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Abstract

A parking function is a sequence α = (a1, a2, . . . , an) ∈ [n]n whose nondecreasing
rearrangement β = (b1, b2, . . . , bn) satisfies bi ≤ i for all 1 ≤ i ≤ n. We study parking
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functions by their ascents (indices at which ai < ai+1), descents (indices at which ai >

ai+1), and ties (indices at which ai = ai+1). By using multiset Eulerian polynomials,
we give a generating function for the number of parking functions of length n with i

descents. We present a recursive formula for the number of parking functions of length
n with descents at a specified subset of [n−1]. We establish the set of parking functions
with descent set I and the set of parking functions with descent set J = {n− i : i ∈ I}
are in bijection, and hence these sets have the same cardinality. As a special case,
we show that the number of parking functions of length n with descents at the first
k indices is given by 1

n

(
n
k

)(
2n−k
n−k−1

)
. We prove this by bijecting to the set of standard

Young tableaux of shape ((n − k)2, 1k), which are enumerated by the same formula.
We also study peaks and valleys of parking functions, which are indices at which
ai−1 < ai > ai+1 and ai−1 > ai < ai+1, respectively. We show that the set of parking
functions with no peaks and no ties is enumerated by the Catalan numbers, and the set
of parking functions with no valleys and no ties is enumerated by the Fine numbers. We
conclude our study by characterizing when a parking function is uniquely determined
by its statistic encoding; a word indicating which indices in the parking function are
ascents, descents, and ties. We provide open problems throughout.

1 Introduction

Throughout, we let N = {1, 2, 3, . . .} and [n] = {1, 2, . . . , n} for n ∈ N. We define [0] = ∅.
Moreover, we let Sn denote the set of permutations of [n] and we use the one-line notation
π = π1 π2 · · · πn to denote elements of Sn. If πi > πi+1, then π has a descent at index i;
and if πi < πi+1, then π has an ascent at index i. There is a long history of studying and
enumerating permutations with certain descents and ascents. This dates back to the work of
MacMahon, who established that for a fixed set I, with n ≥ max(I) varying, the number of
permutations in Sn with descent set I is a polynomial in n [12, Art. 157]. These polynomials
are often referred to as descent polynomials, and the coefficients of these polynomials and
their roots are studied in the literature [1, 5]. Moreover, there is ample work on generalizing
these findings to multipermutations [7, 11, 13]. In the present paper, we are motivated by
the work of Schumacher, who enumerated descents, ascents, and ties in parking functions
[14].
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Figure 1: Graph of the parking function (3, 1, 5, 6, 4, 3, 3, 2, 1) ∈ PF9.
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A parking function is a sequence α = (a1, a2, . . . , an) ∈ [n]n whose nondecreasing rear-
rangement β = (b1, b2, . . . , bn) satisfies bi ≤ i for all 1 ≤ i ≤ n. Parking functions encode
the parking preferences for n cars in a queue attempting to park on a one-way street with
n parking spots numbered sequentially as follows. For i ∈ [n], car i enters the street and
attempts to park in spot ai. If that parking spot is available, car i parks. If the parking
spot is occupied, then the car moves forward attempting to park in the first available spot
the car encounters. If no such a spot exists, we say the car fails to park. If all cars are able
to park under this parking scheme, then α is a parking function.

We let PFn denote the set of parking functions of length n. If α = (a1, a2, . . . , an) ∈ PFn,
then α has descents and ascents defined in the analogous way as for permutations, and α
has a tie at i if ai = ai+1. In Figure 1, we plot (i, ai) to illustrate the parking function
α = (3, 1, 5, 6, 4, 3, 3, 2, 1) ∈ PF9 has descents at 1, 4, 5, 7, and 8, ascents at 2 and 3, and
a tie at 6. Let des(α) denote the number of descents in α. Schumacher showed that the
number of descents among all parking functions of length n is

(
n

2

)
(n + 1)n−2 [14, Theorem

10]. Schumacher also showed that the set of parking functions with exactly i ties, denoted
PF(n,i), is enumerated by

|PF(n,i)| =

(
n− 1

i

)

nn−1−i (1)

[14, Theorem 13] and

∑

α∈PF(n,i)

des(α) =
n− 1− i

2

(
n− 1

i

)

nn−1−i,

[14, Lemma 17]. Let Tn(i, j) denote the number of parking functions of length n with i ties
and j descents. If i+j ≥ n, then Tn(i, j) = 0. Table 2 provides the values of T6(i, j) arranged
in a triangular array such that i decreases from top to bottom and j decreases from left to
right.2 More information on this triangle can be found on the OEIS A333829.

For general n, the numbers along the diagonal edges of the triangular array in Figure 2
are the Narayana numbers [14, Theorem 12]

Tn(i, 0) = Tn(n− 1− i, i) =
1

i+ 1

(
n

i

)(
n− 1

i

)

,

and the row sums are given by (1). General closed formulas for the values of Tn(i, j) remain
unknown. However, in Section 2, we utilize multiset Eulerian polynomials to give a gener-
ating function for the values

∑n

i=0 Tn(i, j). Our first result follows which we prove later in
this section.

