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Abstract

Agarwal introduced n-color compositions in 2000 and subsequent research has con-

sidered both restricting which parts are allowed and, more recently, which colors are

allowed. Here we consider allowing or prohibiting two consecutive colors, focusing on

several cases that connect with other types of compositions. We also prove several

identities for certain tribonacci numbers. Most proofs are combinatorial, several using

the notion of spotted tilings introduced by the first named author in 2012.

1 Introduction and Background

A composition of a given positive integer n is an ordered sequence of positive integers with
sum n. The summands are called parts of the composition. Write C(n) for the set of
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compositions of n with c(n) = |C(n)|. For example,

C(3) = {(3), (2, 1), (1, 2), (1, 1, 1)}.

We can represent a composition of n as a tiling of a 1 × n board where, in order from
left to right, each part k corresponds to a 1 × k block. MacMahon [12] established that
c(n) = 2n−1 by a combinatorial argument equivalent to the cut-join sequence: Working from
left to right, each of the n − 1 junctures between the n cells is assigned C for cut if a new
part starts with the next cell or J for join if the current part continues. Each possibility of
n− 1 binary choices corresponds to a composition of n. See Figure 1 for an example of both
the visual representation of a composition and its cut-join sequence.

J J C J

Figure 1: The composition (3, 2) is shown as a 1 × 3 block followed by a 1 × 2 block. The
cut-join sequence for (3, 2) is JJCJ.

Agarwal [1] introduced the concept of n-color compositions, where a part k has one
of k possible colors, denoted by a subscript 1, . . . , k. Write CC(n) for the set of n-color
compositions of n (this is the standard terminology even though n is being used in two
different ways). For example,

CC(3) = {(31), (32), (33), (21, 11), (22, 11), (11, 21), (11, 22), (11, 11, 11)}.

The first named author developed the following representation of n-color compositions
[9]: In the tiling of a 1× n board described above, the part ki corresponds to a 1× k block
with a spot in position i. Here we modify the cut-join sequence to record the color by
writing Ji for each join inside the block corresponding to ki. (Compare this to a different
modification used by Hopkins and Ouvry [10] where the cuts have subscripts.) See Figure 2
for an example of both notions.

⑥ ⑥

J3 J3 C J1

Figure 2: The n-color composition (33, 21) is shown as a 1× 3 block with a spot in its third
cell followed by a 1× 2 block with a spot in its first cell. The modified cut-join sequence for
(33, 21) is J3J3CJ1.
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There is additional terminology that will be helpful in the combinatorial arguments [11,
Definition 3.1]: Given the 1× k block corresponding to a part kc of an n-color composition,
the c-block consists of the first c cells (which includes the spotted cell) and the tail consists
of any remaining cells. For instance, 33 consists of a 3-block and an empty tail while 21
consists of a 1-block and a length 1 tail.

The current authors recently made a thorough study of n-color compositions under var-
ious restrictions on colors [11]. In this work, we provide additional examples of results
concerning consecutive colors b and b+ 1.

In the next section, we cite general results for allowing two consecutive colors along with
a new combinatorial interpretation in addition to several new particular results for small
colors. In Section 3, we cite a general result for prohibiting two consecutive colors along
with three new results for compositions prohibiting colors 1 and 2. (Below, propositions
have been established before and are cited here for background or given new combinatorial
proofs. Theorems are, we believe, results new with this work.)

2 Allowing two consecutive colors

In this section, we consider n-color compositions where, for some positive integer b ≥ 1,
only colors b and b + 1 are allowed. Note that this precludes parts less than b from these
compositions. We write CCb,b+1(n) for the set of these compositions and ccb,b+1(n) for their
count.

Proposition 1. Given positive integers b and n, the number ccb,b+1(n) of n-color composi-

tions of n with only colors b and b+ 1 allowed satisfies the recurrence

ccb,b+1(n) = ccb,b+1(n− 1) + ccb,b+1(n− b) + ccb,b+1(n− b− 1). (1)

A direct formula for the number of n-color compositions of n with only colors b and b + 1
allowed is

ccb,b+1(n) =
n
∑

m=1

n−bm
∑

i=0

(

i+m− 1

m− 1

)(

m

n− bm− i

)

. (2)

These are special cases of [11, Theorem 2.1] and [11, Proposition 3.4], respectively.
Next, we establish a new combinatorial result connecting certain ternary stings and n-

color compositions of n with only colors b and b+ 1 allowed.

