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Abstract

A result of Legendre asserts that the difference between the numbers of (length)
even and odd partitions of n into distinct parts is 0, 1, or −1; this also follows from
Euler’s pentagonal number theorem. We establish an analogous result for compositions
and obtain some generalizations that are related to various entries in the On-Line

Encyclopedia of Integer Sequences.

1 Introduction

A composition of n is a sequence α = (α1, . . . , αℓ) of positive integers with size |α| :=
α1+· · ·+αℓ = n; the parts of α are α1, . . . , αℓ, and the length of α is ℓ(α) := ℓ. We often drop
parentheses and commas when writing a composition whose parts are single digit numbers.
A partition of n is a composition of n whose parts are decreasing. A composition/partition
is even (resp., odd) if its length is even (resp., odd). There are 2n−1 compositions of n since
they correspond to binary sequences of length n− 1. On the other hand, although there are
recursive and asymptotic formulae, no closed formula is known for the number of partitions
of n.

Compositions and partitions have been extensively studied due to their significance in
discrete mathematics, number theory, representation theory, and many other areas. This
paper is motivated by the following result of Legendre [8].
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Theorem 1 (Legendre). The number of even partitions of n into distinct parts minus the
number of odd partitions of n into distinct parts equals (−1)j if n = j(3j ± 1)/2 for some
integer j ≥ 0 or 0 otherwise.

For example, there is only one even partition (31) and only one odd partition (4) among
all partitions of n = 4 (4, 31, 22, 211, 1111), giving a difference of 0, and there are exactly two
even partitions (41, 32) and one odd partition (5) among all partitions of n = 5 = 2(3j − 1)
(5, 41, 32, 311, 221, 2111, 11111), giving a difference of 1 = (−1)j, where j = 2.

Although Theorem 1 is often attributed to Legendre, it can be derived from the following
result of Euler, which is known as Euler’s pentagonal number theorem since the pentagonal
numbers are given by j(3j − 1)/2 for j = 1, 2, . . ..

Theorem 2 (Euler). One has (1− x)(1− x2)(1− x3) · · · = 1− x− x2 + x5 + x7 − · · · , i.e.,

∞∏

n=1

(1− xn) = 1 +
∞∑

j=1

(−1)j
(
xj(3j+1)/2 + xj(3j−1)/2

)
.

Given the subtle differences between partitions and compositions in not only their defini-
tions and enumerative results as mentioned before but also many other aspects (an algebraic
manifestation is given by the representation theory of the 0-Hecke algebra [6] compared with
the well-known representation theory of the symmetric group), it is natural to ask for an anal-
ogous result of Legendre’s theorem for compositions. However, the number of even composi-
tions of n with distinct parts minus the number of odd compositions of n with distinct parts
is given by the sequence 1,−1,−1, 1, 1, 3,−3,−1,−7,−11, 7, 3, 15, 35, 71,−35, 25,−57, . . .,
which does not resemble Legendre’s theorem; see A339435 in the On-Line Encyclopedia of
Integer Sequences (OEIS) [13]. To remedy this, we recall another famous result of Euler.

Theorem 3 (Euler). The number of partitions of n into distinct parts equals the number of
partitions of n into odd parts.

The number of even partitions of n into odd parts minus the number of odd partitions of
n into odd parts is given by another known sequence A081360 (1,−1, 1,−2, 2,−3, 4,−5, 6,
−8, 10,−12, 15,−18, 22,−27, 32,−38, . . .). In fact, this is simply a signed version of A000009,
the number of partitions of n into odd parts, since the length of a partition of n into
odd parts has the same parity as n. Nevertheless, Euler’s theorem on partitions of n into
distinct/odd parts opens a door for us to think about other related restrictions on the parts
of a composition. In particular, the following composition analogue of Euler’s partition
theorem comes to our mind.

Theorem 4 (Cayley–Stanley). The number of compositions of n with odd parts equals the
number of compositions of n+ 1 with parts greater than one.

