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Abstract

We study probability measures defined by the variation of the sum of digits in the
Zeckendorf representation. For r ≥ 0 and d ∈ Z, we consider µ(r)(d), the density of
integers n ∈ N for which the sum of digits increases by d when r is added to n. We give a
probabilistic interpretation of µ(r) via the dynamical system provided by the odometer
of Zeckendorf-adic integers and its unique invariant measure. We give an algorithm
for computing µ(r) and we prove the exponential decay of µ(r)(d) as d→ −∞, as well
as the formula µ(Fℓ) = µ(1) where Fℓ is a term of the Fibonacci sequence. Finally, we
decompose the Zeckendorf representation of an integer r into so-called “blocks” and
show that when added to an adic Zeckendorf integer, the successive actions of these
blocks can be seen as a sequence of mixing random variables.

1 Introduction

1.1 Framework, notations and main results

Throughout this article, we let N := {0, 1, 2, . . .} denote the set of integers and φ := 1+
√
5

2

represent the golden ratio. We also define the well-known Fibonacci sequence as follows:

Fk :=

{
1, if k = 1 or k = 2;

Fk−1 + Fk−2, if k ≥ 3.
(1)
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By Zeckendorf’s theorem (proved by Lekkerkerker [13, Theorem 1] and Zeckendorf [19,
Theorem I.a, p. 179]), every integer can be uniquely written as a sum of non-consecutive
Fibonacci terms. That is, for every n ∈ N, there exists a unique sequence of digits (nk)k≥2 ∈
{0, 1}∞ without two consecutive 1’s, finitely many of them being equal to 1 and such that

n =
∑
k≥2

nkFk. (2)

For n ̸= 0 and ℓ := max{k : nk ̸= 0}, we introduce the notation [nℓ · · ·n2] := n that
generalizes the usual way we write numbers in an integer base, and that we refer to as the
(Zeckendorf) expansion of n. This way to expand numbers is actually a particular case of
an Ostrowski numeration system [15, 2, 1]. By convention, we set [0] := 0. Then we define
the (Zeckendorf-)sum-of-digits function as

s(n) :=
∑
k≥2

nk.

A central object in our paper is the variation of the sum of digits when we add a fixed integer
r to n: for r, n ∈ N, we set

∆(r)(n) := s(n+ r)− s(n). (3)

The analogous variation in an integer base has been studied extensively. The first appearance
of the case of an integer base is in a paper from Bésineau [3] in 1970. Using a statistical
vocabulary, he showed the existence of the asymptotic density for the set of integers such
that the variation is some integer d ∈ Z. Given an integer r, these densities can be seen as
a probability law. The variance of this law was studied, in the binary base, by Emme and
Prikhod’ko [9] and Spiegelhofer and Wallner [18]. Emme and Hubert [8] proved a central
limit theorem in the binary case that was improved by Spiegelhofer and Wallner [18] (still in
binary) and by the author in collaboration with Janvresse and de la Rue [11] (in an arbitrary
integer base). We also refer to [14, 16, 6, 17] for connected results. Some theorems were
proved for the Zeckendorf expansion of an integer: for instance, Griffiths [10] about the digit
proportions, and Labbé and Lepšovà [12] about addition in this numeration system. Drmota,
Müllner and Spiegelhofer [7] obtained results about the existence of prime numbers with a
fixed Zeckendorf sum-of-digits. However, not much has been done about this variation in the
Zeckendorf representation except the work from Dekking [5] that characterizes the integers
such that ∆(1) is > 0 (or < 0 or = 0) and from Spiegelhofer [16, Lemma 1.30], which adapted
Bésineau’s techniques and proved that, for all d ∈ Z, the following asymptotic density exists

µ(r)(d) := lim
N→+∞

1

N

∣∣{n < N : ∆(r)(n) = d
}∣∣ .

In the present paper, we adapt the ergodic theory point of view introduced for the case of
an integer base [11] to the Zeckendorf expansion, recovering Spiegelhofer’s result and getting
new results about µ(r) and ∆(r). In particular, we provide an algorithm that computes µ(r)(d)
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and we represent ∆(r) as the sum of a stochastic mixing process. A perspective we have with
this result is to find a central limit theorem for ∆(r).

To get our results, following the path initiated for the case of an integer base [11], we
study the variations of the sum-of-digits function in an appropriate probability space given
by the compact set X of (Zeckendorf-)adic numbers. We consider the action of the odometer
on X (see Subsection 2.2), and endow X with its unique invariant probability measure P.

We extend ∆(r) almost everywhere on X and show in Section 4 (Proposition 23) that, for
every d ∈ Z

µ(r)(d) = P
({
x ∈ X : ∆(r)(x) = d

})
.

Using the Rokhlin towers of the dynamical system (see Subsection 3.1), we provide an
algorithm to compute µ(r)(d). This algorithm and its consequences can be adapted to an
integer base. One implication is the following corollary on the behavior of the (negative) tail
of the distribution:

Corollary 1. For d small enough in Z, we have the formula

µ(r)(d− 1) = µ(r)(d) · 1
φ2
.

Remark 2. One can show that the analogous result in base b ≥ 2 is the same replacing the
formula by µ(r)(d− (b− 1)) = µ(r)(d) · 1

b
.

Another implication is the next theorem about the measure µ(Fℓ).

Theorem 3. For ℓ ≥ 3

µ(Fℓ) = µ(1). (4)

The analogous result in an integer base b replaces Fℓ by b
ℓ. Actually, it is a trivial result

in base b. However, in the Zeckendorf decomposition, this result is much less obvious, due to
the particular behavior of carry propagations that we describe in Subsection 2.1. The main
difference with additions in base b is, here, that carries propagate in both directions.

Now to state our mixing result, we need to define the notion of blocks in the expansion
of an integer r and to define a probabilistic notion of (α-)mixing coefficients (see the survey
from Bradley [4] for others).

Definition 4. A block in the expansion of an integer r ∈ N is defined as a maximal sequence
of the pattern [10]. (If r2 = 1, we agree that a maximal sequence [r2ℓ · · · r2] is a block if
r2k = 1 for k = 1, . . . , ℓ.) We define ρ(r) as the number of blocks in the expansion of r.

Figure 1: Two examples of decomposition into blocks.
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Definition 5. Let (Xi)i≥1 be a (finite or infinite) sequence of random variables. The asso-
ciated α-mixing coefficients α(k), k ≥ 1, are defined by

α(k) := sup
p≥1

sup
A,B
|P(A ∩B)− P(A)P(B)|,

where the second supremum is taken over all events A and B such that

• A ∈ σ(Xi : 1 ≤ i ≤ p) and

• B ∈ σ(Xi : i ≥ k + p).

By convention, if Xi is not defined when i ≥ k + p then the σ-algebra is trivial.

For an integer r, we enumerate the blocks of r from the units position and we define
X

(r)
i as the action of the ith block once the previous blocks have already been taken into

consideration (see Subsection 7.1 for more details). These actions are constructed in order
to have the equality

∆(r) =

ρ(r)∑
i=1

X
(r)
i . (5)

We state the following theorem that gives an upper bound on the α-mixing coefficients that
is independent of r.

Theorem 6. The α-mixing coefficients of (X
(r)
i )i=1,...,ρ(r) satisfy

∀k ≥ 1, α(k) ≤ 12

(
1− 1

φ8

) k
6

+
1

φ2k
.

The author et al. [11] proved a central limit theorem for µ(r) in the case of an integer
base using a similar result together with some estimate of the variance depending on the
number of blocks. Such an estimate is, here, more difficult than in base b since we do not
have inductive relations on µ(r).

1.2 Roadmap

Section 2 is devoted to understanding the effect of adding “1” and “Fk” on the digits of
Zeckendorf-adic integers. We highlight stopping patterns in the carry propagation, which
play an important role in the analysis.

In Section 3, we focus on the unique ergodic measure P of the odometer. We show that P
satisfies some renewal properties (Proposition 16) and we estimate the ϕ-mixing coefficients
for the coordinates of a Zeckendorf-adic integer (Proposition 19).
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Then in Section 4, we place the study of the measures µ(r) in the context of the odometer
on X. We extend ∆(r) almost everywhere on X and we show that the convergence

lim
N→∞

1

N

∑
n<N

f(∆(r)(n)) =

∫
X
f(∆(r)(x))dP(x)

is satisfied for functions f : Z → C of polynomial growth (Proposition 23) and, more
generally, for functions f such that f ◦∆(r) is integrable (Proposition 28). We deduce from
Proposition 23 that µ(r)(d) = P({x ∈ X : ∆(r)(x) = d}) and that µ(r) has finite moments. In
particular, we show that µ(r) is of zero-mean.

In Section 5, we construct an algorithm that computes µ(r). Pseudocode is given in
Subsection 5.2. In Subsection 5.4, we prove Corollary 1 that gives an estimate on the tail of
µ(r).

Section 6 is devoted to the proof of Theorem 3. The proof consists of applying the
algorithm.

In the last section, we build a finite sequence of random variables associated with addition
of an integer r that gives the decomposition of ∆(r) mentioned in (5). Using that sequence,
we prove Theorem 6 on the estimation of the α-mixing coefficients for this sequence.

2 How to do additions

2.1 How to add integers

Here, we describe the algorithm for addition using the Zeckendorf way to represent numbers.
We start with the addition of 1. There are two cases.

1. Either there exists ℓ ≥ 0 such that the Zeckendorf decomposition of n is

n =
ℓ∑

k=1

F2k+1 +
∑

k≥2ℓ+4

nkFk.

Then with the relations (1), we get

(n) · · · n2ℓ+4 0 0 (10)ℓ

+ 1
(n+ 1) = · · · n2ℓ+4 0 1 (00)ℓ

Indeed, F3 + · · ·+ F2ℓ+1 + F2 = F2ℓ+2.

2. Or there exists ℓ ≥ 0 such that

n =
ℓ+1∑
k=1

F2k +
∑

k≥2ℓ+5

nkFk.
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Then for the same reasons

(n) · · · n2ℓ+5 0 0 1 (01)ℓ

+ 1
(n+ 1) = · · · n2ℓ+5 0 1 0 (00)ℓ

We observe that adding 1 to the rightmost digit of a block as defined in (4) modifies that
block into a chain of 0 digits of the same length and put a 1 in the first left position of the
block.

Of course, in order to compute the sum of two integers, adding 1 as many times as needed
is enough. However, we want to show the main difference with addition in an integer base.
For instance, in an integer base, adding 1 at some position k ≥ 2 to an integer n may change
the digits of the expansion of n of higher indices, due to carry propagation. Here it can also
change the digits of lower indices. We consider the addition n+Fk where k ≥ 3. We observe
that a consequence of (1) is

2Fk =

{
F2 + F4, if k = 3;

Fk+1 + Fk−2, otherwise.
(6)

Many cases appear. For simplicity, the digit in color represents the digit at position k
and we do not represent digits that remain the same in the expansion of n and n+ Fk. We
start with the cases that change only digits of indices ≥ k.

1. If n = [· · · 000 · · · ] then

(n) · · · 0 0 0 · · ·
(+Fk) + 1

(n+ Fk) = · · · 0 1 0 · · ·

2. If there exists ℓ ≥ 0 such that n =
[
· · · 001(01)ℓ0 · · ·

]
then

(n) · · · 0 0 1 (01)ℓ 0 · · ·
(+Fk) + 1

(n+ Fk) = · · · 0 1 0 (00)ℓ 0 · · ·

We continue with the first case where the digit of index k − 1 is changed.

3. If there exists ℓ ≥ 0 such that n =
[
· · · 00(10)ℓ01 · · ·

]
then

(n) · · · 0 0 (10)ℓ 0 1 · · ·
(+Fk) + 1

(n+ Fk) = · · · 0 1 (00)ℓ 0 0 · · ·
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Now we consider the cases where many digits of indices < k are changed. It is due to
(6).