Theorem 2. Given positive integers b and n, there is a bijection between CCb,b+1(n), the
n-color compositions of n with only colors b and b + 1 allowed, and length n − 1 ternary

strings satisfying the following conditions.

• There are no 12 or 21 subwords,

• runs of 1’s have length at least b− 1,

3



• runs of 2’s have length at least b, and

• successive 0’s are separated by at least b− 1 digits.

The constraints of such ternary strings can be viewed as walks on a state diagram of the
kind used in symbolic dynamics; see Figure 3.

1 0 2(b− 1)+ b+

Figure 3: A representation of the ternary words of Theorem 2. The b+ label on a loop, for
instance, indicates that if a walk uses that edge, it must use it at least b times in a row.

Proof. Given a composition in CCb,b+1(n), its modified cut-join sequence consists of n − 1
total symbols among C, Jb, and Jb+1. Create a length n− 1 ternary word via C 7→ 0, Jb 7→ 1,
and Jb+1 7→ 2.

The resulting ternary word avoids 12 and 21 since adjacent parts (corresponding to runs
of 1’s or 2’s) are separated by a cut corresponding to 0. A run of 1’s corresponds to a part
with color b which has length at least b and thus at least b − 1 consecutive joins Jb, so the
run of 1’s has length at least b − 1. Similarly, a run of 2’s corresponds to a part with color
b+ 1 so the run of 2’s has length at least b. Since the minimum part size is b, successive 0’s
are separated by a run of 1’s (or 2’s) of length at least b− 1 (or b).

Given a ternary string satisfying the constraints, applying 0 7→ C, 1 7→ Jb, and 2 7→ Jb+1

gives the modified cut-join sequence of an n-color composition in CCb,b+1(n) by the previous
reasoning.

See Figure 4 for an example of the bijection.

✈ ✈ ✈ ✈

2 2 2 2 0 1 1 0 2 2 2 0 1 1 1

Figure 4: The correspondence between (54, 33, 44, 43) ∈ CC3,4(16) and the length 15 ternary
string 222201102220111.

In the remainder of this section, we give further particular results for n-color compositions
with only colors 1 and 2 allowed, with only colors 2 and 3 allowed, and with only colors 3
and 4 allowed.

2.1 Allowing colors 1 and 2

The recurrence for the number of n-color compositions of n with only colors 1 and 2 allowed
is, by (1),

cc1,2(n) = 2 cc1,2(n− 1) + cc1,2(n− 2),
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A001333. In the OEIS [13] entry for this sequence, Paul Barry stated a direct formula simpler
than applying our general formula (2). Next, we provide a combinatorial argument using
n-color compositions for his formula.

Theorem 3. Given a positive integer n,

cc1,2(n) =

⌊n

2
⌋

∑

m=0

2m
(

n

2m

)

.

Proof. We show that the summation counts the number of ways to build a composition in
CC1,2(n). Let m satisfying 0 ≤ m ≤ ⌊n

2
⌋ be the number of parts of size at least 2. There

are
(

n
2m

)

ways to choose a sequence of cells a1, a2, . . . , a2m from a 1×n board. Let a2i+1 and
a2i+2 mark the starting and ending cells of a part of size at least 2 for 0 ≤ i ≤ m − 1. The
remaining cells between these parts (i.e., not between a2i+1 and a2i+2 for any i) are parts of
size 1 which must have color 1. Each of the m larger parts has two choices of color, giving
the factor 2m.

Figure 5 shows an example of the procedure.

a1 a2 a3 a4 a5 a6

Figure 5: The selection of 2, 3, 4, 8, 11, 13 for the ai when m = 3 gives the composition
(1, 2, 5, 1, 1, 3) ∈ C(13) which has 23 = 8 possible ways to color the parts at least 2 to
determine an element of CC1,2(13).

2.2 Allowing colors 2 and 3

Our greatest number of new results concerns the number of n-color compositions of n with
only colors 2 and 3 allowed. By (1) the recurrence is

cc2,3(n) = cc2,3(n− 1) + cc2,3(n− 2) + cc2,3(n− 3)

and this is (one version of) tribonacci numbers, A001590. This sequence is known to count
regular compositions restricted to parts congruent to 1 or 2 modulo 3 [3, 8]. Next we establish
a bijection between CC2,3(n + 1) and these restricted compositions which we denote by
C1,2m3(n).