Cayley [2] showed that the first number in Theorem 4 equals the Fibonacci number Fn

defined by the recursive relation Fn := Fn−1 +Fn−2 for n ≥ 2 with initial conditions F0 := 1
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and F1 := 1, and the second number in Theorem 4 also equals Fn by Stanley [14]. Recently,
Sills [12] provided a bijective proof for Theorem 4. Motivated by Theorem 4, we provide
the following extension of Legendre’s theorem to compositions, which involves a periodic
sequence 1, 1, 0,−1,−1, 0, . . . of 0, 1, and −1 with period 6, that is, the sequence A010892
in the OEIS [13].

Theorem 5. Define bn := cn,o−cn,e, where cn,o (resp., cn,e) is the number of odd (resp., even)
compositions of n + 1 with parts greater than one. Then bn = (−1)j if n ∈ {3j + 1, 3j + 2}
or bn = 0 otherwise.

We also obtain some generalizations of Theorem 5, which are outlined below; note that
we have “odd minus even” instead of “even minus odd” to make the difference as simple as
possible in our results.

In Section 2, we establish a result which includes Theorem 5 as a special case. This gives
a signed version of an earlier result by Munagi [9, Theorem 1.2] (see also Theorem 7), which
generalized Theorem 4 in a similar way as the well-known generalization (Theorem 6) of
Euler’s partition theorem due to Glaisher [5].

In Section 3, we provide a composition analogue of an extension (Theorem 9) of Legen-
dre’s theorem obtained recently by Nyirenda [10] using extra congruence restrictions on the
parts of a partition. A special case (Corollary 13) of our result resembles Legendre’s Theorem
as it involves a periodic sequence whose jth term is (−1)j if n ∈ {3rj+s+1, 3rj+ r+s+1}
for some integer j ≥ 0 or 0 otherwise, where r > s ≥ 0, and this also implies Theorem 5
when (r, s) = (1, 0).

By relaxing the restriction on the parts of a partition, Franklin [4] obtained a further
generalization (Theorem 14) of Glaisher’s theorem. In our recent work [7], we obtained
an analogous result for compositions, which includes Munagi’s result as a special case. In
Section 4, we obtain a signed version of this result together with another variation, giving
new interpretations for two entries in the OEIS [13].

Lastly, we ask some questions for future research in Section 5 based on various Legendre-
type results of Andrews [1] and Nyirenda–Mugwangwavari [11] on partitions with initial
repetitions.

2 A signed version of Munagi’s Theorem

First, we recall a well-known result of Glaisher [5], which specializes to Euler’s partition
theorem when k = 2.

Theorem 6 (Glaisher). Given an integer k ≥ 1, the number of partitions of n with no part
occurring k or more times equals the number of partitions of n with no parts divisible by k.

Similarly, Munagi [9, Theorem 1.2] generalized Theorem 4, the composition analogue of
Euler’s theorem, to the following result using the zigzag graphs of compositions.
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Theorem 7 (Munagi). The number of compositions of n with parts congruent to 1 modulo
k equals the number of compositions of n+ k − 1 with parts no less than k.

Now we provide a signed version of Theorem 7 and prove it in two ways, one using a
generating function and the other using a bijection.

Theorem 8. For k, n ≥ 1, let bk,n := ck,n,o − ck,n,e, where ck,n,o (resp., ck,n,e) is the number
of odd (resp., even) compositions of n+ k − 1 with parts no less than k. Then

bk,n =
∑

0≤j≤(n−1)/k

(−1)j
(
n− 1− j(k − 1)

j

)

.

Analytic Proof. We have

1−
∑

n≥1

bk,nx
n+k−1 =

∑

ℓ≥0

(
−xk − xk+1 − · · ·

)ℓ
=

∑

ℓ≥0

(−xk)ℓ

(1− x)ℓ

=

(

1−
−xk

1− x

)−1

=
1− x

1− x+ xk

= 1− xk
∑

i≥0

(
x− xk

)i

= 1−
∑

i≥0

xk+i

i∑

j=0

(
i

j

)

(−xk−1)j.

For n ≥ 1, extracting the coefficient of xn+k−1 gives the desired formula for bk,n.

