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Abstract
In this paper, we give explicit asymptotic formulas for some sums over primes involv-
ing three types of generalized alternating hyperharmonic numbers. We also consider
analogous results for numbers with & prime factors.

1 Introduction and preliminaries

The prime numbers (see the sequence A000040 in the OEIS [16]) play an essential role
in number theory. Let m(x) denote the number of primes up to x. Gauss and Legendre
proposed independently that the ratio 7(x) 10235 approaches 1 as x approaches co. With the
help of analytic tools, Hadamard [5] and de la Vallée Poussin [17] independently and almost

simultaneously proved the prime number theorem, i.e.,
m(x)

Let p, be the n-th prime number, and let a be a non-negative integer. It is natural to
consider asymptotic formulas for more general sums of type an <o P~ We restate the prime
number theorem as

T

~ logx

x

mx) =) ph~——.

pn<z logx
IQ

2logx”

Later, Jakimczuk [7, 8] extended this

In fact, Saldt and Zndm

An exercise in Granville’s book [4] states that > _ p ~

[15] proved more general sums > pj ~ %.
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kind of summation to numbers with k& prime factors and functions of slow increase. Gerard
. . 14+a . .
and Washington [3] also gave accurate estimates for an I m by using the prime
number theorem with error terms.
We now recall some definitions and notation. Let k > 1, and let n be the product of just
k prime factors (p; and p; are allowed to be the same), i.e.,

n = pipz- - P- (1)

We write 74(z) for the number of such n < z. If we impose the additional restriction that
all the prime divisors p in equation(1) are different, n is squarefree. We write m(z) for the
number of these (squarefree) n < z. Landau [6, 9] proved that

k—1
z(loglog ) (k> 9).
(k—1)!logz
For k£ = 1, this result reduces to the prime number theorem, if, as usual, we take 0! = 1.
Conway and Guy [1] introduced the conception of hyperharmonic numbers as

() ~ () ~

A = Zhy_l) (n,r e N:={1,2,3,...}) with Al =H, = Z 1/5.
j=1 j=1
Dil, Mez6, and Cenkei [2] introduced the notion of generalized hyperharmonic numbers as

P =S"HPTY (n,p,r € N),
j=1

and studied the Euler sums of hyperharmonic numbers. Omiir and Koparal [14] intro-
duced the generalized hyperharmonic numbers J2ia independently and almost simultane-
ously from a combinatorial point of view, and defined two n x n matrices A, and B, with
a;; = HY" and b;; = H"? respectively. Omiir and Koparal also gave some interest-
ing factorizations and determinant properties of the matrices A, and B,. The author [12]
proved that the generalized hyperharmonic numbers HP" are linear combinations of n’s
power times generalized harmonic numbers.

The author [10] introduced the conception of generalized alternating hyperharmonic num-
bers HP". Define the notion of the generalized alternating hyperharmonic numbers of types
I, I, and III, respectively, as

n

Hép,r,l) = Z(_l)k—lHép,rfl,l) (HT(Lp,l,l) _ Hép))’

k=1
H7(lp,r,2) — Zngp,r—Lz) (Hﬁbp,l,Z) _ ﬁfzp) — Z(_l)j_l/jp)’
k=1 j=1

Hpr ) = S e S <)
k=1



Let Ny denote the set of nonnegative integers. If p € Ny, then Hj, ) and ﬁ(fp) are the sum
> iy g” and Y77 (=1)77157, respectively. The author [10] proved that Euler sums of the
generalized alternatmg hyperharmonic numbers of types I, II, and I1I are linear combinations
of classical (alternating) Euler sums.

Let f(n) denote an arithmetical function. It is interesting to consider asymptotic for-
mulas for sums over primes of type >, pjf(n)™. The author [11] gave explicit asymp-
totic formulas for sums over primes involving generalized hyperharmonic numbers of type
an o DY (Hr o ))m. The author [11] also considered analogous results for numbers with &
prime factors.

