 4. We show that

gk,l(n)

Ckn
k,l

− n
1

k−1

(

1 +
R
∑

r=1

ak,r
nr

)

= O

(

n
1

k−1

nR+1

)

(n → ∞)

for every R ≥ 0. It immediately follows by applying (11), Theorem 11, and Theorem 15.

Remark 17. Let Gk,l(n) := log gk,l(n) denote the logarithm of the (k, l)-Göbel sequence. The
recurrence relation in Definition 1 can be rewritten as

Gn+1 = kGn + Fn,

where we define

Fn := log

(

1

n+ 1

(

1 +
n

gk,l(n)k−1

))

.

As the reviewer noted, this recursion closely resembles the one considered by Aho and
Sloane [1]. Likewise, the sequence

Hn :=
∞
∑

m=1

log(m+ n)

km

discussed in Theorem 11 also satisfies a similar recurrence relation:

Hn+1 = kHn − log(n+ 1).

Aho and Sloane analyzed the asymptotic behavior of sequences defined by recurrence rela-
tions of this form in the case of k = 2. Our analysis in Section 3 can be seen as following
their approach, extending it to provide a rigorous treatment for the (k, l)-Göbel sequences.
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4 Further observations

Zagier [10] observed not only the asymptotic formula but also a heuristic explaining why
N2,2 = 43 is unexpectedly large, assuming a certain “randomness” of the values g2,2(n)
modulo p for 1 ≤ n < p. Inspired by his heuristic argument, we can ask the question: for
any pair of integers k, l ≥ 2, does there exist (infinitely many) p ∈ P such that gk,l(p) 6∈ Z(p).
For instance, g2,2(p) 6∈ Z(p) holds when p = 43, 61, 67, 83, . . .. We do not have an answer to
this question, but we obtained a result concerning “randomness”, which we present as a final
remark.

Theorem 18. For any prime number p ∈ P and integers k, l, r ≥ 2, the set

Gr
k,l,p := {gk,l(n) mod pr : 1 ≤ n < p, gk,l(n) ≡ 0 (mod pr−1)}

is a singleton {0 mod pr} or has the same cardinality as {1 ≤ n < p : gk,l(n) ≡ 0 (mod pr−1)}.
Here the congruence is considered in Z(p).

Example 19. Let r = 2. For (k, l) = (4, 4) and p = 13, we see that g4,4(1) 6≡ 0 (mod 13)
and g4,4(n) ≡ 0 (mod 13) for 2 ≤ n ≤ 12. Moreover, we can check that all entries of

(g4,4(n) mod 132)2≤n≤12 = (130, 143, 65, 52, 156, 13, 117, 104, 26, 39, 78)

are distinct from each other.
On the other hand, for (k, l) = (3, 2) and p = 13, we see that g3,2(n) 6≡ 0 (mod 13) for

1 ≤ n ≤ 3 and g3,2(n) ≡ 0 (mod 132) for 4 ≤ n ≤ 12. Thus, G2
3,2,13 = {0 mod 132} is a

singleton.

To prove the theorem, we first show a lemma.

Lemma 20. Let k, l, r ≥ 2 be integers and p ∈ P. Assume that there exists 1 ≤ a < p and

0 ≤ b < p such that gk,l(a) ≡ bpr−1 (mod pr). Then, for every a ≤ n < p, we have

ngk,l(n) ≡ abpr−1 (mod pr).

Proof. It follows from induction on n. The first condition agk,l(a) ≡ abpr−1 (mod pr) is
clearly satisfied by our assumption. Assume that ngk,l(n) ≡ abpr−1 (mod pr) for some
a ≤ n < p− 1. By definition,

(n+ 1)gk,l(n+ 1) = gk,l(n)
k + ngk,l(n) ≡ (n−1ab)kpk(r−1) + abpr−1 (mod pr),

which implies that (n+ 1)gk,l(n+ 1) ≡ abpr−1 (mod pr) because k(r − 1) ≥ r.