2Table 2 first appeared in a paper by Schumacher [14, Figure 2], however there was a typographical error
for the value T6(3, 1), which should be 260.
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j
=
0

i = 5 1 j
=
1

i = 4 15 15 j
=
2

i = 3 50 260 50 j
=
3

i = 2 50 1030 1030 50 j
=
4

i = 1 15 1240 3970 1240 15 j
=
5

i = 0 1 407 3480 3480 407 1

Figure 2: Parking function distribution for n = 6.

Theorem 2. Consider the generating function
∑∞

n=1

∑n−1
j=1 d(n, j)y

jxn, where d(n, j) is the

number of parking functions in PFn that have j descents, and let PF↑
n denote the set of

nondecreasing parking functions of length n. Then

∞∑

n=1

∑

α∈PFn

xnydes(α) =
∞∑

n=1

n−1∑

j=1

d(n, j)xnyj =
∞∑

n=1




∑

β∈PF↑
n

AM(β)(y)



xn,

where Aβ(y) denotes the multiset Eulerian polynomial in y on all multipermutations of β.

Now, we turn our attention to descent sets of parking functions. Given a multiset X
of size n with elements in [n], we let W (X) denote the set of multiset permutations of X,
written as words w = w1 w2 · · · wn. If I ⊆ [n − 1], then the set of words in W (X) whose
descent set is exactly I is denoted

DX(I) = {w ∈ W (X) : Des(w) = I},

where Des(w) = {i ∈ [n − 1] : wi > wi+1}. Let DX(I) = |DX(I)|. Let X be the set of
nondecreasing parking functions where each β ∈ PF↑

n is considered as a multiset, denoted as
M(β). If I ⊆ [n− 1], then define

D(I;n) = {α ∈ PFn : Des(α) = I} =
⊔

β∈PF↑
n

DM(β)(I),

where
⊔

denotes the sets are disjoint. We let d(I;n) = |D(I;n)| =
∑

β∈PF↑
n
dM(β)(I). The

set D(∅;n) = PF↑
n, and it is known that |PF↑

n| = Cn = 1
n+1

(
2n
n

)
, the nth Catalan number

A000108. Hence, d(∅;n) = Cn.
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In Section 3, we consider nonempty descent sets I ⊆ [n − 1] and establish the following
results:

• Theorem 16: The set of parking functions with descent set I and the set of parking
functions with descent set J = {n − i : i ∈ I} are in bijection, and hence these sets
have the same cardinality. Namely, d(I;n) = d(J ;n).

• Theorem 18: Let I ⊆ [n− 1] be nonempty, m = max(I), and I− = I \ {m}. Then

d(I;n) =
∑

β∈PF↑
n




∑

X∈M(β,m)

dX(I
−)



− d(I−;n), (2)

where, for β ∈ PF↑
n, M(β,m) denotes the collection of multisets consisting of m

elements of β.

We remark that Equation (2) is a generalization of Diaz-Lopez, Harris, Insko, Omar,
and Sagan’s result [5, Proposition 2.1], which gives a recursion for the number of
permutations with a given descent set.

• Proposition 24: Let n ≥ 1 and 0 ≤ k ≤ n− 1. If [k] ⊆ [n− 1], then

d([k];n) =
1

n

(
n

k

)(
2n− k

n− k − 1

)

. (3)

The proof of Proposition 24 is given by a bijection between parking functions of length n
with descent set [k] and the set of standard Young tableaux of shape λ = ((n−k)2, 1k).
Hence, Equation (3) can be seen as the reindexing d([k];n) = f(n, n− k − 1).

Other permutation statistics of interest are peaks and valleys. Let π = π1 π2 · · · πn ∈ Sn.
Recall that if πi−1 < πi and πi > πi+1, then i is a peak of π. Also recall that if πi−1 > πi
and πi < πi+1, then i is a valley of π. Billey, Burdzy, and Sagan [2] showed that the number
of elements in Sn with peaks exactly at I ⊂ [n − 1] is given by p(n)2|I|−1, where p(n) is a
polynomial in n whose degree is one less than the maximum of the set I. The polynomial p(n)
is called the peak polynomial. It was conjectured that p(n) has a positive integer expansion
in a binomial basis centered at the maximum of I and was proven in the affirmative by Diaz-
Lopez, Harris, Insko, and Omar [4]. Motivated by these results, we study the set PTPFn

consisting of peakless-tieless parking functions of length n, which is the subset of parking
functions that have no peaks and no ties.

In Section 4, we prove the following:

• Corollary 31: If n ≥ 1, then |PTPFn| = Cn, the nth Catalan number.

• Corollary 32: If PTPFn(i) = {α = (a1, a2, . . . , an) ∈ PTPFn : an = i}, then

|PTPFn(i)| = Cn,i ,

where Cn,i denotes the ith entry in the nth row of the Catalan triangle A009766.
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We also prove in Theorem 33 that the number of parking functions of length n with no
valleys and no ties is the Fine numbers A000957. To those who are used to thinking about
permutations, this asymmetry between peaks and valleys may be surprising. It remains an
open problem to enumerate all parking functions with a particular peak or valley set.

In Section 5, we study the characterization of parking functions by the locations of their
ascents, descents, and ties which we call the statistic encoding of a parking function. We
establish the existence of parking functions for every statistic encoding and fully characterize
the parking functions that are uniquely identified by their statistic encoding.

Remark 1. We present open problems, labeled “Problem n”, throughout the paper.