4. If k ≥ 5 and there exist ℓ, ℓ′ ≥ 0 such that n = [· · · 00(10)ℓ1(01)ℓ′000 · · · ] then

(n) · · · 0 0 (10)ℓ 1 (01)ℓ
′

0 0 0 · · ·
(+Fk) + 1

(n+ Fk) = · · · 0 1 (00)ℓ 0 (10)ℓ
′

0 1 0 · · ·

5. If k ≥ 6 and there exist ℓ, ℓ′ ≥ 0 such that n = [· · · 00(10)ℓ1(01)ℓ′0010 · · · ] then

(n) · · · 0 0 (10)ℓ 1 (01)ℓ
′

0 0 1 0 · · ·
(+Fk) + 1

(n+ Fk) = · · · 0 1 (00)ℓ 0 (10)ℓ
′

1 0 0 0 · · ·

Finally, we consider the “boundary” cases where all the digits of indices < k are changed.

6. If k ≥ 4, k is even and there exists ℓ ≥ 0 such that n = [· · · 00(10)ℓ1(01) k−2
2 ] then

(n) · · · 0 0 (10)ℓ 1 (01)
k−2
2

(+Fk) + 1

(n+ Fk) = · · · 0 1 (00)ℓ 0 (10)
k−2
2

7. If k ≥ 5, k is odd and there exists ℓ ≥ 0 such that n = [· · · 00(10)ℓ1(01) k−3
2 0] then

(n) · · · 0 0 (10)ℓ 1 (01)
k−3
2 0

(+Fk) + 1

(n+ Fk) = · · · 0 1 (00)ℓ 0 (10)
k−3
2 1

2.2 The Zeckendorf-adic integers and how to add one of them to
an integer

We define the Zeckendorf-adic integers (or Z-adic integers for simplicity) as elements of

X :=
{
x ∈ {0; 1}N≥2 : ∀k ≥ 2 xkxk+1 = 0

}
.

Also, coordinates of a Z-adic integer x ∈ X are interpreted as digits in the Zeckendorf
representation: elements of X can be viewed as “generalized integers having possibly infinitely
many nonzero digits in their Zeckendorf representation”. An element x = (xk)k≥2 ∈ X is
represented as a left-infinite sequence (. . . , x3, x2), with x2 being the unit digit. We endow
X with the product topology that turns it into a compact metrizable space. The set N can
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be identified with the subset of sequences with finite support. More precisely, using the
inclusion function

i : n = [nℓ · · ·n2] ∈ N 7−→ (. . . , 0, nℓ, . . . , n2) ∈ X

we identify N and i(N). We can also identify the notation

(. . . , x3, x2) = [· · · x3x2].

We take the opportunity to define Xf as the set of finite sequences of 0’s and 1’s without
two consecutive 1’s. For instance, the Zeckendorf expansion of a given integer is composed
using a sequence in Xf . Let us define, for ℓ ≥ 2 and (nk)k≥2 ∈ Xf , the cylinder Cnℓ···n2 as
the set of sequences x ∈ X such that xi = ni for i = 2, . . . , ℓ. We observe that nℓ · · ·n2 is not
necessarily the Zeckendorf expansion of a given integer: the leftmost digit(s) can be 0(’s).

We want to extend the transformation n 7→ n + 1, defined on N, on X. From the
description given in Subsection 2.1, it is convenient to consider the transformation T defined
on X by the following formula, where ℓ ∈ N

T (x) :=


[· · ·x2ℓ+400(10)

ℓ], if x = [· · ·x2ℓ+401(00)
ℓ];

[· · ·x2ℓ′+3001(01)
ℓ], if x = [· · ·x2ℓ′+3010(00)

ℓ];

[(10)∞] if x = [0∞];

[(01)∞] if x = [0∞].

Indeed, by Subsection 2.1 we observe that T|N(n) = n + 1. Now if we take x ∈ X whose
expansion contains two consecutive 0’s, we observe that the sequence ([xℓ · · · x2] + 1)ℓ≥2

converges to T (x) because the digits are not changed eventually so we can define x+1 := T (x)
in that case. Otherwise, if x ∈ X does not have two consecutive 0’s in its expansion, there are
two cases: [(10)∞] and [(01)∞]. Adding 1 to the truncated sequence ([(10)ℓ])ℓ∈N converges to
[(10)∞] + 1 := [0∞]. It is the same for [(01)∞]. Thus, the transformation T can be described
in a simpler way as

T :

{
X −→ X
x 7−→ x+ 1.

Due to the two pre-images of 0∞, the transformation T is not a homeomorphism on X, but
remains continuous and surjective on X. Thus, (X, T ) is a topological dynamical system that
we call the odometer.

We know how to add 1 to a Z-adic integer x. Repeating this operation enables us to add
an integer r to x. For later purposes, we need to specify how to add Fk (≥ 3) directly. In
Subsection 2.1, we have to compute x+Fk for the x ∈ X with two consecutive 0’s at indices
> k. Thus, we only need to focus on what happens if x does not have two consecutive 0’s at
indices > k. There are only finitely many cases to consider, which we detail below. Again
for simplicity, we write the digits at position k in color, and we do not represent digits that
are not modified. We start with the cases where the only digits that change are those of
indices ≥ k − 1.
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1. If x = [(10)∞01 · · · ] then

(x) (10)∞ 0 1 · · ·
(Fk) + 1

(x+ Fk) = (00)∞ 0 0 · · ·

2. If x = [(01)∞0 · · · ] then

(x) (01)∞ 0 · · ·
(Fk) + 1

(x+ Fk) = (00)∞ 0 · · ·

Now we consider cases where some digits of small indices are changed, but not all them.

3. If k ≥ 5 and there exists ℓ′ ≥ 0 such that x = [(10)∞1(01)ℓ
′
000 · · · ] then

(x) (10)∞ 1 (01)ℓ
′

0 0 0 · · ·
(Fk) + 1

(x+ Fk) = (00)∞ 0 (10)ℓ
′

0 1 0 · · ·

4. If k ≥ 6 and there exists ℓ′ ≥ 0 such that x = [(10)∞1(01)ℓ
′
0010 · · · ] then

(x) (10)∞ 1 (01)ℓ
′

0 0 1 0 · · ·
(Fk) + 1

(x+ Fk) = (00)∞ 0 (10)ℓ
′

1 0 0 0 · · ·

Finally, we consider cases where the whole prefix of x is modified.

5. If k ≥ 4 and is even and x = [(10)∞1(01)
k−2
2 ] then

(x) (10)∞ 1 (01)
k−2
2

(Fk) + 1

(x+ Fk) = (00)∞ 0 (10)
k−2
2

6. If k ≥ 3 and is odd and x = [(10)∞1(01)
k−3
2 0] then

(x) (10)∞ 1 (01)
k−3
2 0

(Fk) + 1

(x+ Fk) = (00)∞ 0 (10)
k−3
2 1

We can sum up all these cases in the following proposition.
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Proposition 7. The table below summarizes the action of the addition of Fk (k ≥ 2) on
the digits of x ∈ X. Here, ℓ, ℓ′ ∈ N and we represent in color, the digits at position k. The
digits that are not explicitly written remain untouched by the operation.

T Fk : X −→ X
[· · · 000 · · · ] 7−→ [· · · 010 · · · ] (7)

[· · · 001(01)ℓ0 · · · ] 7−→ [· · · 010(00)ℓ0 · · · ] (8)

[· · · 00(10)ℓ01 · · · ] 7−→ [· · · 01(00)ℓ00 · · · ] (9)

[· · · 00(10)ℓ1(01)ℓ′000 · · · ] 7−→ [· · · 01(00)ℓ0(10)ℓ′010 · · · ] (10)

[· · · 00(10)ℓ1(01)ℓ′0010 · · · ] 7−→ [· · · 01(00)ℓ0(10)ℓ′1000 · · · ] (11)

[· · · 00(10)ℓ1(01)
k−5
2 001] 7−→ [· · · 01(00)ℓ0(10)

k−5
2 100] (12)

[· · · 00(10)ℓ1(01)
k−4
2 00] 7−→ [· · · 01(00)ℓ0(10)

k−4
2 01] (13)

[· · · 00(10)ℓ1(01)
k−2
2 ] 7−→ [· · · 01(00)ℓ0(10)

k−2
2 ] (14)

[· · · 00(10)ℓ1(01)
k−3
2 0] 7−→ [· · · 01(00)ℓ0(10)

k−3
2 1] (15)

[(01)∞0 · · · ] 7−→ [0∞0 · · · ] (16)

[(10)∞01 · · · ] 7−→ [0∞00 · · · ] (17)

[(10)∞1(01)ℓ
′
000 · · · ] 7−→ [0∞0(10)ℓ

′
010 · · · ] (18)

[(10)∞1(01)ℓ
′
0010 · · · ] 7−→ [0∞0(10)ℓ

′
1000 · · · ] (19)

[(10)∞1(01)
k−5
2 001] 7−→ [0∞0(10)

k−5
2 100] (20)

[(10)∞1(01)
k−4
2 00] 7−→ [0∞0(10)

k−4
2 01] (21)

[(10)∞1(01)
k−2
2 ] 7−→ [0∞0(10)

k−2
2 ] (22)

[(10)∞1(01)
k−3
2 0] 7−→ [0∞0(10)

k−3
2 1]. (23)

(We specify that k is even in cases (13), (14), (21) and (22), whereas k is odd in cases (12),
(15), (20) and (23). Also, in some cases, k is assumed to be large enough for the operation
to be possible.)

2.3 Stopping conditions when adding an integer to an adic number

Through the cases described in Proposition 7, we observe that if there is a 1 at position k
in the expansion of x, the addition of Fk yields a carry propagation in both directions:

• to the left, modifying digits of higher indices (as in an integer base),

• to the right, modifying digits of lower indices.

The propagation (in both directions) happens through a maximal sequence of alternative 0’s
and 1’s and is stopped at the first occurrence of two consecutive 0’s. But the modifications
depend on the propagation direction.

10



• In propagation to the left, the maximal subword of alternative 1’s and 0’s is transformed
into a subword of 0’s of the same length (case (10) for instance), and the stopping
pattern 00 is transformed into 01. Note that this propagation also happens if xk = 0
(case (8) for instance).

• In propagation to the right, which only happens if xk = 1, the maximal subword of
alternative 1’s and 0’s is transformed into a symmetrical subword where the 1’s become
0’s and vice-versa (cases (10) and (11) for instance). Then the first occurrence of 00
(in the sense the largest index ≤ k such that the digits of x are 00) can either be part
of the pattern w0 := [01000] or w1 := [10010]. (We call w0 and w1 the right-stopping
pattern.)

Depending on the right-stopping pattern ([01000] or [10010]), the modifications of digits at
these indices are given by the next scheme.

Figure 2: Modifications at the position of the right-stopping pattern.

Note that in both cases, we get a new right-stopping pattern in the same position as
before the addition of Fk. This addition of Fk to x ∈ X modifies some digits at positions
≤ k− 2 only if xk = 1, and, in this case, the modification of the digits takes place up to the
first occurrence of one of the right-blocking patterns.

Formally: let x ∈ X and k ≥ 2.

• If xk = 0 then (x+ Fk)n = xn for all n ≤ k − 2.

• If xk = 1 and if there exists j ≤ k + 1 such that xjxj−1 · · ·xj−4 is a right-stopping
patterns wi (i ∈ {0, 1})—we let j′ denote the largest index with this property—then

– (x+ Fk)n = xn for all n ≤ j′ − 4,

– w1−i appears in (x+Fk) in the same position j′, unless wi = w0 and j
′ = k+1, in

which case we might have 00010 instead of w1 at position j′ in x+ Fk (case (10)
with ℓ = ℓ′ = 0).

A straightforward consequence is the following result.

Proposition 8. Assume that the right-stopping pattern wi (i = 0, 1) appears in x ∈ X at
position j ≥ 5, that is, assume xjxj−1 · · ·xj−4 = wi. Let k ≥ j − 1. Then

• for all n ≤ j − 4, (x+ Fk)n = xn, and

• w0, w1 or 00010 appears in x+ Fk at some position j′ with k + 1 ≥ j′ ≥ j.
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We now state the following corollary that enhances that property when we add not only a
Fibonacci term but an integer whose expansion involves Fibonacci numbers of high indices.

Corollary 9. Let x ∈ X. Assume that, for some ℓ ≥ 2, xℓ = xℓ+1 = 0. Let r ∈ N be such
that rj = 0 for j = 2, . . . , ℓ+ 1. Then for each n ≤ ℓ− 2, we have (x+ r)n = xn.