Theorem 4. For each positive integer n, there is a bijection between n-color compositions

of n + 1 with only colors 2 and 3 allowed and compositions of n with all parts congruent to

1 and 2 modulo 3. I.e.,

CC2,3(n+ 1) ∼= C1,2m3(n).

5

https://oeis.org/A001333
https://oeis.org/A001590


Proof. Given the spotted tiling of a composition in CC2,3(n+1), we construct a composition
in C1,2m3(n) as follows.

• For each part of the n-color composition of n+1, convert the c-block into a part c and
each cell of the tail into a part 1.

• Decrease the first part (which is 2 or 3) by 1.

• We now have a composition of n restricted to parts 1, 2, or 3 with first part 1 or 2.
Combine runs of parts 3 with the part preceding the run.

Since all parts 3 have been combined into greater parts merged with a part 1 or 2, this gives
a composition in C1,2m3(n).

The reverse map is clear: Given a composition in C1,2m3(n), we construct an element of
CC2,3(n+ 1) as follows.

• Replace each part k > 3 with the part k mod 3 followed by ⌊k/3⌋ parts 3.

• Increase the first part by 1 (so that it is now 2 or 3).

• Convert each part 2 or 3 followed by a length j ≥ 0 run of parts 1 into a part of an
n-color composition consisting of a 2- or 3-block, respectively, and length j tail, i.e.,
the part (j + 2)2 or (j + 3)3.

This gives an n-color composition of n+ 1 with each part colored 2 or 3 as desired.

See Figure 6 for an example of the bijection.

✈ ✈ ✈

Figure 6: The correspondence between (53, 32, 43) ∈ C2,3(12) and (2, 1, 1, 2, 4, 1) ∈ C1,2m3(11).

The n-color compositions with only colors 2 and 3 allowed match a particular type of
“restricted tiling” studied by Barry Balof [2, Example 4], namely, tilings of a board using
two types of 1×1 blocks and a single type of 1×2 blocks, such that no adjacent 1×1 blocks
have the same type. Equivalently, let C∗

1,2(n) be the compositions of n restricted to parts
11, 12, 2 with no adjacent parts 1 having the same color.

Theorem 5. There is a bijection between n-color compositions of n + 2 with only colors 2

and 3 allowed and compositions of n with parts 2, two types of parts 1, with no adjacent

parts 1 of the same type. I.e.,

CC2,3(n+ 2) ∼= C∗
1,2(n).
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(11, 2, 2, 12, 11, 12, 2)

a c c c c b a b c c

c a c | c c | c b a b c | c c
(32, 22, 53, 22)

Figure 7: The correspondence between (11, 2, 2, 12, 11, 12, 2) ∈ C∗
1,2(10) and (32, 22, 53, 22) ∈

CC2,3(12).

Proof. Given a composition in C∗
1,2(n), we construct a composition in CC2,3(n+2). Following

Balof, we write a and b for the two types of parts 1.
First, replace each part 2 with two symbols c and add an additional symbol c at the

beginning and end. This gives a length n + 2 string of symbols a, b, c with an even number
of symbols c, beginning and ending with c, and with no aa or bb subsequences.

Similar to the proof of Theorem 3, supposing there are 2m symbols c, we consider the
(2i+ 1)st and (2i+ 2)nd successive symbols c for each 0 ≤ i ≤ m− 1.

• If the two symbols c are adjacent, then map them to a part 22.

• If the two symbols c are separated by a string aba . . . of length k, then map the string
caba . . . c to a part (k + 2)2.

• If the two symbols c are separated by a string bab . . . of length k, then map the string
cbab . . . c to a part (k + 2)3.

Since the string had n+ 2 symbols, this produces an n-color composition in CC2,3(n+ 2).
The reverse map is clear: Given an element of CC2,3(n + 2), make the substitutions

22 7→ cc and, for k > 2, k2 7→ caba . . . c and k3 7→ cbab . . . c each consisting of k symbols.
Removing the first and last symbol c leaves a string of symbols a, b, c where all symbols
c occur in pairs. The substitution cc 7→ 2 gives a tiling equivalent to a composition in
C∗

1,2(n).