The motivation of this paper arises from an exercise in Granville’s book [4] and the
author’s recent work [10] on generalized alternating hyperharmonic numbers. This paper is
a continuation of the previous paper of the author with the same title [11]. In this paper,
we derive explicit asymptotic formulas for some sums over primes involving three types
of generalized alternating hyperharmonic numbers. We also consider analogous results for
numbers with & prime factors.

2 Some notation and lemmas

We now recall some notation and lemmas.

Lemma 1 ([13]). For alln € N and a fized order r > 1, we have

” 1 T—
A ~ = 1)!n Hog(n).

Lemma 2 ([11]). For r,n,p € N with p > 2, we have

' 1 rT—
HP ~ " ¢(p),

where ((p) := > ", n~P is the Riemann zeta function.

Lemma 3 ([12]). Forr,n,p € N, we have

r—1 r—1—-m

p’m) Z Z armjnjH(p m)

m=0 j=0

The coefficients a(r,m, j) satisfy the following recurrence formulas:

r—1
1
a(r+1,7,0) = Zarmr— —1) —
r—1— . .
"a(r,m,g) (G4 1
1,m,0) = — B;_
a(T+ 7ma ) jze?l ]+1 (] _€+ 1) 7 /+1

0<m<r—1,1</¢<r—m),



r—1-y

m 1—
a(r +1,m,0) = Z > alry.)Drm,jy) (0<m<r—1),

y=0 j=max{0,m—y—1}

where

j .
. 1 [j+1 {41 10—
D - — Bj- .
(r,m,j,y) Z j—|—1<]—€) J K(m_y>( )

{=max{0,m—y—1}

The Bernoulli numbers B,, satisfy the following recurrence formula

Zk:(kﬁ) Bi—k+1 (k>0

The initial value is a(1,0,0) = 1.

Definition 4. For m,j € Ny, define the quantities ¢(m, j), d(m,j), c1(m,j), and di(m, j)

as
) 1 m+1
c(m, j) = ( )Bm+1 ek

m+1 m+1—j

1 T m+1 1+k .
d(m,j) = —— By —1)tHhd
(m. j) m—i—lk]l(m k) k( j )( ) '

r(m, ) = mZ (" et T e,

2(m+1) &
zm: ( ) e (m, k).
k—j
Definition 5. Let g(r) := (2r — (—1)" — 3)/4. For r € N, define the boundary values of the
quantities by (r,m, j, k), k =0,1,2,3 as
o b1(1,0,0,2) =1, by(1,0,0,3) = 0;
e by(r,m,7,0) =bi(r,m,5,1) =0 (r odd);
o by(r,m,7,2) =bi(r,m,5,3) =0 (reven);
r,m,5,3) =0 (rodd, m+j=g(r)).

For k =0, 1,2, 3, the quantities by (r, m, j, k) satisfy the following recurrence formulas:
When 7 is odd,

g(r)
o bi(r+1,m, 3,00 =S bi(r 65, 2)e(tm) (1Sm<gr), 0<j< glr)—m);

l=m



g(r)—j

o bi(r+1,0,5,0)= Y bi(r,(,5,2)er(£,0) (0<j<g(r));

=0
g(r)—-1
i bl(r+1>maj71): Z bl(r,f,j,B)c(&m) (1§m§g(r)7 OS]SQ(T)—m)7
l=m—1
g9(r)—j
b bl(r+ 1a0aj7 Z Z bl(ramvjlaQ)dl(m7€> + Z bl(Tamaj72)dl(m70) +
= J1t+l=j3 m=0
0<]1<g(r) m
1<t<m
(r,0,7,3 Z > bi(rym i, 3)d(m,0) (0 <5< g(r)).
Jitt=j
0<j1<g(r)—m—1
1<e<m+1
When r is even,
g(r)
o bi(r+1,m,5,2) = Y bi(r,6,5,0)c(t,m) (1<m<g(r)+1, 0<j<g(r)+1-m);
l=m—1
g(r)—j
o bi(r+1,0,52) Z > bilrom, g1, 0)d(m, €) + > bi(r,m, j, 1)dy (m, 0) +
m=0  j14+l=j m=0
0<J1<9(7")
1<f<m+1