Proof. We are considering the following addition:

(x) · · · xℓ+3 xℓ+2 0 0 xℓ−1 xℓ−2 xℓ−3 · · ·
(r) + · · · rℓ+3 rℓ+2 0 0 0 0 0 · · ·

(x+ r) = · · · ⋆ ⋆ ⋆ ⋆ ⋆ xℓ−2 xℓ−3 · · ·

Let r = Fks(r) + · · ·+ Fk1 be the Zeckendorf decomposition of r with ks(r) > · · · > k2 > k1 ≥
ℓ+ 2. We first consider the addition of Fk1 to x:

• if, for all j such that k1 ≥ j ≥ ℓ, we have xj = 0, then for every n ≤ ℓ + 1 we have
(x+ Fk1)n = xn (in particular 00 appears in the same place in x+ Fk1);

• otherwise, there exists a largest integer j′ with k1 + 1 ≥ j′ ≥ ℓ + 2, such that one of
the right-stopping pattern appears in x at position j′. Then we can apply the above
proposition, which proves that

– either w0 or w1 appears at position j′ in x+ Fk1 ,

– or 00 appears at position j′ in x+ Fk1 and j′ ≥ ℓ+ 3.

In each case, we still have (x+ Fk1)n = xn for n ≤ ℓ− 2.

Then we prove by induction on t such that for each t, 1 ≤ t ≤ s(r), the above is true for
x+ Fk1 + · · ·+ Fkt .

The following lemma ensures that the pattern 00 is a left-stopping condition: it stops
the propagation of a carry coming from the right.

Lemma 10. Let x ∈ X, r ∈ N. Let ℓ ≥ 2 be such that r < Fℓ+1 and assume xℓ+2 = xℓ+3 = 0.
Then we have (x+ r)k = xk for all k ≥ ℓ+ 3.

Proof. The assumption r < Fℓ+1 implies r = [rℓ · · · r2] with (rℓ, · · · , r2) ∈ Xf . Since
[xℓ+1 · · ·x2] + r < Fℓ+2 + Fℓ+1 = Fℓ+3, a carry cannot propagate on digits of indices ≥ ℓ+ 3:
we have the addition

(x) · · · xℓ+4 0 0 xℓ+1 xℓ · · · x2
(r) + rℓ · · · r2

(x+ r) = · · · xℓ+4 0 (x+ r)ℓ+2 (x+ r)ℓ+1 (x+ r)ℓ · · · (x+ r)2
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The next lemma enhances the previous one: it shows that, given x with some restrictions,
right-stopping patterns can appear in the expansion x+ Fk when k is a small integer.

Lemma 11. Let x ∈ X and r ∈ N. Let ℓ ≥ 2 be such that xℓ+1 = xℓ+2 = xℓ+3 = xℓ+4 = 0
and rℓ+2 = 1. Assume r < Fℓ+3. Then for k = 1, 2, 3, 4 we have

(x+ r)ℓ+k = rℓ+k,

or
(x+ r)ℓ+1 = 0 and (x+ r)ℓ+3 = 1.

Proof. We are actually considering the following addition:

(x) · · · xℓ+5 0 0 0 0 xℓ · · · x2
(r) + · · · 1 0 rℓ · · · r2

We want to show that the expansion of x+ r is either

[· · ·xℓ+50010(x+ r)ℓ · · · (x+ r)2] , (C1)

or

[· · ·xℓ+50100(x+ r)ℓ · · · (x+ r)2] . (C2)

Thanks to Lemma 10, we have (x+r)k = xk for every k ≥ ℓ+4, which means that the digits
of x+ r of indices ≤ ℓ+ 3 are given by the addition r + [xℓ · · ·x2]. Now we claim

(x+ r)ℓ+3 or (x+ r)ℓ+2 is 1.

Indeed, if it is not the case then [xℓ · · ·x2] + r < Fℓ+2 while r ≥ Fℓ+2 (since rℓ+2 = 1). We
consider now both possibilities.

• If (x+ r)ℓ+2 = 1 then we obtain (C1).

• If (x+ r)ℓ+3 = 1 then we must have (x+ r)ℓ+1 = 0 since we have

[xℓ · · ·x2] + r − Fℓ+3 = [xℓ · · · x2] + [rℓ · · · r2] + Fℓ+2 − Fℓ+3

< Fℓ+1.

Thus, the expansion of x+ r is (C2).

We deduce the next corollary.
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Corollary 12. Let x ∈ X and r ∈ N such that it exists ℓ ≥ 2 with xℓ = · · · = xℓ+5 = 0,
rℓ+1 = rℓ+5 = 0 and rℓ+3 = 1. Let r̃ := [rℓ · · · r2]. Then for all k ≥ ℓ+ 4 we have

(x+ r̃ + Fℓ+3)k = (x+ r̃)k = xk, (24)

and, for all k ≤ ℓ+ 2

(x+ r)k = (x+ r̃ + Fℓ+3)k = (x+ r̃)k. (25)

Remark 13. The hypothesis means that we are considering the following addition:

(x) · · · xℓ+6 0 0 0 0 0 0 xℓ−1 · · · x2
(r) + · · · rℓ+6 0 0 1 0 0 rℓ · · · · · · r2

and the conclusion ensures that the digits of indices ≤ ℓ+2 (i.e., those on the right-hand side
of the pattern we have imposed) of x+ r are the same if we compute this previous addition
as if we compute

(x) · · · xℓ+6 0 0 0 0 0 0 xℓ−1 · · · x2
(r̃ + Fℓ+3) + 1 0 0 rℓ · · · · · · r2

or if we compute

(x) · · · xℓ+6 0 0 0 0 0 0 xℓ−1 · · · x2
(r̃) + rℓ · · · · · · r2

In other words, the corollary states that the conditions we put on x and r stop the
propagation of carries in both directions.

Proof. First, we have the following addition

(x) · · · xℓ+6 0 0 0 0 0 0 xℓ−1 · · · x2
(r̃) + rℓ · · · · · · r2

(x+ r̃) = · · · xℓ+6 0 0 0 0 (x+ r̃)ℓ+1 · · · · · · · · · (x+ r̃)2

Indeed, due to Lemma 10, we have that (x + r̃)j = xj for every j ≥ ℓ + 2. When we add
Fℓ+3, it gives x+ r̃ + Fℓ+3, whose Zeckendorf expansion is

(x+ r̃ + Fℓ+3) = [· · ·xℓ+60010(x+ r̃)ℓ+1 · · · (x+ r̃)2] .

We thus get the relation (24).
We now consider addition (where x̃ := x+ r̃ + Fℓ+3)

(x̃) · · · xℓ+6 0 0 1 0 (x+ r̃)ℓ+1 · · · (x+ r̃)2
+ · · · rℓ+6 0 0 0 0 0 · · · 0

Now using Corollary 9, we obtain (25).
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The statement of Corollary 12 means that, given a block of length 1 (in the sense that
it has one pattern 10) in r, we are able to control the propagation of carries so that the left
part of the addition does not change the expansion on the right part and vice versa. We now
want to have the same kind of control for larger blocks. We could assume that x has many
0’s facing the block in r that we want to control. However, this condition would be more
and more “expensive” (in the sense that the probability for x to satisfy it would decrease to
0) as the length of the block increases. To avoid this, we are looking for conditions on x that
affect only a bounded number of digits, regardless of the length of the block. In other words,
we want our conditions to appear in “most” of x ∈ X. We obtain the following corollary
where the length of the block is m+ 2 and where we fixed 8 digits in x.

Corollary 14. Let x ∈ X, r ∈ N and m ≥ 0. Assume that there exists ℓ ≥ 2 such that

• xi = 0 where i ∈ {ℓ, ℓ+ 1, ℓ+ 2, ℓ+ 3, ℓ+ 2m+ 4, ℓ+ 2m+ 5, ℓ+ 2m+ 6, ℓ+ 2m+ 7},

• rℓ+1 = rℓ+2m+7 = 0 and rℓ+2i+3 = 1 for i = 0, . . . ,m+ 1.

Let r̃ := [rℓ · · · r2]. Then we have

(x+ r̃ +
m+1∑
i=0

Fℓ+2i+3)k = (x+ r̃)k = xk, (26)

for all k ≥ ℓ+ 2m+ 7 and

(x+ r)k = (x+ r̃ +
m+1∑
i=0

Fℓ+2i+3)k, (27)

for all k ≤ ℓ+ 2m+ 2.

Proof. For simplicity, we write B as the block
∑m+1

i=0 Fℓ+2i+3. We decompose the sum x+r in
several steps. First we add r̃. With the hypothesis on x, we actually consider the following
addition:

(x) · · · xℓ+8+2m 0 0 0 0 xℓ+2m+3 · · · xℓ+4 0 0 0 0 xℓ−1 · · · x2
(r̃) + rℓ rℓ−1 · · · r2

Thanks to Lemma 10, we know that this addition can only modify digits of x of indices
≤ ℓ+ 1. We continue with the addition of B. For simplicity, we write x̃ := x+ r̃:

(x̃) · · · xℓ+8+2m 0 0 0 0 xℓ+2m+3 · · · xℓ+4 0 0 x̃ℓ+1 x̃ℓ x̃ℓ−1 · · · x̃2
(B) + 1 0 1 · · · 0 1 0 0 0 0 · · · 0

Now Lemma 11 ensures that the expansion of x̃ is not modified for digits of indices ≥
ℓ+2m+7. We thus prove (26). But more precisely, Lemma 11 concludes that the expansion
of x̃+B is either

[· · ·xℓ+8+2m0100(x̃+B)ℓ+2m+3 · · · (x̃+B)2] ,
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or
[· · · xℓ+8+2m0010(x̃+B)ℓ+2m+3 · · · (x̃+B)2] .

In both case, a pattern 00 appears between the indices ℓ+2m+4 and ℓ+2m+7. Thus, we
can apply Corollary 9: the final step of the addition, which consists of adding what remains
in r, does not modify the digits of indices ≤ ℓ+ 2m+ 2. We obtain the conclusion (27).

3 Unique ergodicity of the odometer

3.1 Rokhlin towers and the ergodic measure

In this subsection, we focus on the Rokhlin towers of the odometer (X, T ). A Rokhlin tower
is a family of disjoint subsets (A0, A1, · · · , Ak−1) such that T (Ai) = Ai+1 for i < k − 1. We
say that the subset Ai is a level of the Rokhlin tower and that k is the height of the tower.
This family is usually represented by a tower (see Figure 3). In our case, we show that we
can construct a partition of X using two Rokhlin towers.

More precisely, we focus on the action of T on cylinders. For each k ≥ 1, we consider
the partition of X into Fk+2 cylinders corresponding to all possible blocks formed by the
rightmost k digits of a Z-adic integers (we call them cylinders of order k). For example, at
order 1, we partition X into C0 and C1. At order 2, we get X = C00 ⊔ C01 ⊔ C10. At order 3

X = C000 ⊔ C001 ⊔ C010 ⊔ C100 ⊔ C101.

In general, cylinders of order k are ordered lexicographically:

• first, those whose name has a 0 in the leftmost position (there are Fk+1 of them),

• then those whose name has a 1 in the leftmost position (there are Fk of them).

We observe that each cylinders of order k with a 0 in the leftmost position, except the last
one, is mapped by T onto the next one, giving rise to a Rokhlin tower of height Fk+1: we
call it the large tower of order k. Similarly, each cylinders or order k with a 1 in the leftmost
position, except the last one, is mapped by T onto the next one, giving rise to another
Rokhlin tower of height Fk: we call it the small tower of order k. Thus, for each k ≥ 1, we
get a partition of X into two Rokhlin towers whose levels are all cylinders of order k. For
instance, for k = 4, we get the partition depicted in Figure 3. It remains to describe the
transition from the Rokhlin towers of order k to those of order k + 1. First, note that all
levels of the small tower of order k are also levels of the large tower of order k + 1, since
a cylinder of order k with a 1 in the leftmost position coincides with the cylinders of order
k + 1 with an additional 0 concatenated at the left of its name (e.g., C101000 = C0101000).

Each level of the large tower of order k is partitioned into two cylinders of order k+1: one
obtained by concatenating a 0 at the left of its name and the other obtained by concatenating
a 1. Thus, the large Rokhlin tower of order k is cut into two subtowers:
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• the first one is the bottom part of the large Rokhlin tower of order k+1 (the top part
being nothing but the small Rokhlin tower of order k);

• the second one is the small Rokhlin tower of order k + 1.