See Figure 7 for an example of the bijection.
The remaining results of this subsection are combinatorial proofs of identities involving

certain tribonacci numbers, some known and some new. Since this sequence is of broader
interest, we state the identities in terms of the sequence t(n) defined by

t(n) = t(n− 1) + t(n− 2) + t(n− 3)

with t(0) = 1, t(1) = 0, and t(2) = 1 (A001590). The proofs make use of the fact cc2,3(n) =
t(n).

The first identity (in an equivalent form and starting from our t(2)) was used by Erdős,
Székely, etc., in their study of “tribonacci graphs” [7]. It is also a special case of Identity 77
in the book of Benjamin and Quinn [4].
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Proposition 6. For each integer n ≥ 3,

t(n) = t(n− 2) + 2
n
∑

i=3

t(n− i).

Proof. We establish a bijection

CC2,3(n) ∼= CC2,3(n− 2) ∪
n
⋃

i=3

2CC2,3(n− i)

where 2CC2,3(k) denotes two copies of CC2,3(k).
Given a composition in CC2,3(n), consider its last part.

• If the last part is 22, then removing that part leaves a composition in CC2,3(n− 2).

• If the last part is k2 for some k ≥ 3, then removing that part leaves a composition in
one copy of CC2,3(n− k).

• If the last part is k3 for some k ≥ 3, then removing that part leaves a composition in
the other copy of CC2,3(n− k).

The reverse map is clear: Given a composition in CC2,3(n − 2), add a part 22 at the
end. Given a composition in one set of

⋃

CC2,3(n− k) for k ≥ 3, add a part k2 at the end.
Given a composition from the other

⋃

CC2,3(n− k) for k ≥ 3, add a part k3 at the end. By
construction, the images are distinct.

Proposition 6 involves the sum of consecutive t(i) terms. The identity in the following
result, which combines cases of Identities 104 and 105 in Benjamin and Quinn [4], involves
the sum of every other t(i) term.

Proposition 7. For each integer n ≥ 3,

t(n) = t(n− 1) + 1 + 2

⌊n/2⌋−1
∑

i=1

t(n− 2i− 1).

Proof. We establish a bijection

CC2,3(n) ∼= CC2,3(n− 1) ∪ {h} ∪
⌊n/2⌋−1
⋃

i=1

2CC2,3(n− 2i− 1)

where h = he := ((22)
n/2) if n is even (where the exponent designates repetition), h = ho :=

(33, (22)
(n−3)/2) if n is odd, and 2CC2,3(k) denotes two copies of CC2,3(k).

Write a composition in CC2,3(n) as the concatenation of b ∈ CC2,3(n − 2k) and k parts
22 where the final part bc of b is not 22, i.e., the maximal terminal run of parts 22 has length
k.

If b is empty, then n is even and we have the composition he = ((22)
n/2). If b = 33, then

n is odd and we have the composition ho = (33, (22)
(n−3)/2). Otherwise, consider bc, the last

part of b.
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• If bc 6= 33, then applying bc 7→ (b − 1)c and removing the k terminal parts 22 leaves a
composition in CC2,3(n− 2k − 1).

• If bc = 33, then removing that 33 and the k terminal parts 22 leaves a composition in
CC2,3(n− 2k − 3).

As k ranges from 0 to ⌊n/2⌋ − 1 (since he and ho are excluded), together we have

(CC2,3(n− 1) ∪ CC2,3(n− 3)) ∪ (CC2,3(n− 3) ∪ CC2,3(n− 5)) ∪ · · ·

ending with (CC2,3(5) ∪ CC2,3(3)) ∪ CC2,3(3) if n is even (recall that CC2,3(1) = 0) and
(CC2,3(6) ∪ CC2,3(4)) ∪ CC2,3(4) if n is odd.

The reverse map is clear: For a composition in CC2,3(n − 1) or one
⋃

CC2,3(n − 2i −
1), apply kc 7→ (k + 1)c to the last part of the composition and append the appropriate
number of parts 22 to make a composition in CC2,3(n). For a composition in the other set
⋃

CC2,3(n − 2i − 1), add a part 33 and then the appropriate number of parts 22 to make a
composition in CC2,3(n). Carry over the composition he or ho depending on whether n is
even or odd, respectively. By construction, the images are distinct.