Combinatorial Proof. There is a bijection from compositions of n+ k − 1 with length j + 1
and parts no less than k to compositions of n − j(k − 1) with length j + 1 by subtracting
k− 1 from each part of a composition. There are exactly

(
n−1−j(k−1)

j

)
many compositions of

n− j(k−1) with length j+1 since each of these compositions can be obtained by inserting j
bars between n− j(k−1) dots with no two bars adjacent to each other. The desired formula
for bk,n follows immediately.

Taking k = 2 in Theorem 8 gives Theorem 5, which is a composition analogue of Legen-
dre’s theorem. The sequence bk,n can also be determined by bk,n = 1 for n = 1, . . . , k and
dk,n = bk,n−1 − bk,n−k for n > k; this gives A010892, A050935, and A099530 when k = 2,
k = 3, and k = 4, respectively. Theorem 8 can be viewed as a signed version of Theorem 7
since by either of the above proofs, we can remove (−1)j in the formula of bk,n given by
Theorem 8 and recover a closed formula by Munagi [9] for the number ak,n of compositions
of n + k − 1 with parts no less than k (the formula of ak,n can also be found in our earlier
work [7, Eq. (1)] and for k = 4, in A003269).
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3 A further restriction by congruence on parts

In this section, we generalize Theorem 8 by further imposing a congruence condition on the
already restricted parts of the compositions. This is in the spirit of the following extension
(slightly rephrased) of Legendre’s theorem by Nyirenda [10].

Theorem 9 (Nyirenda). Let de(n, r) (resp., do(n, r)) denote the number of partitions of n
into an even (resp., odd) number of distinct parts, all of which are congruent to 0 or 2r ± 1
modulo 4r. Then

de(n, r)− do(n, r) =

{

(−1)j, if n = j(2rj ± 1) for some integer j ≥ 0;

0, otherwise.

Let ce(n, r) (resp., co(n, r)) denote the number of partitions of n into an even (resp., odd)
number of distinct parts, all of which are congruent to 0 or ±r modulo 2r + 1. Then

ce(n, r)− co(n, r) =

{

(−1)j, if n = j((2r + 1)j ± 1))/2 for some integer j ≥ 0;

0, otherwise.

We provide an analogue of Theorem 9 for compositions with two proofs.

Theorem 10. Given integers k, n ≥ 1 and r > s ≥ 0, let br,sk,n := cr,sk,n,o − cr,sk,n,e, where cr,sk,n,o
(resp., cr,sk,n,e) is the number of odd (resp., even) compositions of n+ k− 1 with parts no less
than k and congruent to k + s modulo r. Then

br,sk,n =
∑

ri+j(k+s)=n−1−s

(−1)j
(
i+ j

i

)

.

Analytic Proof. We have

1−
∑

n≥1

br,sk,nx
n+k−1 =

∑

ℓ≥0

(
−xk+s − xk+r+s − xk+2r+s + · · ·

)ℓ

=
∑

ℓ≥0

(−xk+s)ℓ

(1− xr)ℓ
=

(

1−
−xk+s

1− xr

)−1

=
1− xr

1− xr + xk+s
= 1− xk+s

∑

i≥0

(
xr − xk+s

)i

= 1−
∑

i≥0

xk+ri+s

i∑

j=0

(−1)j
(
i

j

)

xj(k+s−r).

Extracting the coefficient of xn+k−1 and replacing i with i + j gives the desired formula for
br,sk,n.
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Remark 11. The above proof is valid even though the exponent of xj(k+s−r) could be zero
(when k = r − s) or negative (when k < r − s). Alternatively, one can deal with the cases
k = r− s and k > r− s separately using similar techniques and obtain the same formula for
br,sk,n.

Combinatorial Proof. The allowed parts (no less than k and congruent to k + s modulo r)
are k+s, k+r+s, k+2r+s, . . .. Dividing each part minus k+s−r by r gives a bijection from
compositions of n+ k− 1 with exactly j + 1 parts, each less than k and congruent to k + s,
to compositions of i+ j+1 of length j+1, where r(i+ j+1)+(k+ s− r)(j+1) = n+k−1,
i.e., ri + j(k + s) = n − 1 − s. The number of compositions of i + j + 1 of length j + 1 is
(
i+j
j

)
. Therefore the desired formula for br,sk,n holds.