(r,0,7,0) + Z Z bi(r,m, ji1, )dy(m,0) (0<j<g(r)+1);

m=0  j1+l=j
0<51<g(r )
1<t<m

g(r)

o bi(r+1,m,j,3) =Y bi(r.l,jDei(t,m) (1<m<g(r), 0<j<g(r)—m);

l=m

g(r)—j

® bl(r+ 1707j7 3) - Z b1<717£7j71)01(£7 O) (0 < ] < g(T’))

Lemma 6 ([10]). For r,n,p € N, we have

2r—(— 1)T—3 2r—(— 1)T—5

HPrD = Z Z (fn(r,j,m,o><—1>”—1H£f—m>+b1<r,j,m,1>ﬁif”’")

+ by (7, 4, m, 2) HP™™ + by (r, j,m, 3)(— 1)”‘1ﬁ5zpm>m,



2r—(=1)"—3 2r—(-=1)"-3

m

4 4
HPr = %7 ) (bmr, §ym, 0) (= 1) HY ™™ 4 by (r, jom, DHE ™
m=0 7=0

+bu(r,j,m, 2HT ™ + b1<m',m,3><—1>“—1H£”‘m))”j‘

Lemma 7 ([7, 8]). Let Y .2, a; and Y .2, b; be two series of positive terms such that a; ~ b,.
Then if > ;= b; is divergent, the following result holds:

n n
i=1 =1

Lemma 8 ([6, 11]). Let p, i denote the nth squarefree number with just k prime factors
and g denote the nth number with just k prime factors. Then the following asymptotic
formulas hold:

nlog(n)
log log(n))*~1’
Pue(10810g(pnk)) ™" ~ gu i (loglog(gar))" ™" ~ (k = 1)lnlog(n).
For k =1, we have p, ~ nlog(n).

Pnk ™~ dnk ™~ (k - ]-)'(

Lemma 9 ([11]). For m,n, k,z € N, we have

3 en(log(oy ~ 20"
/=1

- m+1
o (log(0)" ™ (log())"
; (loglog(0))* ~ (m + 1)(loglog(z))*

9

3 Sums over primes involving generalized alternating
H(parvl)

hyperharmonic numbers of type H)

Now we provide the asymptotic formulas for the generalized alternating hyperharmonic num-
bers of type HP™Y.

Lemma 10. Let y,p € N with p > 2, the following asymptotic formulas hold:

1
(1,2y+1,1) _, Y (p2y+1,1) _, Yy
Hn 2y . y|n 1Og(n)7 Hn 2y A y'n C(p)7
1
(172y71) ~ —_— yfl _ n—I1
Hn 2y . (y _ 1)|n ( 1) log(n)7
1 _
H(p,Zy,l) o y—1 .
1 _
Hp2Y ~ '~ (C(p) +C(p)),

2n—1 2. (y—l)'



where ((s) is the well-known alternating zeta function

=35

n=1

TL—

— 2175 (s)  with ((1) =log?2.

Proof. By applying Definition 5 and Lemma 6, we have the following identities:
when r is odd,

MA

g(r)—m
E:(“T%m2fw””+mmmmﬁw4vlﬁfﬂv”;
§=0

m=0
when 7 is even,
g(r) g(r)—m e
Hflp’r’l) = <b1 r,j,m,0)(— 1)”_1H7(Zp_m) + by (r, j,m, l)an " )n].
m=0 j=0

When r is odd, by by(r,m,j,3) =0 (m+j = g(r)), we know that the main term of
HP™D 55 b, (r,g(r),0, 2)H7(Lp)n9(7").
When r is even and p = 1, we know that the main term of H,(ll’r’l) is

by (r, g(r),0,0)(—=1)" " H,n".