This transition is referred to as the cutting-and-stacking process. See Figure 4.

Figure 3: Rokhlin towers of order 4 (the action of T is represented by the arrows).

Figure 4: Visual description of the cutting-and-stacking process (for k = 4).

The analysis of the action of T on cylinders, yielding to the construction of the Rokhlin
towers, enables us to describe the unique T -invariant probability measure.

Proposition 15. (X, T ) is uniquely ergodic and the unique T -invariant measure P satisfies

P(Crℓ···r2) =


1

φℓ−1
, if rℓ = 0;

1

φℓ
, otherwise.

(28)

∀ℓ ≥ 2 and (rℓ, . . . , r2) ∈ Xf .

Proof. Let P be a T -invariant measure. For each order k we observe that, by T -invariance,
all levels in the large tower have the same probability (and similarly in the small tower). We
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claim that

P(C1) =
1

φ2
. (29)

Indeed, let uk (resp. vk) denote the number of levels included in C1 in the large (resp. small)
tower of order k. From the cutting-and-stacking process, for k ≥ 1 we get the following
inductive equations {

uk+1 = uk + vk,

vk+1 = uk,

with initial conditions u1 = 0 and v1 = 1. We deduce that uk = Fk−1 and vk = Fk−2 for
k ≥ 2. We also have the identity

P(C1) = uk P (x ∈ one fixed level in the large tower of order k)

+ vk P (x ∈ one fixed level in the small tower of order k)

=
uk
Fk+1

P (x ∈ the large tower of order k)

+
vk
Fk

P (x ∈ the small tower of order k)

=
vk
Fk

+ (
uk
Fk+1

− vk
Fk

) P (x ∈ the large tower of order k).

Taking the limit as k →∞ gives (29). As X = C0 ⊔ C1, we deduce that P(C0) =
1
φ
.

Then assume that, at some order k ≥ 1, each level in the large (resp. small) tower has
measure 1

φk (resp. 1
φk+1 ). Since a level in the small tower of order k is also a level in the large

tower of order k + 1, we deduce that each level in the large tower of order k + 1 also has
measure 1

φk+1 . Let p ∈ [0, 1] denote the common measure of all levels in the small tower of

order k + 1. Since there are Fk+2 (resp. Fk+1) levels in the large (resp. small) tower of order
k + 1, we have the equation

Fk+2

φk+1
+ pFk+1 = 1,

which is equivalent to the relation

φFk+2 + pφk+2Fk+1 = φk+2.

Combining with the classical identity φFk+2 + Fk+1 = φk+2, we deduce that p = 1
φk+2 . By

induction, we prove (28).

3.2 Probabilistic interpretation of the measure

In the case of the b-adic odometer [11, p. 7] (b ≥ 2), the T -invariant measure can be in-
terpreted as an independent choice of each digit according to the uniform law on the set of
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possible digits. For the Z-adic odometer, it is not as easy to describe. First, the digits do
not follow the same law. Indeed, for all k ≥ 2, we have P(xk = 1) = Fk−1

φk , which depends on

k. (This provides the classical asymptotic formula on the frequency of 1’s in the Zeckendorf
expansion: P(xk = 1) −−−−→

k→+∞
1

φ2+1
; see [13, 10] for other proofs.) Therefore, if σ is the shift

on X, the law of x is not the same as the law of σk(x) for k ≥ 1, which means P is not
stationary. Furthermore, the choice of a digit is not independent of the other digits because
a 1 must be followed by a 0. However, the lack of stationarity and independence of P is
compensated by the following renewal property.

Proposition 16. Let C be a cylinder, k ≥ 2, and (rk, . . . , r2) ∈ Xf . Then

1. P
(
σkx ∈ C | x ∈ C0rk···r2

)
= P(C),

and

2. P
(
σk+1x ∈ C | x ∈ C1rk···r2

)
= P(C) (if rk = 0).

Proof. Without loss of generality, we can assume that C is a cylinder of order k0 with a 0
at the left side of its name for some k0 ≥ 1, so P(C) = 1

φk0
. Then

P
(
σk+2x ∈ C | x ∈ C0rk···r2

)
=

P
(
x ∈ C0rk···r2 ∩ σk+2x ∈ C

)
P(x ∈ C0rk···r2)

.

We observe that the set {x ∈ C0rk···r2 ∩ σk+2x ∈ C} is actually a cylinder of order k + k0
with a leftmost 0 in its name. Its measure is therefore 1

φk+k0
.

P
(
σk+2x ∈ C | x ∈ C0rk···r2

)
=

φk

φk+k0
=

1

φk0
= P(C).

We get the first point of the proposition. Then we observe that, since C1rk···r2 = C01rk···r2 ,
the second is a particular case of the first one (with k + 1 instead of k).

Once we know the value of xk, the conditional law of xk+1 depends neither on k or
xk−1, . . . , x2. In particular, we get that

P(xk+2 = 1 | xk+1, . . . , x2) =

{
1/φ2, if xk+1 = 0;

0, otherwise,

and

P(xk+2 = 0 | xk+1, . . . , x2) =

{
1/φ, if xk+1 = 0;

1, otherwise.

Therefore, under P, the digits x2, x3, . . . form a Markov chain with transition probabilities
given on Figure 5, starting with the initial law

P(x2 = 1) =
1

φ2
and P(x2 = 0) =

1

φ
.
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0 1

1
φ2

1

1
φ

Figure 5: Transition probabilities of the Markov chain.

3.3 Reminders on some notions of mixing coefficients

In Definition 5, we introduced the notion of α-mixing coefficients. It happens that the
distribution of the digits in a Z-adic integer satisfies a good inequality for another (better)
notion of mixing coefficients: the ϕ-mixing coefficients. They are defined as follows.

Definition 17. Let (Xj)j≥1 be a (finite or infinite) sequence of random variables. The
associated ϕ-mixing coefficients ϕ(k), k ≥ 1, are defined by

ϕ(k) := sup
p≥1

sup
A,B
|PA(B)− P(B)|,

where the second supremum is taken over all events A and B such that

• A ∈ σ(Xj : 1 ≤ j ≤ p),

• P(A) > 0 and,

• B ∈ σ(Xj : j ≥ k + p).

By convention, if Xj is not defined when j ≥ k + p, then the σ-algebra is trivial.

In the case of a finite sequence (X1, . . . , Xn), the convention implies that ϕ(k) = 0 for
k ≥ n.

Both α and ϕ-mixing coefficients are linked together and, as written above, ϕ-mixing
coefficients are “better” than α-mixing coefficients. Indeed, we have the following property
from Bradley [4]:

Proposition 18 (Bradley). For every k ≥ 1

α(k) ≤ 1

2
ϕ(k).

3.4 ϕ-mixing property for Z-adic digits

As mentioned in the previous subsection, there exists a good upper bound on the ϕ-mixing
coefficients for the coordinates of x ∈ X.
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Proposition 19. For x = (xj)j≥2 ∈ X randomly chosen with law P and k ≥ 1 we have

ϕ(k) ≤ 2

φ2k
.

Our way to prove this result needs to introduce a parametrization of the Markov chain.
So, we define the function on {0, 1} × [0, 1] as follows:

ψ(ε, t) :=


1, if ε = 0 and t < 1

φ2 ;

0, if ε = 0 and t ≥ 1
φ2 ;

0, otherwise.

Now let (Uj)j≥2 be independent and identically distributed random variables following a
uniform law on the real unit interval and define the sequence (yj)j≥1 as follows:

yj :=

{
0, if j = 1;

ψ(yj−1, Uj), otherwise.
(30)

Lemma 20. The law of (yj)j≥2 is P.

Proof of Lemma 20. The transition matrix is the same as for P and so is the initial law: the
probability that y2 is 0 is the same as the event U2 ≥ 1

φ2 that is 1
φ
= P(C0).

Proof of Proposition 19. Let k ≥ 1 and p ≥ 2. From Lemma 20, choosing x with law P is
equivalent to constructing a sequence y = (yj)j≥2 using the process (30). Thus, we have a
sequence of independent and identically distributed random variables (Uj)j≥2 with a uniform
law on the real unit interval. We consider the event

C :=

{
∃j ∈]p, p+ k] : Uj ≥

1

φ2

}
,

the probability of which is

P(C) = 1− 1

φ2k
> 0.

If y ∈ C then this implies that yj = 0 because of (30). Then we take A ∈ σ(xj : 2 ≤ j ≤ p)
and B ∈ σ(xj : j ≥ k + p). We observe that, due to (30), A ∈ σ(Uj : 2 ≤ j ≤ p) while
C ∈ σ(Uj : p < j ≤ k + p) thus A and C are independent. Also, due to Proposition 16, we
observe B ∩ C ∈ σ(Uj : j > p). So A and B ∩ C are independent. We also have

|PA(B)− P(B)| ≤ |PA(B)− PA∩C(B)|+ |PA∩C(B)− PC(B)|+ |PC(B)− P(B)|.

But the independence between A and C and A and B ∩ C gives that

|PA(B)− P(B)| ≤ |PA(B)− PA∩C(B)|+ |PC(B)− P(B)|. (31)
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As shown in the case of an integer base [11, Lemma 4.3], if we let C denote the complement
of C, then for every event D we have the general inequality

|PC(D)− P(D)| ≤ P(C), (32)

which implies in (31) that
|PA(B)− P(B)| ≤ 2P(C).

Another property about the measure is that if P(xk = 1) indeed depends on k, then
it is actually bounded between two positive values. We generalize this fact with the next
proposition.

Proposition 21. Let (k0, . . . , kℓ) be a collection of integers such that

2 ≤ k0 < k1 < · · · < kℓ.

Let A be a union of cylinders of order k0 − 1 such that xk0 = 0 if x ∈ A and such that
P(A) > 0. Then

1

φℓ
≤ PA (∀1 ≤ i ≤ ℓ : xki = 0) ≤

(
2

φ2

)ℓ

.

Proof. Let I ⊂ N. Since there is a finite number of cylinders of order k0 − 1, we can write
A as a disjoint union ⊔i∈IC(i) where C(i) is a cylinder of order k0 − 1. We have the identity

PA (∀1 ≤ i ≤ ℓ : xki = 0) =
ℓ∏

i=1

P (xki = 0 | A ∩
i−1⋂
j=1

(xkj = 0)), (33)

with the convention ∩0j=1(xkj = 0) = X. But we have

PA(xk1 = 0) =
P
(
(xk1 = 0) ∩

(
x ∈ ⊔i∈IC(i)

))
P(A)

=
1

P(A)
∑
i∈I

P
(
(xk1 = 0) ∩ x ∈ C(i)

)
.

We recall that P(A) = |I|
φk0−1 , and that the summand is the probability of a disjoint union

of Fk1−k0+1 cylinders of order k1 − 1 such that xk1 = 0, so its measure is
Fk1−k0+1

φk1−1 . Thus, we
obtain

PA(xk1 = 0) = P(xk1−k0+1 = 0).

We proceed similarly for the other terms in (33) and get

PA (∀1 ≤ i ≤ ℓ : xki = 0) =
ℓ∏

i=1

P (xki−ki−1+1 = 0). (34)
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The last equality is given using the renewal of P. Now we claim that for all k ≥ 2 we have

1

φ
≤ P(xk = 0) ≤ 2

φ2
.

Indeed, we recall that P(xk = 0) = Fk

φk−1 , and we observe that the subsequences
(

F2k

φ2k−1

)
and(

F2k+1

φ2k

)
are adjacent sequences.

3.5 Ergodic convergence

For x in X, we define the sequence of empirical probability measures along the (beginning
of the) orbit of x: for every N ≥ 1, we set

ϵN(x) :=
1

N

∑
0≤n<N

δTnx

, where δy is the Dirac measure on y ∈ X.
Since the space of probability measures on X is compact for the weak-∗ topology, we can

always extract a convergent subsequence. Moreover, every subsequential limit of (ϵN(x)) is a
T -invariant probability measure. By the uniqueness of the T -invariant probability measure,
for every x ∈ X we have ϵN(x)→ P. In other words, we have the convergence

∀x ∈ X, ∀f ∈ C(X), 1

N

∑
0≤n<N

f(T nx) −−−−→
N→+∞

∫
X
fdP. (35)

Here, we are interested in the special case x = 0, because N = {T n0 : n ∈ N}. Then (35)
becomes

∀f ∈ C(X), 1

N

∑
0≤n<N

f(n) −−−−→
N→+∞

∫
X
fdP. (36)

Equation (36) shows that, for a continuous function f , averaging f over N (for the natural
density) amounts to averaging over X (for P). The next section shows how this convergence
can be extended to some non-continuous functions related to the sum-of-digits function.