Theorem 10 recovers Theorem 8 when (r, s) = (1, 0). The following is another special
case as mentioned in Remark 11.

Corollary 12. Suppose r > s ≥ 0 and k = r− s. Then br,sk,n = 1 if n = s+ 1 and br,sk,n = 0 if
n 6= s+ 1.

Proof. This can be derived from the formula of br,sk,n in Theorem 10 or by using the generating
function

1− xr

1− xr + xk+s
= 1− xr

in the proof of Theorem 10 when k = r − s.

We give one more corollary of Theorem 10 below, which resembles Legendre’s theorem
and recovers Theorem 5 when (k, r, s) = (2, 1, 0).

Corollary 13. Given integers r > s ≥ 0 and k = 2r − s, we have dr,sk,n = (−1)j if n ∈
{3rj + s+ 1, 3rj + r + s+ 1} for some integer j ≥ 0 or dr,sk,n = 0 otherwise.

Proof. Suppose k = 2r − s. It follows from the proof of Theorem 10 that

1−
∑

n≥1

br,sk,nx
n+k−1 =

1− xr

1− xr + x2r
=

1− x2r

1 + x3r

=
∑

i≥0

(−1)ix3ri −
∑

j≥0

(−1)jx2r+3rj.

Extracting the coefficient of xn+k−1 after replacing i with j + 1 for i ≥ 1 gives the desired
formula for dr,sk,n.

By Corollary 13, if k = 2r− s then the sequence (dr,sk,n : n ≥ 1) has period 6r and, upon a
backward shift of r terms, its generating function becomes (1− xr + x2r)−1. This generating
function is the inverse of the 6rth cyclotomic polynomial at least when k + s = 2r = 4, 6, 8;
see A014021, A014027, and A014033.
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4 A relaxation for restricted parts

The following result of Franklin [4] recovers Glaisher’s theorem (Theorem 6) when m = 0.

Theorem 14 (Franklin). Given integers k ≥ 1 and m ≥ 0, the number of partitions of n
with m distinct parts each occurring k or more times equals the number of partitions of n
with exactly m distinct parts divisible by k.

In our recent work [7], we obtained a composition analogue of Franklin’s theorem.

Theorem 15 (Huang). For any integers k ≥ 1 and m ≥ 0, the number of compositions of
n with exactly m parts not congruent to 1 modulo k, each of which is greater than k, equals
the number of compositions of n + k − 1 with exactly m parts less than k, each of which is
preceded by a part at least k and followed by either the last part or a part greater than k.

Theorem 15 recovers Munagi’s theorem when m = 0. Our proof for Theorem 15 was
based on the bijective proof of Theorem 4 by Sills [12]. We also established two closed
formulae [7, Theorem 1.7] for the two equal numbers in Theorem 15:

a
(m)
k,n =

∑

λ⊆(k−2)m

i+(k+1)m+jk+|λ|=n

(
i

m

)(
i+ j − 1

j

)

mλ(1
m)

=
∑

i+(k+1)m+jk+ℓ(k−1)+h=n

(−1)ℓ
(
i

m

)(
i+ j − 1

j

)(
m

ℓ

)(
m+ h− 1

h

)

.

Here λ ⊆ rd means λ is a partition with no more than d parts, each at most r, and mλ(1
d) is

the specialization of the monomial symmetric function indexed by the partition λ evaluated
at the vector (1, . . . , 1

︸ ︷︷ ︸

d

), i.e., with mi denoting the number of parts of the partition λ ⊆ rd

that are equal to i for i = 0, 1, . . . , r,

mλ(1
d) =

(
m

m0, . . . ,mr

)

=
m!

m0! · · ·mr!
.

Now we provide a signed version of the above formulae of the number a
(m)
k,n .