Proof of Theorem 18. It is sufficient to consider the case where I := {1 ≤ n < p : gk,l(n) ≡ 0
(mod pr−1)} 6= ∅. Then we take a := min I and 0 ≤ b < p satisfying gk,l(a) ≡ bpr−1

(mod pr). If b = 0, then Lemma 20 tells us that gk,l(n) ≡ 0 (mod pr) for all n ∈ I, that

13



is, Gr
k,l,p = {0 mod pr}. We now assume that b 6= 0. If there exist n1, n2 ∈ I satisfying

gk,l(n1) ≡ gk,l(n2) (mod pr), Lemma 20 implies that

n1gk,l(n1) ≡ abpr−1 ≡ n2gk,l(n2) (mod pr),

and then n1 = n2.

As a further observation, Table 1 suggests a tendency for Nk,l to increase when k is prime.
However, elucidating this phenomenon is a subject for future investigation.

A Methods for Computing Nk,l

In this appendix, we provide a method to compute Nk,l and the Mathematica codes we used
to generate Table 1. First, we recall the following sequence gk,l,p,r(n) introduced in [6].

Definition 21. Let k, l ≥ 2, r ≥ 1 be integers, and p a prime. We define b(n) = bp,r(n) =
r − νp(n!) and use the symbol F to represent “False”. For any positive integer n with
νp(n!) ≤ r, we define gk,l,p,r(n) ∈ Z/pb(n)Z ∪ {F} as follows.

• Initial condition: gk,l,p,r(1) = l mod pr ∈ Z/prZ.

• For n ≥ 2: When gk,l,p,r(n− 1) = F, gk,l,p,r(n) = F.

• For n ≥ 2: When gk,l,p,r(n− 1) = a mod pb(n−1),

- if a(n− 1 + ak−1) 6≡ 0 (mod pνp(n)), then gk,l,p,r(n) = F.

- if a(n− 1+ ak−1) ≡ 0 (mod pνp(n)), then letting c ∈ Z such that c · (n/pνp(n)) ≡ 1
(mod pb(n)), we define

gk,l,p,r(n) =
a(n− 1 + ak−1)

pνp(n)
· c mod pb(n).

The recursion above, defining gk,l,p,r(n), is a translation of Definition 1 modulo a power
of p. Since gk,l(n) 6∈ Z(p) if and only if gk,l,p,νp(n!)(n) = F, the number Nk,l can be expressed
as

Nk,l = inf{n ∈ Z>0 : there exists p ∈ P≤n such that gk,l,p,νp(n!)(n) = F}.

The following code implements this argument in Mathematica.

nu[p_, n_] := FirstCase[FactorInteger[n], {p, r_} -> r, 0];

inv[n_, M_] := If[M == 1, 1, ModularInverse[n, M]];

g[k_, l_, p_, r_, 1] := {Mod[l, p^r], r};

g[k_, l_, p_, r_, n_] :=

14



g[k, l, p, r, n] =

Module[{a, b},

If[g[k, l, p, r, n - 1] === "F",

"F", {a, b} = g[k, l, p, r, n - 1];

If[Mod[a (n - 1 + a^(k - 1)), p^nu[p, n]] != 0,

"F", {Mod[

a (n - 1 + a^(k - 1))/p^nu[p, n] inv[n/p^nu[p, n],

p^(b - nu[p, n])], p^(b - nu[p, n])], b - nu[p, n]}]]];

NN[k_, l_] := Module[{n}, n = 2;

While[

FreeQ[Table[

g[k, l, Prime[m], nu[Prime[m], n!], n], {m, 1, PrimePi[n]}],

"F"], n++]; n];

Here, the output g[k,l,p,r,n] = {a, b} means that gk,l,p,r(n) = a mod pb with b =
b(n), that is, gk,l(n) ≡ a (mod pb), and NN[k,l] gives the value of Nk,l.

References

[1] A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quart.
11 (1973), 429–437.

[2] S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applica-
tions, Vol. 94, Cambridge University Press, 2003.

[3] R. K. Guy, Unsolved Problems in Number Theory, 3rd edition, Problem Books in Math-
ematics, Springer-Verlag, 2004.

[4] H. Ibstedt, Some sequences of large integers, Fibonacci Quart. 28 (1990), 200–203.

[5] D. Kobayashi and S. Seki, Seisu-tan 1: A strange tale of integers’ world, Nippon Hyoron
Sha (in Japanese), 2023.

[6] R. Matsuhira, T. Matsusaka, and K. Tsuchida, How long can k-Göbel sequences remain
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