4 Sum of digits on the odometer

In this section, we adapt the techniques used for the case of an integer base [11]. The main
difference is the need of the new Lemma 27. For every integer k ≥ 2, we define the continuous
map sk : X→ Z as the sum of the digits of indices ≤ k, that is to say

sk(x) := xk + · · ·+ x2.
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Let r ∈ N. We define the functions ∆
(r)
k : X→ Z by

∆
(r)
k (x) := sk(x+ r)− sk(x).

The functions ∆
(r)
k are well-defined, continuous (and bounded) on X. By (36), we have

1

N

∑
n<N

∆
(r)
k (n) =

1

N

∑
n<N

∆
(r)
k (T n0) −−−−→

N→+∞

∫
X
∆

(r)
k dP. (37)

Although the sum-of-digits function s is not well defined on X, we can extend the function
∆(r) defined by (3) on the set of x ∈ X for which the number of different digits between x
and x+ r is finite. This subset contains the Z-adic integers x such that there exists an index
k ≥ 2 + max({ℓ : rℓ ̸= 0}) such that xk = xk+1 = 0 (see Lemma 10). So, except for a finite
number of Z-adic integers, we can define

∆(r)(x) := lim
k→∞

∆
(r)
k (x).

Remark 22. Let t, u be two integers. For every integer k we have the decomposition formula

∆
(t+u)
k = ∆

(t)
k +∆

(u)
k ◦ T

t. (38)

So, taking P-almost everywhere the limit as k →∞, we get

∆(t+u) = ∆(t) +∆(u) ◦ T t (P-a-s.). (39)

Then by induction on t, we deduce

∆(t) = ∆(1) +∆(1) ◦ T + · · ·+∆(1) ◦ T t−1 (P-a-s.). (40)

The function ∆(r) is not bounded on X, and therefore it is not continuous. So Eq. (36)
is not applicable for f ◦∆(r) with f a continuous map on X. However, it is possible to get
the same convergence as in (36) with weaker assumptions on f than continuity.

Proposition 23. Let r ≥ 1 and f : Z → C. Assume that there exist α ≥ 1 and C in R∗
+

such that for every n ∈ Z we have

|f(n)| ≤ C|n|α + |f(0)|. (41)

Then f ◦∆(r) ∈ L1 (P) and we have the convergence

lim
N→∞

1

N

∑
n<N

f(∆(r)(n)) =

∫
X
f(∆(r)(x))dP(x)

= lim
k→∞

∫
X
f(∆

(r)
k (x))dP(x).
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Corollary 24. For every d ∈ Z we have

µ(r)(d) := lim
N→∞

1

N

∣∣{n < N : ∆(r)(n) = d
}∣∣

= P
({
x ∈ X : ∆(r)(x) = d

})
. (42)

Moreover, ∆(r) has zero-mean and has finite moments.

The proof of this corollary is exactly the same as for the case of an integer base [11].
In particular, we just prove the existence of the asymptotic densities of the sets {n ∈ N :
∆(r)(n) = d}, where d ∈ Z. In the case of an integer base, this is easy to prove (see [3, 11]).
Here, it is harder to follow Bésineau’s proof because it uses the arithmetic properties of the
sum-of-digits (in an integer base) function that we do not have any longer.

Remark 25. Using trivial arguments, Proposition 23 and Corollary 24 are also true when
r = 0. We observe that µ(0) = δ0.

Before proving this proposition and its corollary, we need the following lemma that looks
like Lemma 1.29 from Spiegelhofer [16].

Lemma 26. Let r ≥ 1. For N ≥ 1, k ≥ 2 and d, d′ ∈ Z, we have the inequality

1

N

∣∣∣{n < N : (∆(r)(n),∆
(r)
k (n)) = (d, d′)}

∣∣∣
≤ rφ3 P

(
{x ∈ X : (∆(r)(x),∆

(r)
k (x)) = (d, d′)}

)
.

(43)

In particular, we have

1

N

∣∣{n < N : ∆(r)(n) = d}
∣∣ ≤ rφ3 P

(
{x ∈ X : ∆(r)(x) = d}

)
. (44)

Proof of Lemma 26. We adapt the proof of [11, Lemma 2.3] for the case of an integer base.
First, (43) implies (44) so we just prove (43). We fix k ≥ 2. For ℓ ≥ 1, let Vℓ be the set of

the values reached by the pair (∆(r),∆
(r)
k ) on the Fℓ+1 − r (resp. Fℓ − r) first levels of the

large (resp. small) tower of order ℓ. Of course, if Fℓ+1 − r ≤ 0 then Vℓ := ∅. In particular,
for every r ≥ 1, V1 = ∅. Also, if Fℓ ≤ r < Fℓ+1 then Vℓ is defined considering only the large
tower of order ℓ. For every ℓ, we observe that Vℓ is a finite set. On each level that is not in
the r top levels of the large or small tower, the first ℓ digits of both x and x+ r are constant,
and digits of higher order are the same. Therefore, ∆(r) and ∆

(r)
k are constant on such a

level. We observe that the sequence (Vℓ)ℓ≥1 is increasing for the inclusion.
Now for d, d′ ∈ Z, there are two cases.

1. If (d, d′) /∈ ∪ℓ≥2Vℓ, then for each n ∈ N we have (∆(r)(n),∆
(r)
k (n)) ̸= (d, d′). Indeed,

for each n ∈ N, there exists a smallest integer ℓ ≥ 2 such that n is in the first Fℓ+1− r
levels of the large tower of order ℓ, hence (∆(r)(n),∆

(r)
k (n)) ∈ Vℓ. In this case, (43) is

trivial.
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2. If (d, d′) ∈ ∪ℓ≥1Vℓ then there exists a unique ℓ ≥ 2 such that (d, d′) ∈ Vℓ\Vℓ−1. We
observe that, due to the cutting-and-stacking process, the value (d, d′) must appear

firstly in the large tower of order ℓ. Since (∆(r),∆
(r)
k ) is constant on each of the first

Fℓ+1 − r levels of the large tower, it takes the value (d, d′) on at least one whole such
level, which is of measure 1

φℓ . So, we have

P
(
{x ∈ X : (∆(r)(x),∆

(r)
k (x)) = (d, d′)}

)
≥ 1

φℓ
. (45)

Also, since the pair (d, d′) /∈ Vℓ−1, we claim that for every N ≥ 1

1

N

∣∣∣{n < N : (∆(r)(n),∆
(r)
k (n)) = (d, d′)}

∣∣∣ ≤ r

Fℓ−1

.

Indeed,

(a) If r ≥ Fℓ−1 then the inequality is trivial.

(b) If r < Fℓ−1 then since (d, d′) is not in Vℓ−1, the pair (d, d
′) can only appear inside

a part of the r highest levels of the big or small towers of order ℓ − 1. Let C
denote the union of these r highest levels. Since 0 lies in the bottom level of the
large tower of order ℓ− 1, the set S of integers n ≥ 0 such that T n0 ∈ C has the
following properties:

• {0, . . . , Fℓ − r − 1} ∩ S = ∅ and
• S is the union of subsets formed by r consecutive integers separated by gaps
of length Fℓ − r or Fℓ−1 − r.

So, we have

1

N

∣∣∣{0 ≤ n < N : (∆(r)(n),∆
(r)
k (n)) = (d, d′)}

∣∣∣
≤ 1

N
|{0 ≤ n < N : T n0 ∈ C}|

≤ r

Fℓ−1

.

Since Fℓ−1 ≥ φℓ−3 (by double induction), we get

1

N

∣∣∣{n < N : (∆(r)(n),∆
(r)
k (n)) = (d, d′)}

∣∣∣ ≤ r

φℓ−3
. (46)

Combining inequalities (45) and (46) gives (43).
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Figure 6: Visual description of Vℓ−1, Vℓ and Vℓ\Vℓ−1.

As shown in (40), the understanding of ∆(1) (and so ∆
(1)
k for k ≥ 2) is fundamental to

understand ∆(r), so we also state the following lemma.

Lemma 27. The function ∆(1) is well-defined for x ∈ X if and only if x ∈ C00(10)d ∪C001(01)d

for some d ≥ 0.
Furthermore, if x ∈ C00(10)d then ∆(1)(x) = 1− d and

∆
(1)
k (x) =


2−k
2
, if k ≡ 0 (mod 2) and k ≤ 2d;

1−k
2
, if k ≡ 1 (mod 2) and k ≤ 2d+ 1;

1− d, if k ≥ 2d+ 2.

Also, if x ∈ C001(01)d then ∆(1)(x) = −d and

∆
(1)
k (x) =


−k
2
, if k ≡ 0 (mod 2) and k ≤ 2d+ 2;

1−k
2
, if k ≡ 1 (mod 2) and k ≤ 2d+ 1;

3−k
2
, if k = 2d+ 3;

−d, if k ≥ 2d+ 4.

Proof of Lemma 27. If x ∈ C00(10)d for some d ≥ 0, the definition of T gives that x + 1 ∈
C01(00)d with the other digits unchanged. Thus the sequence (∆

(1)
k (x)) is stationary, ∆(1)(x) is

well defined, and ∆(1)(x) = 1−d. Also, if x ∈ C001(01)d for some d ≥ 0, then x+1 ∈ C010(00)d ,

∆(1)(x) is well defined and ∆(1)(x) = −d. If x does not belong to those cylinders then

x = (01)∞ or x = (10)∞. In that case, x + 1 = 0 and the sequence (∆
(1)
k (x)) diverges to

−∞. This proves equivalence. The values of ∆
(1)
k (x) can be easily found by looking at the

addition we write in Subsection 2.1.
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Proof of Proposition 23. We adapt the proof of [11, Prop. 2.1] for the case of an integer base.
Let ε > 0. For every integer k ≥ 2, we have∣∣∣∣∣ 1N ∑

n<N

f(∆(r)(n))−
∫
X
f(∆(r)(x))dP(x)

∣∣∣∣∣ ≤ A1 + A2 + A3,

where

A1 :=
1

N

∑
n<N

∣∣∣f(∆(r)(n))− f(∆(r)
k (n))

∣∣∣ ,
A2 :=

∣∣∣∣∣ 1N ∑
n<N

f(∆
(r)
k (n))−

∫
X
f(∆

(r)
k (x))dP(x)

∣∣∣∣∣ ,
A3 :=

∫
X

∣∣∣f(∆(r)(x))− f(∆(r)
k (x))

∣∣∣ dP(x).
However, we have

A1 =
1

N

∑
n<N

∑
j,j′∈Z

∣∣∣f(j)− f(j′)∣∣∣1(j,j′)

(
∆(r)(n),∆

(r)
k (n)

)
=

∑
j,j′∈Z

∣∣∣f(j)− f(j′)∣∣∣ 1
N

∑
n<N

1(j,j′)

(
∆(r)(n),∆

(r)
k (n)

)
≤ rφ3

∑
j,j′∈Z

∣∣∣f(j)− f(j′)∣∣∣ P(∆(r)(n) = j,∆
(r)
k (n) = j′

)
= rφ3

∫
X

∣∣∣f(∆(r)(x))− f(∆(r)
k (x))

∣∣∣dP(x) = rφ3A3.

Then ∣∣∣∣∣ 1N ∑
n<N

f(∆(r)(n))−
∫
X
f(∆(r)(x))dP(x)

∣∣∣∣∣ ≤ A2 + (1 + rφ3)A3.

We want to apply the dominated convergence theorem to deal with A3 (observe that we have

the convergence f(∆
(r)
k (x)) −−−→

k→∞
f(∆(r)(x)) P-almost-surely). For this, we need to find a

good dominant function. We define gi := supk≥2 |∆
(1)
k ◦ T i(x)| for i = 0, . . . , r − 1 and by

(41) we get the inequalities∣∣∣f ◦∆(r)
k (x)

∣∣∣ ≤ C
∑

j0+···+jr−1=α

r−1∑
i=0

(
α

j0,...,jr−1

)
r

gi(x)
rji +

∣∣∣f(0)∣∣∣
and ∣∣f ◦∆(r)(x)

∣∣ ≤ C
∑

j0+···+jr−1=α

r−1∑
i=0

(
α

j0,...,jr−1

)
r

gi(x)
rji +

∣∣∣f(0)∣∣∣.
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We need to prove that grjii is integrable for the measure P. It is equivalent to show that∑
m P({x ∈ X : grjii (x) > m}) is a convergent series. We have

gi(x) > m
1

rji ⇔ sup
k≥2
|∆(1)

k ◦ T
i(x)| > m

1
rji

⇔ ∃k ≥ 2, |∆(1)
k (T ix)| > m

1
rji .