When r is even and p > 2, we know that the main term of Hy, Prl) g

(hwgv»amvﬁw*ﬂyﬂ”+mwgvxmnﬁy)“m'

By applying Definition 5, we can obtain the following recursive formulas:
When r is odd with r» > 3,

1
bi(r+ 1,0+ 1),0,0) = bi(r,9(r),0,2),

1
b 1 1),0,1)=0b —1,0,3)—.

1(T+ ,g(?"+ )7 9 ) 1(7",g(’f‘) s sy )g(T’)

When 7 is even,
1

b 1 1 2) =10

1
bl(T+1,g(T+1)—1,O,3):b1<7‘,g(7’>—1,0,1)§-



Let y € N. By using the initial values b1(1,0,0,2) = 1 and ;(1,0,0,3) = 0, and the
above recursive formulas, we can obtain the following explicit formulas:

1
bi(2y +1,4,0,2) = TR
1
b1(2 1,y-1,0,3) = —————
1(y+ » Y )y ) 2y+1'(y_1)!7
1
b1(2 —1,0,0) =b1(2 -1.01)= —————.
1( y,y y Yy ) 1( Y,y s Uy ) Qy(y—l)'
Thus we get the desired results. O
Now we state our main theorems of this section.
Theorem 11. For a,m,q,y € N with ¢ > 2, we have
Zp 1 241, 1 N xa+my+1(1og(x)>a+m '
= ¢ 2v-yhm(a+my+1)
a+my+1
(1,2y+1,1) x
. pe (H )"~ —
2 (@0 gl (a + my + 1)(log(a))"o 051
N ’ 7 . C q m a+my+1 IOg «@
° sz (Héq 2y+1 1)) ~ ;y) ( ( )) .
= ( yh™(a + my + 1)
. Z e q 2y+1,1) ) - C(Q)mxa+my+1 .
‘ (2v - yh)m(a 4+ my + 1)(log(z))mv+1t”

pe<z
$a+m(y71)+1 (log(:x))a+m

T - atmly—1+1)

.sz £1H12y1))

{<x
xa—i—m(y—l)—i—l
(2v- (y = D)™+ mly — 1) + 1)(log(x)) =2+

a+m(y—1)+1 a+m
(1.24.1) zt (log(z))

H. ~ :

* D)~ G T my —D 1)

<z

o pr z1H12y1))

pe<w

Z a(_H(1,2y,1))m N xa+m(y—1)+1(log(x))a+m

b Py 20 m ,
— 2 y— D) (a+mly—1)+1)
a+m(y—1)+1
a H(1,2y,1) m T .
° pz< i ( 20—1 ) 2-(y—DH™(a+m(y —1) + 1)(log(x))m(y—2)+1 ’
ST



12 1
¢ Sy
pe<w

2,1
> ()
<z

29,1
> pp
pe<z

o 2y,1)\m
> pp(—HEY)

<z

Zpe

s <z

q2y1

<z

i ZP?k(HzS

<z

a 1,2 1L,1)\m
7 pf (M)

ek <w

. 20+1,1)\m
pr,k<H€q " )>

<z

o ,2 1,1)\m
> g Y)

pe,p<w

Zp?,k((_

<z

o _ 1,2y,1)\m
ST (- nEY)

:Eaer(yfl)le

(2 (y = D)™ (a+mly — 1) + 1) (log a)) "0+

_ (¢lg) + Clg))maetmm b (log(x))*

T - D)t mly— 1)+

(¢la) = Elg) a4 (log )"

1,2y+1,1))m

1)671H€1,2y71))m

2 y—O)"(a+mly—1)+1)

(C(q) + C(q))maetmiv-1+ .
1) log(a)) 7=

2 - (y=D)™(e+my—1)+1)

(¢(q) — C(q))maotmy=D+

T @ (= DY"(a+my — 1)+ 1)(log(x)e D

Proof. By using Lemmas 7, 8, 9, and 10, we have

o 1,2 L,1)\m
> ()

xoﬁ-my-l—l (10g<$))a+m

(2v-yhm(a+my+1)

Z €a+my(log(£))a+m
= @y

We can prove thirteen additional asymptotic formulas in a similar manner.