2 Permutations of multisets

For a multisetM of positive integers, we letmi denote the multiplicity of i inM for all i ∈ [n].
A multipermutation of M is a word π = π1 π2 · · · πm where m = m1 +m2 + · · ·+mn and π
contains i exactly mi times for all i ∈ [n]. We let SM denote the set of multipermutations
on M . A descent in a multipermutation π is an index j such that πj > πj+1. As before, we
let des(π) be the number of descents of π. Then

AM(t) =
∑

π∈SM

tdes(π) (4)

is the multiset Eulerian polynomial, where SM is the set of all multipermutations onM . The
coefficients of AM(t) count the number of permutations of a given multiset with a certain
number of descents and are known as the Simon Newcomb numbers. MacMahon [12, p. 211]
showed that AM(t) occurs as the numerator of the following generating function:

AM(t)

(1− t)m+1
=

∞∑

ℓ=1

n∏

i=1

(
mi + ℓ

ℓ

)

tℓ. (5)

Equation (5) allows for the explicit computation of the coefficients as

[tk]AM(t) = |{π ∈ SM : des(π) = k}| =
k∑

ℓ=0

(−1)ℓ
(
m+ 1

ℓ

) n∏

i=1

(
mi + k − ℓ

k − ℓ

)

, (6)

where [tk]AM(t) denotes the coefficient of tk in AM(t). Using (6), we enumerate descents in
parking functions, a superset of permutations, and generalize the results of Schumacher [14].

Now consider the generating function

∞∑

n=1

n−1∑

j=1

d(n, j)xnyj, (7)

where d(n, j) is the number of parking functions in PFn that have j descents. We can now
prove Theorem 2 and use it to compute (7). We restate the theorem more succinctly below.
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Theorem 2. Let n ∈ N, then the generating function encoding the number of descents
throughout all PFn is given by

∞∑

n=1

∑

α∈PFn

xnydes(α) =
∞∑

n=1

n−1∑

j=1

d(n, j)xnyj =
∞∑

n=1




∑

β∈PF↑
n

AM(β)(y)



xn.

Proof. The result follows from Equation (4). For more details, reference the work by Dillon
and Roselle [6, Equation 3.7].

To better understand Theorem 2, we present the case where n = 3.

Example 3. Let n = 3. We have PF↑
3 = {(1, 1, 1), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 2, 3)}. We

can partition the set PF3 into S3-orbits of the elements of PF↑
3, where S3 acts by permuting

preferences:

PF3 = S3(1, 1, 1)
⊔

S3(1, 1, 2)
⊔

S3(1, 1, 3)
⊔

S3(1, 2, 2)
⊔

S3(1, 2, 3).

We can compute Aα(y) for each α ∈ PF↑
3 using (6). For example, we find

S3(1, 1, 2) = {(1, 1, 2), (1, 2, 1), (2, 1, 1)},

and therefore A(1,1,2)(y) = 2y + 1. Summing over all elements of PF↑
3, we retrieve

∑

α∈PF↑
3

Aα(y) = y2 + 10y + 5.

Similarly, we can recover results from Schumacher [14, Figure 2] (see Figure 2), who provides
counts for the numbers of parking functions with i ties and j descents. Setting n = 6, we
find

A6 =
∑

α∈PF↑
6

Aα(y) = y5 + 422y4 + 4770y3 + 8530y2 + 2952y + 132.

Each coefficient in A6 agrees with the sum of a diagonal of Schumacher’s triangle (from
the top left to the bottom right): there is 1 element in PF6 with 5 descents, there are 422
elements in PF6 with 4 descents, and so on.

Remark 4. Recall that |PF↑
n| = Cn, where Cn is the nth Catalan number. Therefore, parti-

tioning PFn into Sn-orbits means partitioning PFn into Cn disjoint subsets. Setting t = 1
in

∑

α∈PF↑
n
Aα(t) gives us the known enumeration for parking functions:

(n+ 1)n−1 =
∑

α∈PF↑
n

Aα(1).

Problem 5. Give formulas for Tn(i, j) which denotes the number of parking functions of
length n with i ties and j descents.
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3 Descent sets of parking functions

We now consider parking functions with a specified descent or ascent set. We restate the
definition of Des(α) for clarity for the reader and define Asc(α). For α = (a1, a2, . . . , an) ∈
PFn, we let Des(α) = {i ∈ [n − 1] : ai > ai−1} and Asc(α) = {i ∈ [n − 1] : ai < ai−1}. For
I ⊆ [n− 1], define

D(I;n) = {α ∈ PFn : Des(α) = I}, and

A(I;n) = {α ∈ PFn : Asc(α) = I},

and denote their cardinalities by d(I;n) = |D(I;n)| and a(I;n) = |A(I;n)|.
Recall that D(∅;n) = PF↑

n and that |PF↑
n| = Cn = 1

n+1

(
2n
n

)
, the nth Catalan number

A000108. Hence, d(∅;n) = Cn. For 1 ≤ n ≤ 4, Table 1 provides data on the number of
parking functions with a given descent set.

Next, we prove some preliminary results which help establish that the number of parking
functions with descents at the indices in I ⊆ [n − 1] is the same as the number of parking
functions with descents at indices in J = {n− i : i ∈ I}.