From Lemma 27

∃k ≥ 2, |∆(1)
k (T ix)| > m

1
rji ⇔ T ix ∈ C

00(10)⌊m
1

rji ⌋
∪ C

0(01)⌊m
1

rji ⌋
.

It follows, by T -invariance, that

P({x ∈ X : grjii (x) > m}) ≤
(
1

φ

)2+2⌊m
1

rji ⌋

+

(
1

φ

)1+2⌊m
1

rji ⌋

=

(
1

φ

)2⌊m
1

rji ⌋

.

The quantity on the RHS is the general term of a convergent series, which shows that grjii is
integrable for the measure P. The dominated convergence theorem can be applied and, for
k large enough, we have (1 + rφ3)A3 ≤ ε

2
for every N ≥ 1. Now once we have fixed such a

k, for N large enough, A2 is bounded by ε
2
because of (36) and the continuity of ∆

(r)
k and f .

The convergence in the statement is thus proved.
Note that the argument of the dominated convergence theorem also proves that f ◦∆(r) ∈

L1(P) and
∫
X f ◦∆

(r)dP = lim
k→∞

∫
X f ◦∆

(r)
k dP.

More generally, we have the following convergence.

Proposition 28. Let r ≥ 1 and f : Z→ C be such that f ◦∆(r) ∈ L1(P). Then

lim
N→∞

1

N

∑
n<N

f(∆(r)(n)) =

∫
X
f(∆(r)(x))dP(x).

The proof is exactly the same as Proposition 2.4 in [11]. We have shown that the random
variable ∆(r) satisfies some good properties such as the finiteness of moments of every order of
µ(r), the law of ∆(r). The next section focuses on another natural question: how to compute
the law µ(r)?

5 How to compute µ(r)

In this section, we present an algorithm that exactly computes the measure µ(r) for r in N
and its consequences.
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5.1 Description of the algorithm

This algorithm is completely different from the classical way to compute µ(r) in an integer
base, as developed by Bésineau [3, p. 14]. In an integer base b ≥ 2, the computation of µ(r)

relies on inductive relations for the expansion of r, which are easy to prove in that case. For
instance, one of the relation states that if r is a multiple of b then the variation when adding
r to x is the same as the variation when adding r

b
to σx. So the laws of the variation when

adding r or r
b
are the same. In the Zeckendorf representation, this trivial argument is false

because the carries can modify the digits on both sides (unlike the case of an integer base,
where only the left side can be affected). However, we find an algorithm to compute µ(r), in
this Zeckendorf system that relies on Rokhlin towers. This algorithm can be adapted to an
integer base.

First, let r ≥ 1 (r = 0 is irrelevant) and let ℓ ≥ 2 be the unique integer such that
Fℓ ≤ r < Fℓ+1. At a given order k ≥ 1, we define CST

k
as the union of the levels of the large

and small towers of order k, except the r highest levels. We observe CST1 = ∅. On each level
of CST

k
, ∆(r) is constant (see the proof of Lemma 26). But, due to the cutting-and-stacking

process, the value of ∆(r) on these “constant” levels of CST
k
may be deduced from those

taken in CST
k−1

. That is why we also introduce, for k ≥ 2, the new information zone of the
Rokhlin tower of order k as the set

NIZ
k
:= CST

k
\CST

k−1
.

Of course, everything depends on r but we do not emphasize on that in the notation of
ℓ, NIZ

k
and CST

k
for simplicity. Let us define clearly this set NIZ

k
.

Proposition 29. In a large tower, we enumerate, starting by 1, the levels from the base of
the tower to the top of it. We have the following description of NIZ

k
.

• If 2 ≤ k ≤ ℓ− 1, NIZ
k
= ∅.

• NIZ
ℓ
is the union of the first Fℓ+1 − r levels of the large tower of order ℓ.

• NIZ
ℓ+1

is the union of the Fℓ levels between the Fℓ+1− r+1th and the Fℓ+2− rth levels
of the large tower of order ℓ+ 1.

• If k > ℓ + 1, NIZ
k
is the union of the r levels between the Fk − r + 1th and the F th

k

levels of the large tower of order k.

Remark 30. By definition, for every k ≥ 1, the set NIZ
k
is either empty or a disjoint union

of cylinders of order k (exactly Fℓ+1− r if k = ℓ, Fℓ if k = ℓ+1 or r if k ≥ ℓ+2). Moreover,
we observe that (NIZ

k
)k≥ℓ is a partition of X\{(01)∞, (10)∞}.

Example 31. Figure 7 illustrates an example with r = 4 = [101].
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Figure 7: Visualization of (NIZ
k
)k≥1 when r = 4 = [101].

Figure 8 is a more general figure to aid understanding.

Figure 8: Visualization of NIZ
k
, k ≥ ℓ+ 2.

Through the following lemmas, we state some observations on this sequence (NIZ
k
)k≥1.

We start by a description of the cylinders of order k that appear in NIZ
k
for k ≥ ℓ+ 2.

Lemma 32. If k ≥ 2, the set NIZ
k
is composed of cylinders of order k whose name has a

pattern 00 in the leftmost positions.

Proof. Let k ≥ ℓ + 2, consider a cylinder Cnk+1···n2 of order k that belongs in NIZ
k
and

where (nk+1, . . . , n2) ∈ Xf . Since this cylinder is part of the large Rokhlin tower of order k,
nk+1 = 0. Moreover, this cylinder is not in the Fk−1 highest cylinders of the same tower, so
nk = 0, too.

Now we show a relation between cylinders of order k in NIZ
k
and those of order k+ 2 in

NIZ
k+2

for k ≥ ℓ.

Lemma 33. Let k ≥ 2 and let (nk−1, . . . , n2) ∈ Xf . We have the implication

C00nk−1···n2 ⊂ NIZ
k
=⇒ C0010nk−1···n2 ⊂ NIZ

k+2
(47)

Remark 34. If k = 2, we agree that the word nk−1 · · ·n2 is the empty word.
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Proof. For r = 1, we let the reader check that C00 ⊂ NIZ2 and C0010 ⊂ NIZ4 . For r ≥ 2, we
have NIZ2 = ∅. So, we can assume k ≥ 3. Let C00nk−1···n2 ⊂ NIZ

k
and n :=

∑k−1
i=2 niFi. Then

n ∈ NIZ
k
∩ [0, Fk[ where the interval is an integer interval and considered as being part of X.

1. If k ≥ ℓ+ 2, we observe that NIZ
k
∩ [0, Fk[= [Fk − r, Fk − 1[. It follows that Fk+1 + n,

whose Zeckendorf expansion is [10nk−1 · · ·n2], belongs to [Fk+2− r, Fk+2−1] ⊂ NIZ
k+2

.
Furthermore Fk+1+n ∈ C0010nk−1···n2 , which is a level of the large tower of order k+2.
So C0010nk−1···n2 ⊂ NIZ

k+2
.

2. For k = ℓ, we observe that NIZ
ℓ
∩ [0, Fℓ[= [0, Fℓ+1 − r − 1[. It follows that n+ Fℓ+1 ∈

[Fℓ+1, 2Fℓ+1 − r − 1]. We claim that

Fℓ+2 − r ≤ Fℓ+1 ≤ 2Fℓ+1 − r − 1 ≤ Fℓ+2 − 1. (48)

Indeed, since Fℓ ≤ r < Fℓ+1;

• Fℓ+2 − r ≤ Fℓ+2 − Fℓ = Fℓ+1,

• Fℓ+1 − r − 1 ≥ 0 and we deduce 2Fℓ+1 − r − 1 ≥ Fℓ+1,

• 2Fℓ+1 − r − 1 ≤ Fℓ+1 + Fℓ−1 − 1 ≤ Fℓ+2 − 1.

From (48), we get n+ Fℓ+1 ∈ [Fℓ+2 − r, Fℓ+2 − 1]. Since [Fℓ+2 − r, Fℓ+2 − 1] ⊂ NIZ
ℓ+2

,
we conclude as in the first point.

3. If k = ℓ + 1, we get NIZ
k
∩ [0, Fℓ[= [Fℓ+1 − r, Fℓ+2 − r − 1]. It follows that n +

Fℓ+2 ∈ [Fℓ+3 − r, 2Fℓ+2 − r − 1]. Since r ≥ Fℓ, 2Fℓ+2 − r − 1 ≤ Fℓ+3 − 1, and so
n+ Fℓ+2 ∈ [Fℓ+3 − r, Fℓ+3 − 1] ⊂ NIZ

ℓ+2
. We conclude as in the first point.

Lemma 35. Let k ≥ ℓ and a collection (nk−1, . . . , n2) ∈ Xf such that C00nk−1···n2 is a cylinder
of NIZ

k
. Let d ∈ Z such that

∆
(r)
|C00nk−1···n2

= d,

then
∆

(r)
|C0010nk−1···n2

= d− 1.

These lemmas imply the following corollary on which our algorithm is based.

Corollary 36. Let k ≥ ℓ + 4, the values taken by ∆(r) on the cylinders of order k + 2 that
compose NIZ

k+2
are exactly the values taken on cylinders of order k in NIZ

k
shifted by −1.

Proof of Lemma 35. Let n :=
∑k−1

i=2 niFi such that C00nk−1···n2 ⊂ NIZ
k
. We have C00nk−1···n2 ⊂

C0nk−1···n2 , which is, due to the cutting-and-stacking process, one of the r top levels of the
large tower of order k − 1. Also, due to the cutting-and-stacking process, n+ r must lies in
the small tower of order k − 1 (see Figure 9) so (n+ r)k must be 1.
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Figure 9: Main argument to justify (n+ r)k = 1.

So, we have the following addition

(n) 0 0 nk−1 · · · nℓ · · · n2

(r) + rℓ · · · r2
(n+ r) = 0 1 0 · · · (n+ r)ℓ · · · (n+ r)2

with, by hypothesis, ∆(r)(n) = d. Then n+ Fk+1 + r is calculated as follows

(n+ Fk+1) 0 0 1 0 nk−1 · · · nℓ · · · n2

(r) + rℓ · · · r2
(n+ Fk+1 + r) = 0 0 1 1 0 · · · (n+ r)ℓ · · · (n+ r)2
(n+ Fk+1 + r) = 0 1 0 0 0 · · · (n+ r)ℓ · · · (n+ r)2

The sum of digits of n + Fk+1 + r is the same as those of n + r shifted by −1 due to the
correction of the expansion made. Hence, we get ∆(r)(n+ Fk+1) = ∆(r)(n)− 1, i.e.,

∆
(r)
|C0010nk−1···n2

= ∆
(r)
|C00nk−1···n2

− 1.

Proof of Corollary 36. Definition 29 ensures that the same number of cylinders of order k+2
in NIZ

k+2
is equal to the number of cylinders of order k in NIZ

k
: there are r cylinders of

each order. Lemma 33 and Lemma 35 enable us to conclude.