Theorem 12. For a,m, k,q,y € N with ¢ > 2, we have

(k= 1)Y)eraermitilog(z))
(2¢ - y)™(a + my + 1)(log log(x))>*-1"

potmy+1 (log 10g<x>>(my+l)(k—1)
T @ y)((k — 1)) (o + my + 1) (log(z))ym=D+1

((k —1)h)¢(g)mam* (log(x))

h (2v - yhy (o + my + 1) (log log(z))k=1"

~ C(q)"z atmy+l (log log(x))(my—i-l)(k—n |
(2?/ )m(( ) )my+1 (a/ +my + 1)(10g(m))my+1 ;

R il U 60
(2v- (y — DHY)™(a+m(y — 1) + 1)(log log(z))>*k=1)"

patmy—1)+1 (log 10g(x))(m(y71)+1)(k71)
T @ (- D)k - DY

+ 1)(log(x)"-2+1°



12 1 1,2y,1
ZPM 2ey1 ZPM HQ(Z v ))

<z Dok <T

(k=D gt
@ (y— D)+ mly — 1) + 1)(loglog(z))"

1,29,1) F(L2w)ym
® Z (H2(1z %I Z Per(—Hy, ! )>

Pep<w ek <T
$a+my 1)+1(10g10g( ))(m(yfl)JFl)(k*l)

R T (e i G e Ve (o)
S (HE2 DY A ((k —1)N*(¢(g) + C(g)ma> @D+ (log(2))"

< Do\ t1op 3 (2-(y—DY)™(a+m(y — 1) + 1)(log log(z))>*-1) ;

(4:25,1) (¢(q) + C(q))ma ™=V (log log () ) (mu= D+ (k=D
° p;z (ng )"~ 2 (y— D)™ ((k — 1))m—D+1

1
(a+m(y — 1) + 1)(log(z))mlv-D+1’

p by, (k= D)(g) — g)aev D log(@))”
Z;Wk "~ @ =D a+ m(y — 1)+ Dloglogla)

X

o o (@2v.)\ym _ (6(q) — C(q))mae =+ (Jog log(z) ) (Mu=D+D(k-1)
pezk;xpz’k B (2 (y—1)Hm((k — 1)l)ymy—D+1

1
(a+m(y —1) + 1)(log(z)) =D+

Proof. By using Lemmas 7, 8, 9, and 10, we have

X

o (2L ym ((k — 1)H)etmy(log(£))*+m
;pe,k(Hg + ) N; (2v - yh)ym (loglog(ﬁ))ak 1)
(k= p)hraermiti(log(a))

(2v -y (a 4+ my + 1)(loglog(x))a®*=1D"

We can prove eleven additional asymptotic formulas in a similar manner. O]

4 Sums over primes involving generalized alternating
hyperharmonic numbers of type H) (pr2)

Now we prov1de the asymptotic formulas for the generalized alternating hyperharmonic num-
bers of type HP".

10



Lemma 13. For r,n,p € N, we have

Hép,rﬂ) ~

Proof. By using Lemma 3, we know that the main term of HP"? is a(r,0,r — 1)nr_1ﬁip).

The author [11] proves that a(r,0,7 — 1) = ﬁ and F;p) ~ ((p). Thus we get the desired
result. ]

Now we show our main theorems of this section.