In addition to the above identities on t(n) that can be found in the existing literature,
with n-color compositions and spotted tilings we can also prove some new identities.

First, we establish a combinatorial proof of a general recursion on t(n). We use the
convention that t(n) = 0 for n < 0.

Theorem 8. For each integer n ≥ 0,

t(n) =



















































1 +
k
∑

i=0

(t(n− 3i− 1) + t(n− 3i− 2)), if n = 3k;

−1 +
k
∑

i=0

(t(n− 3i− 1) + t(n− 3i− 2)), if n = 3k + 1;

k
∑

i=0

(t(n− 3i− 1) + t(n− 3i− 2)), if n = 3k + 2.

Proof. We consider the case n = 3k + 2 in detail and then explain the modifications for the
other cases. We establish a bijection

CC2,3(n) ∼=
k
⋃

i=0

(CC2,3(n− 3i− 1) ∪ CC2,3(n− 3i− 2)).

Write a composition c ∈ CC2,3(n) as the concatenation of b ∈ CC2,3(n− 3k) and k parts
33 where the final part bc of b is not 33, i.e., the maximal terminal run of parts 33 has length
k. We know b is nonempty since n = 3k + 2. Consider bc, the last part of b.
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• If bc 6= 22, then applying bc 7→ (b − 1)c and removing the k terminal parts 33 leaves a
composition in CC2,3(n− 3k − 1).

• If bc = 22, then removing that 22 and the k terminal parts 33 leaves a composition in
CC2,3(n− 3k − 2).

The reverse map is clear: For a composition in
⋃

CC2,3(n− 3i− 1), apply kc 7→ (k + 1)c
to the last part of the composition and append the appropriate number of parts 33 to make
a composition in CC2,3(n). For a composition in

⋃

CC2,3(n−3i−2), add a part 22 and then
the appropriate number of parts 33 to make a composition in CC2,3(n).

In the case n = 3k, there is also the composition ((33)
k) (for which b used above is

empty) that contributes one to the sum. In the case n = 3k+1, the first part of the reverse
map references the last part of the empty composition of zero, so the count is decreased by
one.

Now we prove an analogue of Proposition 6 involving consecutive t(i) terms and Propo-
sition 7 involving every other t(i) term. Our last result for this subsection uses Theorem 8
to establish an identity involving every third t(i) term. The proof is algebraic but relies on
the combinatorial proof of the previous theorem.

Theorem 9. For n ≥ 3,

t(n) + t(n− 2) =



























2
k−1
∑

i=0

t(n− 3i− 1), if n = 3k or n = 3k + 1;

2 + 2
k−1
∑

i=0

t(n− 3i− 1), if n = 3k + 2.

Proof. We consider the case n = 3k + 1. Applying Theorem 8 to t(n) = t(3k + 1) and
t(n− 2) = t(3(k − 1) + 2) gives

t(n) + t(n− 2)

= −1 +
k
∑

i=0

(t(3k − 3i) + t(3k − 3i− 1)) +
k−1
∑

i=0

(t(3k − 3i− 2) + t(3k − 3i− 3))

= −1 +
k
∑

i=0

t(3k − 3i) +

(

k
∑

i=0

(t(3k − 3i− 1) + t(3k − 3i− 2))

)

+
k
∑

i=1

t(3k − 3i)

= −1 +
k
∑

i=0

t(3k − 3i) + [t(3k)− 1] +
k
∑

i=1

t(3k − 3i)

= −2 + 2
k
∑

i=0

t(3k − 3i)
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= −2 + 2t(0) + 2
k
∑

i=1

t(3k − 3i)

where the second equality uses t(−2) = 0 and the third equality invokes Theorem 8 again,
here the n = 3k case. From the final line, the result follows since t(0) = 1.

The other two cases are similar (and slightly easier).

2.3 Allowing colors 3 and 4

The recurrence for the number of n-color compositions of n with only colors 3 and 4 allowed
is, by (1),

cc3,4(n) = cc3,4(n− 1) + cc3,4(n− 3) + cc3,4(n− 4),

A070550. Our last result for this section establishes a result mentioned in the OEIS con-
necting this sequence with the Fibonacci numbers (A000045) defined by f(0) = 0, f(1) = 1,
and f(n) = f(n− 1) + f(n− 2) for n ≥ 2.