These results enable us to give an algorithm that computes the value of µ(r)(d) for every
d ∈ Z. This algorithm has a low complexity (polynomial). Indeed, Corollary 36 implies that
we can guess the values that appear in the new information zone of order k. So we just
need to compute ∆(r) on a finite number of integers to compute exactly µ(r)(d) (d ∈ Z). We
explain this in details further in this section. Before, we give pseudocode and provide an
example of computation.
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5.2 Pseudocode

Algorithm 1 Compute µ(r)(d)

Require: r ≥ 1 and d ∈ Z
Ensure: µ(r)(d)
STEP 0: Find the unique ℓ ≥ 1 such that Fℓ ≤ r < Fℓ+1

STEP 1: Passage in NIZ
ℓ

Define App
ℓ
← 0 (number of apparition of d during the for-loop)

for n = 0, . . . , Fℓ+1 − r − 1 do
if ∆(r)(n) = d then
App

ℓ
← App

ℓ
+ 1

end if
end for
STEP 2: Passage in NIZ

ℓ+1

Define App
ℓ+1
← 0

for n = Fℓ+1 − r . . . , Fℓ+2 − r − 1 do
if ∆(r)(n) = d then
App

ℓ+1
← App

ℓ+1
+ 1

end if
end for
STEP 3: Passage in NIZ

ℓ+2

Define App
ℓ+2
← 0

for n = Fℓ+2 − r, . . . , Fℓ+2 − 1 do
Store ∆(r)(n) in an array ARR1 (with multiplicity)
if ∆(r)(n) = d then
App

ℓ+2
← App

ℓ+2
+ 1

end if
end for
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STEP 4: Passage in NIZ
ℓ+3

Define App
ℓ+3
← 0

for n = Fℓ+3 − r, . . . , Fℓ+3 − 1 do
Store ∆(r)(n) in an array ARR2 (with multiplicity)
if ∆(r)(n) = d then
App

ℓ+3
← App

ℓ+3
+ 1

end if
end for
STEP 5: Search for d in higher orders
for i ∈ ARR1 do
if i > d then
d appears at the order ℓ+ 2 + 2(i− d) so
if App

ℓ+2+2(i−d)
is defined then

App
ℓ+2+2(i−d)

← App
ℓ+2+2(i−d)

+ 1
else
App

ℓ+2+2(i−d)
← 1

end if
end if

end for
for i ∈ ARR2 do
if i > d then
d appears at the order ℓ+ 3 + 2(i− d) so
if App

ℓ+3+2(i−d)
is defined then

App
ℓ+3+2(i−d)

← App
ℓ+3+2(i−d)

+ 1
else
App

ℓ+3+2(i−d)
← 1

end if
end if

end for
STEP 6: Compute µ(r)(d)

µ(r)(d)←
∑
k≥ℓ

App
k

φk

5.3 An example: computation of µ(4)

Let us compute the measure µ(r) for r = 4. We have ℓ = 4. Looking at the Rokhlin towers
(see Example 31) gives that

• NIZ
k
= ∅ if k = 1, 2, 3,

• NIZ4 = C0000,
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• NIZ5 = C00001 ⊔ C00010 ⊔ C00100,

• NIZ6 = C000101 ⊔ C001000 ⊔ C001001 ⊔ C001010,

• NIZ7 = C0010000 ⊔ C0010001 ⊔ C0010010 ⊔ C0010100.

The next terms of NIZ
k
are found using Lemma 33. Using Corollary 36, one can construct

the table in FigureValue of Delta r that gives the values taken by ∆(r) (with multiplicity)
on each cylinder of NIZ

k
.

Figure 10: Table of the values of ∆(4) on NIZ
k
.

Thus, it is possible to know how many times some integer d ∈ Z appear in each column,
i.e., at each order. Since we know the measure of a cylinder at each order, then it is possible
to deduce the value of µ(r)(d). For instance

• The value 2 appears once at order 4, so µ(4)(2) = 1
φ4 .

• The value 1 appears twice at order 5, once at order 6, so µ(4)(1) = 2
φ5 +

1
φ6 .

• The value 0 appears once at order 5 and 8. It also appears twice at order 6 and 7, we
deduce that µ(4)(0) = 1

φ5 +
2
φ6 +

2
φ7 +

1
φ8 .

• The value −1 appears once at order 6 and 10. It appears twice at order 7, 8 and 9.
We deduce µ(4)(−1) = 1

φ6 +
2
φ7 +

2
φ8 +

2
φ9 +

1
φ10 .

• Since −1 is a value at order ℓ + 2 = 6 that does not appear in the previous order,
we deduce by Corollary 36 that the value −2 appears as many times as −1 appears,
but at orders incremented by 2. In other words, the value −2 appears once at order
8 and 12. It appears twice at order 9, 10 and 11. Thus µ(4)(−2) = µ(4)(−1) · 1

φ2 . We
observe that −2 does not appear in the lower orders. This observation is explained in
Proposition 37 and Corollary 1.
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So, after simplification, we get

µ(4)(d) =



0, if d > 2;
1
φ4 , if d = 2;
1
φ3 , if d = 1;
2
φ4 , if d = 0;

µ(4)(−1) · φ2d+2 if d < 0,

(where µ(4)(−1) = 1
φ4 +

1
φ6 ).

4 3 2 1 0 1 2

d
0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
u^

r(d
)

Figure 11: Bar chart of µ(4).

As an exercise, the reader can check that µ(1) = µ(F3) = µ(F4). In the next section, we
are going to prove that, for k ≥ 2 we have

µ(Fk) = µ(1).

5.4 Remarks on the algorithm

Once again, the algorithm described in Subsections 5.1 and 5.2 can be adapted to an integer
base, so the following observations can also be adapted to an integer base. Also, we write
an algorithm that returns, for a given r ≥ 1 and d ∈ Z, the value µ(r)(d). Of course, the
algorithm can also be adapted to return µ(r)(d) for every d ∈ Z or, at least to be executed
on a computer, for a finite number of integers d without more computations (the adaptation
only consists of manipulations of arrays).

In this subsection, let r ≥ 1. Let also ℓ ≥ 1 be the unique integer such that Fℓ ≤ r < Fℓ+1.
The first important observation due to the algorithm is that we only need to compute ∆(r)(n)
for a finite number of n’s to know exactly the quantity µ(r) . More precisely, we need to
compute ∆(r) for
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• Fℓ+1 − r integers during STEP 1,

• Fℓ integers during STEP 2,

• r integers during STEP 3 and

• r integers during STEP 4.

So, we need to compute the image of Fℓ+2+ r different integers to compute µ(r) exactly. One
can prove that, when r = Fℓ, it is possible to adapt the algorithm to reduce that number to
Fℓ+2. The adaptation consists of forgetting STEP 4 and store the Fℓ values in STEP 2.

The algorithm implies the following properties.

Proposition 37. If d is small enough in Z then there exist exactly 2r cylinders of (non-
necessarily distinct) orders k1, . . . , k2r, respectively in NIZ

k1
, . . . ,NIZ

k2r
on which ∆(r) takes

the value d.

Remark 38. The “small enough” assumption is specified in the proof.

It leads to Corollary 1 we state again here.

Corollary. For d small enough in Z, we have the formula

µ(r)(d− 1) = µ(r)(d) · 1
φ2
.

Proof of Proposition 37. For k ≥ ℓ + 2, there are r cylinders of order k that compose NIZ
k

so ∆(r) takes, at most, r different values on those cylinders. For k ≥ ℓ + 2, let (d
(k)
i )1≤i≤r

be the collection of values taken by ∆(r) on the cylinders of order k in NIZ
k
, repeated with

multiplicity. Let

m := min
{
d
(k)
i | i = 1, . . . , r and k = ℓ+ 2, ℓ+ 3

}
.

Now let d ≤ m. We observe that due to Lemma 32 and Lemma 35, d is actually smaller than
every value taken by ∆(r) on NIZ

ℓ
or NIZ

ℓ+1
. Furthermore, for i ∈ [1, r] and k ∈ {ℓ+2, ℓ+3},

there exists a unique j
(k)
i ∈ N such that d = d

(k)
i − j

(k)
i . Due to Corollary 36, d is a

value reached by ∆(r) on the corresponding cylinder of order k + 2j
(k)
i (by repeated use of

Lemma 48 and 35). There are 2r cylinders at order ℓ+ 2 and ℓ+ 3 so d appears exactly on
2r cylinders.

Proof of Corollary 1. With the same notation as in the proof of Proposition 37, let d ≤ m.
Then d is a value taken by exactly 2r different cylinders of some orders. But, due to
Proposition 37 and Corollary 36, ∆(r) takes the value d− 1 on the same number of cylinders
but with the orders of those cylinders shifted by +2 so their measures are divided by φ2.
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6 How to prove µ(Fℓ) = µ(1)

There is an analogous relation in the integer base b case. The law of adding bℓ is the same
as the one of adding 1. It is trivial in base b since the addition x + bℓ does not change the
first few digits of x, the addition really consists of adding 1 from a certain position. In the
Zeckendorf representation case, it is not trivial since carries propagate in both directions.
Here, the proof consists of looking at our algorithm described in Section 5 in the special case
r = Fℓ. However, before starting, we need to compute µ(1).

Proposition 39. For d ∈ Z, we have

µ(1)(d) =


0, if d ≥ 2;
1
φ2 , if d = 1;

1
φ2−2d , otherwise.

Proof. We consider the following partition:

X\{(01)∞, (10)∞} = C00

⊔
d≤0

(
C0(01)1−d

⊔
C00(10)1−d

)
. (49)

We observe that ∆(1)(C00) = 1 and, for every d ≤ 0,

∆(1)(C0(01)1−d) = ∆(1)(C00(10)1−d) = d.

Using Proposition 15, we conclude the proof.

Now let ℓ ≥ 3. We follow the path given by the algorithm. We can rewrite Proposition 29
in our special case r = Fℓ:

1. if 2 ≤ k ≤ ℓ− 1, NIZ
k
= ∅,

2. NIZ
ℓ
is the union of the first Fℓ−1 levels of the large tower of order ℓ and

3. if k ≥ ℓ+1, NIZ
k
is the union of the Fℓ levels between the Fk −F th

ℓ and the F th
k levels

of the large tower of order k.

Executing the algorithm, we want to compute ∆(Fℓ) on the levels of NIZ
ℓ
. We obtain the

following lemma.

Lemma 40.
∆(Fℓ)(NIZ

ℓ
) = 1.
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Proof. Indeed, consider a cylinder of order ℓ in NIZ
ℓ
. Its name has for leftmost digits 000

since the cylinders contains one element of the integer interval [0, Fℓ−1 − 1]. So the addition
with Fℓ considered in these cylinders are

(x) · · · 0 0 0 · · ·
(Fℓ) + 1

(x+ Fℓ) = · · · 0 1 0 · · ·

Thus the variation of the sum of digits is 1.

We now look at NIZ
ℓ+1

, which is composed of Fℓ cylinders of order ℓ + 1. We have the
following proposition.

Proposition 41. In NIZ
ℓ+1

, there are

• Fℓ−1 levels on which ∆(Fℓ) = 0 and

• Fℓ−2 levels on which ∆(Fℓ) = 1.

For technical reasons, we need to separate the proof in two parts: one when ℓ is odd and
the other if ℓ is even. However, since both are treated the same way (the differences are
only technicalities), we only consider the case where ℓ is odd. We are going to prove that
the values taken by ∆(Fℓ) are the first Fℓ terms of the sequence

• 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, . . . (if ℓ is odd) or

• 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, . . . (if ℓ is even),

where both sequences start with 0 or 1 depending on the parity and then the construction
consists of concatenating alternatively 0’s or 1’s a Fibonacci number of times.

Proof of Proposition 41 if ℓ is odd. Let ℓ′ ≥ 1 and ℓ := 2ℓ′ + 1 ≥ 3 . The highest level in
NIZ

ℓ+1
is the cylinder C00(10)ℓ′ since it contains Fℓ+1 − 1; the lowest is the cylinder C00010ℓ−3

since it contains Fℓ−1.
The cylinder of order ℓ + 1 just below C00(10)ℓ′ is C00(10)ℓ′−101. We observe that, if ℓ = 3

(or, equivalently, ℓ′ = 1 or Fℓ = 2), this last cylinder C00(10)ℓ′−101 is actually the same as
C00010ℓ−3 . In general, there are two possibilities:

• Either there are no other cylinders of order ℓ+1, which means ℓ = 3 (or, equivalently,
ℓ′ = 1 or Fℓ = 2). So far, we have mentioned 2 cylinders of order 4 in NIZ4 and the
values of ∆(F3) on these cylinders are 0 and 1 (with an easy computation): it is the
conclusion of the proposition if ℓ = 3 (if we agree F0 := 1).

• Or there are other cylinders to find in NIZ
ℓ+1

, which means Fℓ > 2 (or, equivalently,
ℓ ≥ 5 or Fℓ ≥ 5) and implies that there are Fℓ − F2 ≥ 3 levels to identify.
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To continue, we assume ℓ ≥ 5 (or, equivalently, ℓ′ ≥ 2) and identify the three cylinders that
are below C00(10)ℓ′−101: they are

• C00(10)ℓ′−100 on which ∆(Fℓ) equals 1,

• C00(10)ℓ′−20101 on which ∆(Fℓ) equals 0 and

• C00(10)ℓ′−20100 on which ∆(Fℓ) equals 0.