Proposition 6. Let I ⊆ [n− 1] and J = {n− i : i ∈ I}. Then d(I;n) = a(J ;n)

Proof. Given α = (α1, α2, . . . , αn) with Des(α) = I, then (αn, αn−1, . . . , α1) has Asc(α) = J .
This defines a bijection between the sets D(I;n) and A(J ;n). Thus, d(I;n) = a(J ;n), as
claimed.

Next, we define a function used in our subsequent results. To simplify notation, we
denote tuples in one-line notation and refer to them as words, i.e., the tuple (w1, w2, . . . , wn)
is written as the word w1 w2 · · · wn.

Definition 7. Let Sn(y) denote the orbit of y ∈ N
n under the action of the symmetric

group Sn permuting indices. Given x ∈ Sn(y), let argmin(x) denote the set of indices of
minimal elements of x and argmax(x) denote the set of indices of maximal elements of x.

Define the map ν : Sn(y) → Sn(y) recursively as follows. For x ∈ Sn(y):

Case 0: If the length of x is 0 or 1, then ν(x) = x.

Case 1: If the length of x is larger than 1 and a ≥ b for all a ∈ argmin(x) and b ∈
argmax(x), then let i = max(argmin(x)) and j = min(argmax(x)). Then

ν(x) = ν(x1 x2 · · · xj−1) xi ν(xj+1 · · · xi−1) xj ν(xi+1 · · · xn).

Case 2: If the length of x is larger than 1 and there is some a < b with a ∈ argmin(x) and
b ∈ argmax(x), then let i be the greatest element of argmin(x) that is smaller
than some element of argmax(x) and let j be the smallest element of argmax(x)
greater than i. Then

ν(x) = ν(x1 x2 · · · xi−1) xj ν(xi+1 · · · xj−1) xi ν(xj+1 · · · xn).

8
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n I ⊆ [n− 1] d(I, n) D(I, n)

1 ∅ C1 = 1 1

2
∅ C2 = 2 11, 12
{1} 1 21

3

∅ C3 = 5 111, 112, 113, 122, 123
{1} 5 211, 311, 212, 213, 312
{2} 5 131, 121, 221, 132, 231
{1, 2} 1 321

4

∅
C4 = 14

1111, 1112, 1113 1114, 1122, 1123, 1124, 1133, 1134,
1222, 1223, 1224, 1233, 1234

{1} 21
2111, 3111, 4111, 2112, 2113, 3112, 2114, 4112, 3113,
3114, 4113, 2122, 2123, 3122, 4122, 2133, 3123, 2134,
3124, 4123, 2124

{2} 31

1211, 1311, 1411, 1212, 2211, 1213, 1312, 2311, 1214,
1412, 2411, 1313, 3311, 1314, 1413, 3411, 2212, 1322,
2213, 2312, 1422, 2214, 2412, 1323, 2313, 3312, 1324,
1423, 2314, 2413, 3412

{3} 21
1121, 1131, 1141, 1221, 1132, 1231, 1142, 1241, 1331,
1143, 1341, 2221, 1232, 2231, 1242, 2241, 1332, 2331,
1243, 1342, 2341

{1, 2} 9 3211, 4211, 4311, 3212, 4212, 3213, 3214, 4213, 4312
{1, 3} 19 2121, 2131, 3121, 4121, 3131, 2141, 3141, 4131, 2132,

3221, 2142, 3121, 3231, 4221, 2143, 3142, 3241, 4132,
4231

{2, 3} 9 1321, 1421, 1431, 2421, 3321, 1432, 2431, 2321, 3421
{1, 2, 3} 1 4321

Table 1: Parking functions of length 1 ≤ n ≤ 4 with a given descents set.
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We illustrate Definition 7 in the following example.

Example 8. Let y = (1, 1, 1, 1, 2, 3, 3, 4, 4) ∈ N
9 and consider x = (1, 4, 1, 3, 4, 3, 1, 2, 1) ∈

Sn(y). We write x in one-line notation as: x = 1 4 1 3 4 3 1 2 1. Note Asc(x) = {1, 3, 4, 7},
argmin(x) = {1, 3, 7, 9}, and argmax(x) = {2, 5}. We use Definition 7 to give ν(x).

• Since the length of x is larger than 1 and there exists a ∈ argmin(x) and b ∈ argmax(x)
with a < b, we are in Case 2. Then i = 3 and j = 5. Hence,

ν(x) = ν(1 4) 4
︸︷︷︸

x5

ν(3) 1
︸︷︷︸

x3

ν(3 1 2 1). (8)

We now consider ν(1 4), ν(3) and ν(3 1 2 1) independently.

• For the subword 1 4, we are again in Case 2. So, ν(1 4) = 4 1.

• Since 3 has length 1, by Case 0, ν(3) = 3.

• For the subword 3 1 2 1, argmin(3 1 2 1) = {2, 4} and argmax(3 1 2 1) = {1}. Hence
by Case 1, ν(3 1 2 1) = 1 ν(1 2) 3. Then by Case 2, ν(1 2) = 2 1.

Substituting these findings into Equation (8) yields

ν(1 4 1 3 4 3 1 2 1) = 4 1 4 3 1 1 2 1 3.

The following remark is helpful and uses wording we implement in subsequent proofs.