For the following combinatorial proof, we use compositions of n with no parts 1, denoted
C1̂(n). Cayley found that c1̂(n) = f(n− 1) [5].

Proposition 10. For n ≥ 3,

cc3,4(n) + cc3,4(n− 2) = f(n− 1).

Proof. We establish a bijection

CC3,4(n) ∪ CC3,4(n− 2) ∼= C1̂(n).

For a composition in CC3,4(n), working from left to right, apply the substitutions k3 7→ k
and k4 7→ (2, k − 2). For a composition in CC3,4(n− 2), use the same substitutions and add
a part 2 at the end. This produces distinct compositions in C1̂(n).

For the inverse map, for a composition in C1̂(n), let j ≥ 0 be the length of the terminal
run of parts 2. If j is odd, remove a part 2 from the end, giving a composition of n− 2 with
an even length terminal run of parts 2. Working from left to right, map each part k ≥ 3
to k3 and, for each part 2, combine it with the following part k and map the pair (2, k) to
(k + 2)4. This produces distinct compositions in CC3,4(n) ∪ CC3,4(n− 2).

See Figure 8 for an example of the bijection.

3 Prohibiting two consecutive colors

In this section, we consider n-color compositions where, for some integer b ≥ 1, the colors b
and b+1 are prohibited. We write CC

b̂,b+1
(n) for the set of these compositions and cc

b̂,b+1
(n)

for their count.
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(73)←→ (7)

(74)←→ (2, 5)

(43, 33)←→ (4, 3)

(44, 33)←→ (2, 2, 3)

(33, 43)←→ (3, 4)

(33, 44)←→ (3, 2, 2)

(53)←→ (5, 2)

(54)←→ (2, 3, 2)

Figure 8: The correspondence between CC3,4(7) ∪ CC3,4(5) and C1̂(7), each with f(6) = 8
elements.

Proposition 11. Given an integer b ≥ 1, the number of n-color compositions of n with

colors b and b+ 1 prohibited satisfies the recurrence

cc
b̂,b+1

(n) = 3 cc
b̂,b+1

(n− 1)− cc
b̂,b+1

(n− 2)− cc
b̂,b+1

(n− b) + cc
b̂,b+1

(n− b− 2).

This is a special case of [11, Theorem 2.2].

3.1 Prohibiting colors 1 and 2

We give three results for n-color compositions where the colors 1 and 2 are prohibited. Note
that this means there cannot be parts of size 1 or 2. By Proposition 11 we have the recurrence

cc1̂,2(n) = 2 cc1̂,2(n− 1)− cc1̂,2(n− 2) + cc1̂,2(n− 3), (3)

A005314, which also has a direct formula,

cc1̂,2(n) =

⌊n/3⌋
∑

m=1

(

n−m− 1

2m− 1

)

,

a special case of [11, Proposition 3.8].
Our first result of this section connects n-color compositions with colors 1 and 2 prohibited

and regular compositions restricted to parts congruent to 1 or 2 modulo 4. Write C1,2m4(n)
for these compositions of n. Recall the notion of c-block and tail given in the introduction
and used in Theorem 4.

Theorem 12. There is a bijection between n-color compositions of n+ 2 with colors 1 and

2 prohibited and compositions of n restricted to parts congruent to 1 or 2 modulo 4. I.e.,

CC1̂,2(n+ 2) ∼= C1,2m4(n).
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Proof. Given the spotted tiling of a composition in CC1̂,2(n+2), we construct a composition
in C1,2m4(n) as follows.

• Remove the first two cells (which cannot contain a spot).

• For each part of the n-color composition of n, convert the c-block into a part c and
each cell of the tail into a part 1.

• In the composition of n, replace each part k with k ≡ 3, 4 mod 4 with the pair (k−2, 2).

Since all parts congruent to 3 or 4 modulo 4 have been replaced by parts congruent to 1 or
2 modulo 4, this gives a composition in C1,2m4(n).

For the reverse map, given a composition in C1,2m4(n), we construct an element of
CC1̂,2(n+ 2) as follows.

• Increase the first part by 2 making it at least 3.

• Working from right to left, replace each pair (k, 2) by k + 2. This gives a composition
with no parts 2.

• Working left to right, convert each part c ≥ 3 followed by a length j ≥ 0 run of parts
1 into a part of an n-color composition consisting of a c-block and length j tail, i.e.,
the part (c+ j)c.