Theorem 14. For a,m,q,k,r € N, we have

) Clg)mao =D (log(x))™
;pe ((r— Hhm(a+m(r—1)+1)’

q7'2 Z(Q)mxa+m(r_l)+l .
t ) et G = 1)+ D oRy
o 3 p(H Hr2ym ((k = D)N*¢(g)ma =+ (log(x))

T (=D a+mir—1) + 1)(log log ()1

<z

S B (HEP)m C(g)maetmr=U+L (log log(z))m(r =D+ (k1)
De ((k — D))yme=D+1((r — 1)I)m

Pk <x

1

“latm(r — 1)+ 1)(log(z))mt—D+1"

Proof. By using Lemmas 7, 8, 9, and 13, we have

((k = DTl e+ (og(0))"
P R Ve (v

W (k=1))C(g a4 log(2))
((r = DY)™(a+m(r — 1) 4 1)(loglog(x))o*-1"

We can prove three other asymptotic formulas in a similar manner. O

Theorem 15. For q,q, o, 8, m, k,s,n,ry,ro € N with g1 > 2, we have

oy sy (0= D60 ) o)
P 2 o HE B )~ e G = (s — D

a:a—f—m(rl—1)+n(s—1)+ﬁ(r2—1)+1

“Tatmir—1) +n(s — 1) + B(rs — 1) + 1)(log log ()1’

11



(q1,m1) (s) (g2,72,2)\ ~ C(q1>mZ(QQ)/B
s P Y e = T k- ) T B DT )

xa+m(r171)+n(371) B(re— 1+1(10g10g( )) (m(r1—1)+n(s—1)+B(re—1)+1)(k—1)
(0= DG~ D02 — DP((k — D Dot
1

X

X (g (@) G2 A=A

Proof. By using Lemmas 1, 2, 7, 8, 9, and 13, we have

E:mkH@“ () ()

- Z /{Z —1 ' (QI) Z( ) goﬁ_m(rl_1)+n(8_1)+’8(r2_1)(10g(€))“+"
2 = D)((s — DYA((rz — DY (log log0)0-1)

- ((k = 1)H¢(q1)™C(ga)" (log () >
((re = DHm((s = 1Y ((r2 — 1)!)P (log log () )2k

xa—i—m(rl—l)+n(s—1)+,8(7“2—1)+1

x (a+m(ri—1)+n(s—1)+B(rs — 1)+ 1)’

We can prove the other asymptotic formula in a similar manner. O

5 Sums over primes involving generalized alternating

hyperharmonic numbers of type H(prs)

Now we provide the asymptotic formulas for the generalized alternating hyperharmonic num-
bers of type HP"™,

Lemma 16. Let y,p € N, the following asymptotic formulas hold:

o HPD ()

o H{9 n (yl_ i os(n).

o B e e )~ L) (02 2)
HESY ~ () + () (p 2 2)

12



Proof. By applying Definition 5 and Lemma 6, we have the following identities:
when 7 is odd,

g(r) g(r)—m
Hpr) = (bl(r, Gom 2 Y™ by (v, m, 3)(—1)”—11{51’—"1)) n’
m=0 j=0
when 7 is even,
g(r) g(r)—m

(10 e, O T 4 o, DS Y
m=0 j=0
When r is odd, by by(r,m,j,3) =0 (m+j = g(r)), we know that the main term of
L™ is by (r,g(r), 0,21, no®).
When  is even and p = 1, we know that the main term of HY'" is b, (r,9(r),0,1)H,nI".

When 7 is even and p > 2, we know that the main term of H¥"™ is

(bl“*9<f%<%cn<—4»"—liif"”-%blong<r»cn1>fﬁ?f>"g“x

Let y € N. By applying Lemma 10, we have the following explicit formulas:

1
b1(2y+17ya072):2yy'7
1
b2y +1,y—-1,0,3) = ———
1( y+ Ly s YUy ) 2y+1.<y_1)!a
1
b1(2y,y —1,0,0) = b(2y,y — 1,0,1) = ———.
1( Y,y » Uy ) 1( Y,y y Uy ) 2y(y_1)'
Thus we get the desired results. O

Now we show our main theorems of this section.