Remark 9. In Definition 7, Case 1 only considers words x whose minimal value(s) all appear
to the right of all of its maximal value(s). Applying ν to x, the result is a word ν(x) that
has all maximal value(s) to the right of all minimal value(s). Whenever x has a minimal
value to the left of a maximal value, then Case 2 in Definition 7 is applied. Applying ν to x

results in ν(x) having a minimal value to the left of a maximal value.

Proposition 10. Fix y ∈ N
n. The restriction of the map ν taking the set of elements of

Sn(y) with ascent set I to the set of elements of S(y) with descent set I is a bijection.

Before proving Proposition 10, we need the following lemmas.

Lemma 11. Let y ∈ N
n and x ∈ Sn(y). Then Asc(x) = Des(ν(x)) for ν as defined in

Definition 7.

Example 12. Continuing Example 8, observe that Asc(x) = Asc(1 4 1 3 4 3 1 2 1) =
{1, 3, 4, 7} and Des(ν(x)) = Des(4 1 4 3 1 1 2 1 3) = {1, 3, 4, 7}, thus Asc(x) = Des(ν(x)).

Proof of Lemma 11. Let x and y have length n. For the base case, if n = 0 or n = 1, then
by Case 0 of Definition 7, ν(x) = x and Asc(x) = ∅ = Des(ν(x)).

Fix n > 1, y ∈ N
n, and x ∈ Sn(y). Assume, for strong induction, that for all k < n, y′ ∈

N
k, and x′ ∈ Sk(y

′), we have Asc(x′) = Des(ν(x′)). We now consider ν(x) = ν(x1 x2 · · · xn)
and proceed via a case-by-case analysis given by the cases in Definition 7.
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Case 1: Suppose a ≥ b for all a ∈ argmin(x) and b ∈ argmax(x). Let M = max(x) and
let m = min(x). Then

x = x1 x2 · · · xj−1 M
︸︷︷︸

j

xj+1 · · · xi−1 m
︸︷︷︸

i

xi+1 · · · xn

where j = min(argmax(x)) and i = max(argmin(x)). By Case 1 in Definition 7,

ν(x) = ν(x1 x2 · · · xj−1) m
︸︷︷︸

j

ν(xj+1 · · · xi−1) M
︸︷︷︸

i

ν(xi+1 · · · xn).

By the inductive hypothesis, for each

x′ ∈ {x1 x2 · · · xj−1, xj+1 xj+2 · · · xi−1, xi+1 xi+2 · · · xn}

we know Asc(x′) = Des(ν(x′)). Thus, we only need to examine ν(x) at indices
j − 1, j, i− 1, and i. We proceed with a case-by-case analysis:

(a) Consider the value at index j − 1:

If j = 1, then j − 1 = 0, and hence there is no ascent, descent, or tie in x at
index 0. Thus, the ascent and descent sets are empty and ν simply maps the
empty set to the empty set.

If j > 1, then x has an ascent at position j − 1 because M = max(x) and
j = min(argmax(x)). Since argmin(x) ⊆ {j, j + 1, . . . , i− 1, i}, the element
at index j − 1 in ν(x) is larger than m. Since ν places m in position j, ν(x)
has a descent at position j − 1.

(b) Consider the values at indices j and i− 1:

Note, that x must have a non-ascent at position j because M is a maximal
element causing either a tie or descent at j. Likewise, there is a non-ascent
in position i because m is a minimal element.

Swappingm andM in ν(x) results in the following: First, sincem is a minimal
element, placing m at position j ensures that at this index we either have an
ascent or tie. This means ν(x) has a non-descent at index j. Second, since
M is a maximal element, placing M at position i ensures that the index prior
is less than or equal to M . This implies that ν(x) has a non-descent at index
i− 1.

(c) Consider the value at index i:

If i = n, then there is no ascent, descent, or tie at position i in x, and the
proposition is vacuously true.

If i < n, the reasoning is symmetric to the case for j − 1; x has an ascent at
position i and ν(x) has a descent at the same position.
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Case 2: Suppose there is some a < b with a ∈ argmin(x) and b ∈ argmax(x). Let i be the
greatest element of argmin(x) that is smaller than some element of argmax(x)
and let j be the smallest element of argmax(x) greater than i. Furthermore, let
M = max(x) and let m = min(x). Then

x = x1 x2 · · · xi−1 m
︸︷︷︸

i

xi+1 · · · xj−1 M
︸︷︷︸

j

xj+1 · · · xn

and from Case 2 in Definition 7,

ν(x) = ν(x1 x2 · · · xi−1) M
︸︷︷︸

i

ν(xi+1 · · · xj−1) m
︸︷︷︸

j

ν(xj+1 · · · xn).

We again only need to examine positions i− 1, i, j − 1, and j. We proceed with a
case-by-case analysis:

(a) Consider the value at index i− 1:

If i = 1, then i− 1 = 0, and hence there is no ascent, descent, or tie in x at
index 0. Thus, the ascent and descent sets are both necessarily empty, so ν
simply maps the empty set to the empty set.

If i > 1, then in x there is a non-ascent at position i− 1. Then swapping m
and M , ensures that there is a non-descent at position i− 1 in ν(x).

(b) Consider the values at positions i and j − 1:

There are no minimal or maximal elements in xi+1 · · · xj−1, but xi = m and
xj =M . Therefore, x has ascents in positions i and j − 1.