This gives an n-color composition of n+ 2 with no part colored 1 or 2 as desired.

See Figure 9 for an example of the bijection.

✈ ✈ ✈

Figure 9: The correspondence between (54, 33, 44) ∈ CC1̂,2(12) and (2, 1, 1, 2, 2, 2) ∈
C1,2m4(10).

Our next result involves palindromic compositions, those that read the same from left to
right as from right to left. These have been studied since at least 1975 [8]. Among these, we
consider palindromic compositions PCo

2̂
(n) that have no parts 2 and an odd number of parts

which were studied by Chinn and Heubach [6].

Theorem 13. There is a bijection between n-color compositions of n with colors 1 and 2

prohibited and palindromic compositions of 2n − 5 with no parts 2 and an odd number of

parts. I.e.,

CC1̂,2(n)
∼= PCo

2̂
(2n− 5).
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Proof. Given a composition in CC1̂,2(n), first build a regular composition of n by converting
each c-block into a part c and each cell of the tail into a part 1. Let ℓ be the length of this
composition d and note that its first part d1 is at least 3 and that it has no part 2. Now
prepend the reverse of d in front of d making a palindromic composition of 2n with 2ℓ parts
including two parts d1 in the middle. Replace that pair (d1, d1) with a single part 2d1 − 5.
This gives a palindromic composition of 2n− 5 with 2ℓ− 1 parts having no parts 2, i.e., an
element of PCo

2̂
(2n− 5).

For the reverse map, given a composition in PCo
2̂
(2n−5), it has a well-defined middle part

m since its length is odd. Because every other part of the palindromic composition is doubled
and the sum is odd, we know m is odd. Replace m with the pair ((m + 5)/2, (m + 5)/2)
giving a palindromic composition of 2n with an even number of parts. Now consider just
the second half, a composition of n with first part (m + 5)/2 which is at least 3. To make
an n-color composition, convert each part c with c ≥ 3 followed by a length j ≥ 0 run of
parts 1 into a part of an n-color composition consisting of a c-block and length j tail. This
produces an element of CC1̂,2(n).

See Figure 10 for an example of the bijection.

✉ . . .✉

. . .. . .

. . .. . .

Figure 10: The connection between an n-color composition (54, 63, . . .) and a palindromic
composition of the form (. . . , 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, . . .).

Our last result connects two types of n-color compositions, those prohibiting colors 1 and
2 and those prohibiting the color 2 (counted by A034943; see [11, §3.2.2]).

Theorem 14. For k a positive integer, the number of n-color compositions of 3k with colors

1 and 2 prohibited equals the number of n-color compositions of 2k − 1 prohibiting the color

2. I.e.,

cc1̂,2(3k) = cc2̂(2k − 1).

In other words, there is a trisection of A005314 that matches a bisection of A034943.

Proof. Let a(k) = cc1̂,2(3k). Repeated algebraic manipulation of

cc1̂,2(3k) = 2 cc1̂,2(3k − 1)− cc1̂,2(3k − 2) + cc1̂,2(3k − 3)

from (3) into an expression in terms of cc1̂,2(3k − 3), cc1̂,2(3k − 6), and cc1̂,2(3k − 9) gives

a(k) = 5a(k − 1) + 2a(k − 2) + a(k − 3)
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with initial values a(1) = 1, a(2) = 5, a(3) = 28. The recurrence for a(k) can also be
determined by using the generating function for cc1̂,2(k), namely

F (x) =
x3

1− 2x+ x2 − x3
,

and determining the trisection of the series by

F ( 3
√
x) + F (ω 3

√
x) + F (ω2 3

√
x)

3

where ω is a primitive third root of unity.
Let b(k) = cc2̂(2k − 1). By [11, Theorem 2.2] we have

cc2̂(2k − 1) = 3 cc2̂(2k − 2)− 2 cc2̂(2k − 3) + cc2̂(2k − 4).

Either approach mentioned above leads to

b(k) = 5b(k − 1) + 2b(k − 2) + b(k − 3)

with initial values b(1) = 1, b(2) = 5, b(3) = 28. Thus the sequences are equal.

Of course, in the spirit of this paper, we would prefer a combinatorial proof using a
bijection CC1̂,2(3k)

∼= CC2̂(2k − 1); we invite the reader to find one.
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