Theorem 16. Let b
(m)
k,n := c

(m)
k,n,o − c

(m)
k,n,e, where c

(m)
k,n,o (resp., c

(m)
k,n,e) is the numbers of odd

(resp., even) compositions of n + k − 1 with exactly m parts less than k, each of which is
preceded by a part at least k and followed by either the last part or a part greater than k.
Then

b
(m)
k,n =

∑

λ⊆(k−2)m

i+(k+1)m+jk+|λ|=n

(−1)j
(
i

m

)(
i+ j − 1

j

)

mλ(1
m)

=
∑

i+(k+1)m+jk+ℓ(k−1)+h=n

(−1)ℓ+j

(
i

m

)(
i+ j − 1

j

)(
m

ℓ

)(
m+ h− 1

h

)

.
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Proof. Both the analytic and combinatorial proofs of the above formulae of a
(m)
k,n given in our

previous work [7, Theorem 1.7] were based on the interpretation of a
(m)
k,n as the number of

the first kind of compositions in Theorem 15. However, we can apply the bijective proof of
Theorem 15 [7, Theorem 1.6] to the combinatorial proof of the above formulae of a

(m)
k,n and

obtain that the length of each of the second kind of compositions in Theorem 15 is given by
2m + j + 1, where m and j are as in the above formulae of a

(m)
k,n . Thus we have the desired

formulae for b
(m)
k,n .

Theorem 16 provides a new interpretation for a known sequence A281862, which coincides

with b
(m)
k,n when k = m = 2. We also have a variation of b

(m)
k,n with simplified restrictions on

the parts of a composition.

Theorem 17. Let b̄
(m)
k,n := c̄

(m)
k,n,o− c̄

(m)
k,n,e, where c̄

(m)
k,n,o (resp., c̄

(m)
k,n,e) is the number of odd (resp.,

even) compositions of n+ k − 1 with exactly m parts less than k. Then

b̄
(m)
k,n =

∑

i+j+(k−1)(ℓ+i−m−1)=n

(−1)i+ℓ+1

(
i+ j − 1

j

)(
i

m

)(
m

ℓ

)

Proof. We have

−
∑

n≥1−k

b̄
(m)
k,n x

n+k−1ym =
∑

i≥0

(
−y(x+ x2 + · · ·+ xk−1)− xk − xk+1 − · · ·

)i

=
∑

i≥0

(
−xy(1− xk−1)

1− x
+

−xk

1− x

)i

=
∑

i≥0

(
−xy + xky − xk

1− x

)i

=
∑

i≥0

(−x)i
∑

j≥0

(
i+ j − 1

j

)

xj

i∑

m=0

(
i

m

)

ym(1− xk−1)mx(k−1)(i−m)

=
∑

i,j≥0

(−x)i
(
i+ j − 1

j

)

xj

i∑

m=0

(
i

m

)

ym
m∑

ℓ=0

(
m

ℓ

)

(−xk−1)ℓx(k−1)(i−m).

Extracting the coefficient of xn+k−1ym gives the desired formula for b̄
(m)
k,n .

We find a sequence A122918 in the OEIS [13] that coincides with (−1)nb̄
(m)
k,n when m = 2

and k = 1.

5 Questions

Andrews [1] defined a partition of n to have initial k-repetitions if every part less than j is
repeated at least k times whenever a part j is repeated at least k times; taking k = 1 in this
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definition gives partitions without gaps, which were first studied by Fine [3]. Andrews [1]
established the following results on partitions with initial k-repetitions.

• The number of partitions of n with initial k-repetitions equals the number of partitions
of n into parts indivisible by 2k and by Glaisher’s theorem, also equals the number of
partitions of n with no parts occurring 2k or more times.

• Let De(m,n) (resp., Do(m,n)) denote the number of partitions of n with initial 2-
repetitions and with m different parts, of which an even (resp., odd) number have
multiplicity one. Then

De(m,n)−Do(m,n) =

{

(−1)j, if m = j, n = j(j + 1)/2, and j ≥ 0;

0, otherwise.

Since the last result resembles Legendre’s theorem, we ask for a composition analogue, which
may require an appropriate definition of compositions with “initial k-repetitions.” If this
could be done, it would also be interesting to search for composition analogues of various
Legendre-type theorems obtained recently by Nyirenda and Mugwangwavari [11] based on
work of Andrews [1].
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