Then for the same reasons, because ν placesm in position j andM in position
i, ν(x) has descents at positions i and j − 1.

(c) Consider the value at index j:

If j = n, then there is no ascent, descent, or tie at position j; and the ascent
and descent sets are empty and ν is again mapping the empty set to the
empty set.

If j < n, the reasoning is symmetric to the case for i − 1; x must have
a non-ascent at position j and ν(x) must have a non-descent at the same
position.

Therefore, Asc(x) = Des(ν(x)).

Lemma 13. The map ν of Definition 7 is injective.

Proof. We now left-invert ν by inducting on length. In the base case, when the length is
zero or one, then ν acts as the identity causing the left-inverse to also be the identity, hence
injective. Assume for strong induction, that ν is left-invertible for all inputs of length less
than n (i.e., of length 1 < k < n). Now consider ν(x) of length n. We left invert ν(x) by
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uniquely identifying x. Let m = min(ν(x)) andM = max(ν(x)). By Definition 7, ν does not
change the content of the input. Hence, m = min(ν(x)) = min(x) and M = max(ν(x)) =
max(x). Given that n > 1, then either:

1. x has the property of either Case 1 of Definition 7 and

ν(x) = ν(x1 x2 · · · xj−1) m
︸︷︷︸

j

ν(xj+1 · · · xi−1) M
︸︷︷︸

i

ν(xi+1 · · · xn),

or

2. x is of the from in Case 2 of Definition 7 and

ν(x) = ν(x1 x2 · · · xi−1) M
︸︷︷︸

i

ν(xi+1 · · · xj−1) m
︸︷︷︸

j

ν(xj+1 · · · xn),

Thus, i and j are indices determined using Definition 7.
Given ν(x) ∈ ν(Sn(y)), if the indices i and j can be uniquely identified by the structure

of the word ν(x), then we can inductively construct ν−1 by swapping the ith and jth entries
of ν(x) and then applying ν−1 to each of the subwords of ν(x) with smaller length. This
then would uniquely identify the input x, and establish injectivity.

The key to creating the inverse relies on determining whether ν(x) satisfies either:

Case (a): all minimal elements are to the left of all maximal elements, or

Case (b): there exists a minimal element to the right of a maximal element.

We consider each of the above cases independently.
For Case (a) where all minimal elements are to the left of all maximal elements in ν(x),

the first step in applying ν to x cannot have arisen from Case 2 in Definition 7, because
Case 2 explicitly places a minimal element to the right of a maximal element. Therefore, the
first step in applying ν to x arose from Case 1 in Definition 7. This implies that x has all
maximal elements to the left of all minimal elements and in the subword xj+1 · · · xi−1, all
instances of M are to the left of all instances of m. Therefore, if xj+1 · · · xi−1 has instances
of both M and m, ν acts on xj+1 · · · xi−1 as in Case 1 of Definition 7. Then

ν(x) = ν(x1 x2 · · · xj−1) m
︸︷︷︸

j

ν(xj+1 · · · xi−1) M
︸︷︷︸

i

ν(xi+1 · · · xn),

where index j is the smallest index that contains a minimal element and index i is the
largest index that contains a maximal element. Therefore, i = max(argmax(ν(x))) and
j = min(argmin(ν(x))). Then by induction hypothesis, we have uniquely identified x,
which gave rise to ν(x).

Now consider Case (b) where there exists a minimal element to the right of a maximal
element in ν(x). Recall that ν(x) ∈ ν(Sn(y)). By induction on the minimum of the number

13



of minimal and maximal elements in y, if ν(x) was the output from Case 1 in Definition 7,
then ν(x) would have all minimal elements to the left of all maximal elements. But by
assumption ν(x) satisfies Case (b). Therefore, the first step in applying ν to x arose from
Case 2 in Definition 7. Then i is the index in x containing the rightmost minimal element
that has a maximal element to its right in x, and j is the leftmost maximal element to the
right of i. Thus,

x = x1 x2 · · · xi−1 m
︸︷︷︸

i

xi+1 · · · xj−1 M
︸︷︷︸

j

xj+1 · · · xn.

By the maximality of i, all instances of m must appear to the right of all instances of M in
the subword xj+1 · · · xn. Moreover, by our construction of i and j, there are no instances
of m or M in the subword xi+1 · · · xj−1. Hence,

ν(x) = ν(x1 x2 · · · xi−1) M
︸︷︷︸

i

ν(xi+1 · · · xj−1) m
︸︷︷︸

j

ν(xj+1 · · · xn),

and ν(xj+1 · · · xn) causes all instances of m to appear to the left of all instances of M
according to Case 1 of Definition 7. It follows that i is the index of the rightmost maximal
element of ν(x) with a minimal element to its right, and j is the index of the leftmost
minimal element to the right of i in ν(x). Then by the induction hypothesis, we have
uniquely identified x, which gave rise to ν(x).

Thus, we have shown that whether ν(x) satisfies Case (a) or Case (b), we can uniquely
recover x which gives rise to ν(x). This establishes that ν is an injection.

We are now ready to prove Proposition 10.

Proof of Proposition 10. By Lemma 13 and Lemma 11, ν, as constructed in Definition 7, is
an injective map Sn(y) → Sn(y) for all y ∈ N

n such that Asc(x) = Des(ν(x)). Then since
|S(y)| is finite, ν must also be a surjection. Therefore, ν is the desired bijection.