Once again, we observe that, if ℓ = 5 (or, equivalently, ℓ′ = 2), C00(10)ℓ′−20100 = C00010ℓ−3 .
There are again two possibilities.

• Either there is no other cylinders of order ℓ + 1, which means ℓ = 5 (or, equivalently,
ℓ′ = 2 or Fℓ = 5). So far again, we have mentioned 5 cylinders of order 6 in NIZ6

and ∆(F5) takes thrice the value 0 and twice the value 1 on these cylinders: it is the
conclusion of the proposition if ℓ = 5.

• Or there are other cylinders to find in NIZ
ℓ+1

, which means Fℓ > 5 (or, equivalently,
ℓ ≥ 7 or Fℓ ≥ 13) and implies that there are Fℓ − F5 ≥ 8 levels to identify.

We continue the same way. If we assume there are, for some k ∈ [1, ℓ− 1], Fℓ − F2k−1 ≥ F2k

cylinders. There are two kind of cylinder.

• Those whose names are C00(10)ℓ′−k+100n2k−3···n2
for all (n2k−3 · · ·n2) ∈ Xf : there are F2k−2

such cylinders and one can compute that ∆(Fℓ) is 1.

• Those whose names are C00(10)ℓ′−k010n2k−2···n2
for all (n2k−2 · · ·n2) ∈ Xf : there are F2k−1

such cylinders and one can compute that ∆(Fℓ) is 0.

We observe that if ℓ = 2k + 1 (or, equivalently, ℓ′ = k) the last cylinder identified is
C00(10)ℓ′−k0102k−2 and is actually the same as C00010ℓ−3 . So far, we have identified 1 + F1 +
(F2 + F3) + (F4 + F5) + · · ·+ (F2k−2 + F2k−1) = F2k+1 cylinders and

• on 1 + F2 + F4 + F2k−2 = F2k−1 of them, ∆(Fℓ) is 1;

• on F1 + F3 + F5 + · · ·+ F2k−1 = F2k of them, ∆(Fℓ) is 0.

It is exactly the conclusion when ℓ = 2k + 1.

Finally, we look at NIZ
ℓ+2

, which also contains Fℓ cylinders of order ℓ+ 2.

Proposition 42.
∆(Fℓ)(NIZ

ℓ+2
) = 0.

Proof. Consider a cylinder of order ℓ+ 2 in NIZ
ℓ+2

. Since it contains exactly one integer of
the interval [Fℓ+1, Fℓ+2−1], its name is C0010nℓ−1···n2 for every (nℓ−1 · · ·n2) ∈ Xf . We compute
that, on such a cylinder, ∆(Fℓ) is null.
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We do not need to prove anything for NIZ
ℓ+3

, the algorithm teaches us that ∆(Fℓ) is going
to take the same values, but shifted by −1, on the same number of levels as in NIZ

ℓ+1
. Now

it is time to prove our theorem.

Theorem. For every ℓ ≥ 2, µ(Fℓ) = µ(1).

Proof. We recall

µ(1)(d) =


0, if d ≥ 2;
1
φ2 , if d = 1;

1
φ2−2d , otherwise.

For ℓ = 2, this is trivial. Let ℓ ≥ 3 and d ∈ Z. It is also trivial when d ≥ 2 since ∆(Fℓ) does
not take this value. Assume that d = 1, this value appears in Fℓ−1 levels in NIZ

ℓ
, Fℓ−2 levels

in NIZ
ℓ+1

and nowhere else. So

µ(Fℓ)(1) =
Fℓ−1

φℓ
+
Fℓ−2

φℓ+1
=
φℓ−1

φℓ+1
=

1

φ2
= µ(1)(1).

If d ≤ 0, the value d appears, due to Corollary 36, on Fℓ−1 levels at order ℓ+1−2d, Fℓ levels
at order ℓ+ 2− 2d, Fℓ−2 levels at order ℓ+ 3− 2d and nowhere else. Thus

µ(Fℓ)(d) =
Fℓ−1

φℓ+1−2d
+

Fℓ

φℓ+2−2d
+

Fℓ−2

φℓ+3−2d

=
φℓ+1

φℓ+3−2d

=
1

φ2−2d

= µ(1)(d).

7 ∆(r) as a mixing process

We work on the probability space (X,B(X),P). For a given integer r, ∆(r) is viewed as a
random variable with law µ(r) by Corollary 24 (the randomness comes from the argument x
of ∆(r), considered as a random outcome in X with law P). In this section, we decompose ∆(r)

as a sum composed of a finite number of random variables satisfying a universal inequality
on their mixing coefficients.

7.1 The process

The case r = 0 is irrelevant so we assume r ≥ 1. For 1 ≤ i ≤ ρ(r), we write Bi as the ith

block present in the expansion of r, starting from the unit digit. We define r[i] as the integer

42



whose expansion is given by the first i blocks of the expansion of r (see Figure below). We
observe that r[ρ(r)] = r.

Figure 12: Example of the construction of (r[i])i=0,...,ρ(r).

With the convention r[0] := 0, we observe the trivial equality

r =

ρ(r)∑
i=1

(r[i]− r[i− 1]).

For 1 ≤ i ≤ ρ(r), we define almost everywhere on X (see Subsection 4)

X
(r)
i := ∆(r[i]−r[i−1]) ◦ T r[i−1].

Since r[i]− r[i− 1] = [Bi0 · · · 0], the function X(r)
i is a random variable corresponding to the

action of the ith block Bi once the previous blocks have already been taken into consideration.
From (39), we get

∆(r) =

ρ(r)∑
i=1

X
(r)
i .

In particular, if x ∈ X is randomly chosen with law P, then
ρ(r)∑
i=1

X
(r)
i (x) follows the law µ(r).

7.2 The α-mixing coefficients on the actions of blocks

This part is devoted to the proof of one of the main theorem stated in the introduction:
we are going to show that the α-mixing coefficients for the process (X

(r)
i )i=1,...,ρ(r) satisfy a

universal upper bound that is independent of r. In particular, these coefficients exponentially
decrease to 0.

Theorem. The α-mixing coefficients of (X
(r)
i )i=1,...,ρ(r) satisfy

∀k ≥ 1, α(k) ≤ 12

(
1− 1

φ8

) k
6

+
1

φ2k
.
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Proof. Let k, p ≥ 1. Let A ∈ σ(X
(r)
i : 1 ≤ i ≤ p) and B ∈ σ(X

(r)
i : i ≥ k + p). Let

C ∈ σ(X(r)
i : p < i < k + p) such that P(C) > 0. Then we have the following inequality:

|P(A ∩B)− P(A)P(B)| ≤ |P(A ∩B)− PC(A ∩B)|
+|PC(A ∩B)− PC(A)PC(B)|
+|PC(A)PC(B)− P(A)P(B)|.

(50)

Using (32), we get

|P(A ∩B)− P(A)P(B)| ≤ 3P(C) + |PC(A ∩B)− PC(A)PC(B)|. (51)

Following the idea used in the case of an integer base [11], we will consider an event C
that has a probability close to 1 and such that, conditionally to C, the events A and B
are “almost” independent. A difference with the integer-base case is that, as the digits of
a random Zeckendorf-adic numbers are not independent, the last term on the right-hand
side of (51) does not totally vanish and, thus, some extra work is needed. However, we can
anticipate that this problem of “almost” independence will be solved using the inequality on
the ϕ-mixing coefficients (on the law of coordinates) stated in Proposition 19.

To define the event C, we use the ideas developed in Subsection 2.3 (especially Corollar-
ies 12 and 14). Since we are working with blocks, we introduce ℓi as the number of patterns
10 in Bi, the i

th block of r. We also introduce ni as the minimal index of digits in Bi. Then
for i = 1, . . . , ρ(r) we define the set Adm(i) as the set of indices corresponding to the digits
of x involved in the assumptions of Corollaries 12 and 14 if we want to apply them in the
area of the block Bi in r. More precisely, if ℓi = 1, then

Adm(i) := [ni − 2, ni + 3].

And, if ℓi ≥ 2, then

Adm(i) := [ni − 2, ni + 1] ⊔ [ni − 2 + 2ℓi, ni + 1 + 2ℓi].

Observe that |Adm(i)| ≤ 8.

Figure 13: Indices of Adm(i) and conditions put on x.

Then for i = 1, . . . , ρ(r) we define

C(i) := {x ∈ X : ∀j ∈ Adm(i), xj = 0}.

We also define the events

C1 :=

p+ k
3⋃

i=p+2
even

C(i) and C2 :=

p+k−2⋃
i=p+ 2k

3
even

C(i)
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and, finally
C := C1 ∩ C2.

Figure 14: Location of the events C1 and C2 (dots represent blocks or possible zeros).

Thus, x belongs to C if and only if the expansion of x satisfies the hypotheses of Corol-
lary 12 or 14 for, at least, two blocks placed on the leftmost third of the window (for at least
one block) and the rightmost third of the window (for at least one block).

We prove now that C is an event that has a high probability to happen. We claim that

P(C) ≥ 1− 2(1− 1

φ8
)
k
6 . (52)

Indeed, if we let C1 (resp. C2) denote the complement of C1 (resp. C2) in X, then we have

P(C) = 1− P(C1)− P(C2) + P(C1 ∩ C2) ≥ P(C1) + P(C2)− 1.

Then we obtain from Lemma 21

P(C1) = 1− P

 p+ k
3⋂

i=p+2
even

C(i)


= 1−

p+ k
3∏

i=p+2
even

P

C(i)

∣∣∣∣ i−2⋂
j=p+2
even

C(j)


≥ 1− (1− 1

φ8
)
k
6 ,

because the product contains ⌊p+
k
3
−p+2−2

2
⌋ = ⌊k

6
⌋ terms. We show that P(C2) satisfies the

same inequality. We thus obtain (52). Observe that, if k ≥ 194, P(C) > 0.
Now we want to estimate the term |PC(A∩B)−PC(A)PC(B)| that appears in (51). We

want to use Proposition 19, and for that we have to clarify which digits of x the events A
and B depends on.

But, conditionally to C, from Corollaries 12 and 14 we know that the actions of the
first p blocks only modify digits of indices ≤ N1 + 2 where N1 is the index of digit of the
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leftmost 1 of the block B⌊p+ k
3
⌋ of r. Thus, there exists A′ ∈ σ(xi : i ≤ N1 + 2) such that

A ∩C = A′ ∩C. Likewise, the actions of the ρ(r)− k − p+ 1 last blocks only modify digits
of indices ≥ N2 where N2 the index of the rightmost 0 of the block B⌊p+ 2k

3
⌋. Thus, there also

exists B′ ∈ σ(xi : i ≥ N2) such that B′ ∩ C = B ∩ C.

Figure 15: Location of indices N1 and N2 in the expansion of r.

Then

|PC(A ∩B)− PC(A)PC(B)| = |PC(A
′ ∩B′)− PC(A

′)PC(B
′)|. (53)

Then we get

|PC(A
′ ∩B′)− PC(A

′)PC(B
′)| ≤ |PC(A

′ ∩B′)− P(A′ ∩B′)|
+ |P(A′ ∩B′)− P(A′)P(B′)|
+ |P(A′)P(B′)− PC(A

′)PC(B
′)|.

The term |P(A′ ∩ B′)− P(A′)P(B′)| can be estimated using the ϕ-mixing coefficient on the
law of coordinates. Indeed, observe that N2 −N1 is at least about order k. Then using (32)
and Propositions 18 and 19, we obtain

|PC(A
′ ∩B′)− PC(A

′)PC(B
′)| ≤ 3P(C) +

1

2
ϕ(k). (54)

Finally, combining (51), (53) and (54), we obtain

|P(A ∩B)− P(A)P(B)| ≤ 6P(C) +
1

2
ϕ(k).

Taking the supremum on A and B, we conclude the proof.
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[11] Y. Hosten, É. Janvresse, and T. de la Rue, A central limit theorem for the variation
of the sum of digits, arxiv preprint arXiv:2111.05030 [math.PR], 2021. Available at
https://arxiv.org/abs/2111.05030.
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