Theorem 17. For a,m,p,q,y € N with ¢ > 2, we have

p 2y+1, 3 Z(p)manrmyH(lOg(l‘))a .
pr ’ - (2v-yhm(a+my+1)’

<z

Z e p 2y+1,3) ) - Z(p)mrv“*my“ .
b @y (a+ my + 1) (log(a)) "+
Zp 1 2y3 Ioz-l—m(y—l)-l—l(log(x))oc-‘rm '
= T - D) atmly—1)+1)

13



o 17(1,29,3)\m
i ZP{(Hé ! ))

pe<w

q2y3
§ :pe 20—1

<z

q2y3
E :pe 20—1

£<:E

Zpe q2y3

<z

sz H(q 2y3

RS <z

xa+m(y71)+1

T @ (v - D) (a+mly — 1)+ 1) (log(a)) e

_ (Clg) + Cg) et log ()"

2 -(y—=Dh)m(a+m(y—1)+1)

(¢lg) + C(g))ma D H .
T2 (- DY+ mly — 1) + 1) (log(a) DT

_ (C() = C(g)) et (log(x))*
2 (y—D)"(a+mly—1)+1)°

(C(q) — Z(Q))mxo”rm(yfl)ﬂ
(2 . (y — 1)!)m(04 + m(y — 1) + 1)(1Og(:p))m(y—l)+1'

Proof. By using Lemmas 7, 8, 9, and 16, we have

Z (H(p 2y+1, 3

<z

) log ()

mwmy log(0))* ¢
ZC ( 5(6)) <(

(p
= 20 -y (a+my +1)°

We can prove seven other asymptotic formulas in a similar manner.

Theorem 18. For a,m, k,p,q,y € N with ¢ > 2, we have

o 2y+1,1)\m
i Zpé,k<H5 v ))

<z

o ,2 1,1)\m
ST pp(HPA Y

pep<w

P 1,2y,3)\m
® ZPe,k(He ! ))

<z

((k — DY)¢(p)ma v+ (log(x))*

- (2v -y (o + my + 1)(log log(x) )k=1) 4

o 1,24,3)\m
o Z pﬁ,k(ng ! ))

Pep<w

X

1

(p)m at+my+1 (lOg log( ))(merl)(kfl)
(

(2¢-yh)m

((k — DHezetm@=bH (log(x))*

Ty Dh)m(a+ mly — 1) + 1)(loglog(x)*-’

g tmy=D+1 (Jog log(x) ) (my—D+1 (k1)
(@ (y = )Y ((k - YD

q2y3
E pzk 26—1

<z

(a+ m(y — 1) + 1)(log(z))"-D+1

((k = 1)1)*(¢(q) + C(g)™atv— D+ (log(x))*
T2 (y— D) (a+ m(y — 1) + 1)(log log(z))** D’

14

(k — D)™+ (a + my + 1) (log(z)) ™+



g  (¢lg) + Cg)maetm D+ log log()) v D+ (k-1
Z pﬁk H2([ 2%’3 (2 (y_ 1)|)m((k_ 1)!)m(y—1)+1
1
(a+m(y — 1) + 1)(log(z))m-D+1"

e <@

X

q2y3 HhHe mgetmy=—1+1(log (2
o 3 b ((k — ))' ¢(q) — ¢(9)) (log(x))~

< T2 = ))"(a+mly— 1)+ 1)(loglog(x))** 1’
o ppazvdnm (@) = C(g))mxtmH (log log () v DD
° p;xpe,k(ﬂze )"~ (2 (y— 1)) ((k — 1)Dymy=1+1

1
g (a+m(y — 1)+ 1)(log(x))my—D+1"

Proof. By using Lemmas 7, 8, 9, and 16, we have

Do pnay 3 (k= DYyt (log(0)

2 @yl (loglog(D)**

(& = nhec(p)matmt (log(x))*
(20 - y)™ (o + my + 1)(log log(z))tk—1)"

We can prove seven other asymptotic formulas in a similar manner. O
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