Remark 14. As defined in Proposition 10, ν maps the ascent set to the descent set but does
not (and cannot possibly) make additional promises about mapping the descent set to the
ascent set. In Example 8, Asc(x) = {1, 3, 4, 7} = Des(ν(x)), but Des(x) = {2, 6, 8} and
Asc(ν(x)) = {2, 5, 6, 8}. The map that takes the descent set to the ascent set is ν−1.

Corollary 15. There is a bijection D(I;n) → A(I;n).

Proof. Apply ν from Proposition 10 to a parking function.

Theorem 16. The set of parking functions with descent set I and the set of parking functions
with descent set J = {n− i : i ∈ I} are in bijection, and hence d(I;n) = d(J ;n).

Proof. This result follows from Proposition 6 and Corollary 15.
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In what follows, we say the sets I ⊆ [n− 1] and J = {n− i : i ∈ I} are self-dual if I = J .
We now give a formula for the number of self-dual sets.

Our next objective is to give a recursive formula for the number of parking functions
of length n with descent set I ⊆ [n − 1]. We begin with some general definitions and
notation. Given a multiset X of positive integers with size n, let W (X) denote the set of
multipermutations of X. For I ⊆ [n− 1], let

DX(I) = {w ∈ W (X) : Des(w) = I},

and DX(I) = |DX(I)|.

Lemma 17. Given β ∈ PF↑
n, let M(β) be the multiset of entries of β. If I ⊆ [n− 1], then

∑

β∈PF↑
n

dM(β)(I) = d(I;n).

Proof. This follows from definitions of DX(I) and D(I;n), and that each parking function
is a rearrangement of a unique increasing parking function.

Recall that d(∅;n) = Cn, the nth Catalan number. We now give a recursion for the
number of parking functions with a nonempty descent set.

Theorem 18. Let I ⊆ [n− 1] be nonempty, m = max(I), and I− = I \ {m}. Then

d(I;n) =
∑

β∈PF↑
n




∑

X∈M(β;m)

dX(I
−;m)



− d(I−;n),

where, for β ∈ PF↑
n, M(β,m) denotes the collection of multisets consisting of m elements

of β.

Proof. Consider the set P of parking functions α ∈ PFn that can be written as a concate-
nation α = α′ + α′′ and satisfy

1. that the length of α′ is m and the length of α′′ is n−m and

2. Des(α′) = I− and Des(α′′) = ∅.

We now count the elements of P in two ways.
First, observe that we can write P as the disjoint union of those α where α′

m > α′′
1 and

those where α′
m ≤ α′′

1. Hence,

|P | = d(I−;n) + d(I;n). (9)

On the other hand, the elements of P can be constructed as follows. Consider every
β ∈ PF↑

n as a multiset with n elements. For a fixed multiset β ∈ PF↑
n, M(β,m) is the

collection of multisets of size m with entries in β.
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For every X ∈ M(β,m), arrange the elements so that they have descent set I−. This
can be done in dX(I

−) ways. The remaining n−m values in β \X are used to construct α′′

by placing those remaining values in nondecreasing order, so as to have no descents. This
can be done in a unique way. Thus, the number of elements of P is given by

|P | =
∑

β∈PF↑
n




∑

X∈M(β,m)

dX(I
−)



 . (10)

Solving Equation (9) for d(I;n) and substituting the right hand-side of Equation (10) in for
|P | yields the desired result.

Example 19. Let I = {1, 3}. Then by Theorem 18,

d(I; 4) =
∑

β∈PF↑
4




∑

X∈M(β;3)

dX(I
−)



− d(I−; 4).

To compute the sum, select subsets of size 3 = max(I) for each multiset β ∈ PF↑
4 and

arrange the entries so that they have descents at I− = {1}. Table 2 details the computations
establishing

∑

β∈PF↑
4




∑

X∈M(β,3)

dX(I
−)



 = 40.

Now d(I−; 4) = 21, from which we get d(I; 4) = 40 − 21 = 19 as expected. In fact, Table 1
gives the elements of D(J ; 4) for all subsets J ⊆ [3]; and in particular, we list the elements
in D(I; 4) confirming that d(I; 4) = 19.

Next, we enumerate parking functions with descents at the first k indices by bijecting
onto the set of standard Young tableaux of shape ((n − k)2, 1k), which are known to be
enumerated by f(n, n− k − 1) = 1

n

(
n

k

)(
2n−k

n−k−1

)
(A033282).

For natural number n, a partition λ of n is a weakly decreasing tuple (λ1, . . . , λk) such
that

∑

i λi = n. Whenever λ is a partition of n we write λ ⊢ n.

Definition 20 ([8, p. 1]). Given a partition λ ⊢ n, a Young diagram of shape λ is a left-
justified collection of boxes with λi boxes in row i and where the top row is row 1. A
standard Young tableau of shape λ is a filling of the Young diagram of shape λ with the
numbers {1, . . . , n} such that the rows and columns are strictly increasing left to right and
top to bottom.

Definition 21. A Dyck word w of semilength n is a word that contains U ’s and D’s where
U and D each appear n times such that for all 1 ≤ i ≤ n, the ith D in w appears after the
ith U . If U is the ith U in w, then i is the semi-index of the specified U .
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β ∈ PF↑
4 M(β, 3)

∑

X∈M(β;3)

dX(I
−)

{1, 1, 1, 1} {{1, 1, 1}} 0
{1, 1, 1, 2} {{1, 1, 1}, {1, 1, 2}} 0 + 1 = 1
{1, 1, 1, 3} {{1, 1, 1}, {1, 1, 3}} 0 + 1 = 1
{1, 1, 1, 4} {{1, 1, 1}, {1, 1, 4}} 0 + 1 = 1
{1, 1, 2, 2} {{1, 1, 2}, {1, 2, 2}} 1 + 1 = 2
{1, 1, 2, 3} {{1, 1, 2}, {1, 1, 2}, {1, 2, 3}} 1 + 1 + 2 = 4
{1, 1, 2, 4} {{1, 1, 2}, {1, 1, 4}, {1, 2, 4}} 1 + 1 + 2 = 4
{1, 1, 3, 3} {{1, 1, 3}, {1, 3, 3}} 1 + 1 = 2
{1, 1, 3, 4} {{1, 1, 3}, {1, 1, 4}, {1, 3, 4}} 1 + 1 + 2 = 4
{1, 2, 2, 2} {{1, 2, 2}, {2, 2, 2}} 1 + 0 = 1
{1, 2, 2, 3} {{1, 2, 2}, {1, 2, 3}, {2, 2, 3}} 1 + 2 + 1 = 4
{1, 2, 2, 4} {{1, 2, 2}, {1, 2, 4}, {2, 2, 4}} 1 + 2 + 1 = 4
{1, 2, 3, 3} {{1, 2, 3}, {1, 3, 3}, {2, 3, 3}} 2 + 1 + 1 = 4
{1, 2, 3, 4} {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} 2 + 2 + 2 + 2 = 8

Table 2: Computations for Example 19.

Lemma 22. [10], Theorem 6. There is a bijection f between Dyck words w of semilength n
and standard Young tableaux of shape (n, n) which is given as follows: If wi = U (respectively,
D), then i appears in the first (respectively, second) row of f(w).

For more on bijections between Dyck paths and standard Young tableaux, we point the
interested reader to Gil, McNamara, Tirrell, and Weiner [9].

Lemma 23. There is a bijection g between Dyck words w of semilength n and nondecreasing
parking functions of length n which is given as follows: The ith entry in g(w) is one plus the
number of D’s before the ith U in w.

Proof. Because there are strictly less than i D’s before the ith U in w, the ith entry in g(w)
never exceeds i. Then the map is well-defined. It is also injective because a Dyck word can
be uniquely determined by the data of the number of D’s before the ith U for all i. This
fact also yields surjectivity, as g−1(α) is the unique Dyck word that has αi − 1 D’s before
the ith U .

Proposition 24. Let n ≥ 1 and 0 ≤ k ≤ n− 1. If [k] ⊆ [n− 1], then

d([k];n) =
1

n

(
n

k

)(
2n− k

n− k − 1

)

.
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Proof. Consider the standard Young tableau

T =
a1 a2 a3 . . . an−k

b1 b2 b3 . . . bn−k

c1

c2
...

ck

whose entries strictly increase along the columns and rows. We construct a bijection τ
mapping such a tableau to a parking function of length n with descent set k. Construct a
word w = w1 w2 · · · w2n−k for all 1 ≤ i ≤ 2n− k by letting

wi =







U, if i is in the first row;

D, if i is in the second row;

X, if i is in the third row or beyond.

Because bi > ai, removing all X’s from w would make w a Dyck word. Moreover, inserting a
U D into the middle of a Dyck path returns another Dyck path. We construct the word w′

of length 2n by replacing every X in w with a U D. Let I consist of the semi-indices of the
inserted U ’s. Using Lemma 23, let α be the nondecreasing parking function corresponding
to w′. We then construct α′ with descent set [k] from α by moving the entries whose indices
are in I to the front of the parking function α in decreasing order. By the construction of α,
each such index in I is the last appearance of that index’s values, hence the chosen entries
are distinct. Then τ(T ) = α′.

In the reverse direction, given a parking function α′ ∈ PFn with descent set [k], record
the values in the first k entries in α′ in the set V . Let α be the nondecreasing rearrangement
of α′, and let I be the set of indices of the last appearance of each element of V in α. Let w′

be the Dyck word corresponding to α, and the U in w′ with semi-index i has a D immediately
to its right for all i ∈ I. Then for each i ∈ I, replace the subword U D, consisting of the
ith U and the D immediately to its right, with an X. Then construct the corresponding
standard Young tableau T = τ−1(α′) by reversing the process from the Dyck word built from
a standard Young tableau, as detailed above.

As τ and τ−1 are inverse maps of each other and each is defined on the entire desired
domain, τ is the desired bijection.

We illustrate the bijection in the proof of Proposition 24 next.
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Example 25. Consider n = 7, k = 3, and the standard Young tableau with shape
((7− 3)2, 13) = (4, 4, 1, 1, 1):

T =
1 3 7 8

2 5 9 10

4

6

11

.

The corresponding word is w = U D U X D X U U D D X. For record-keeping, we
underline elements instead of using the set I. Replacing X’s with U D in w yields

w′ = U D U U D D U D U U D D U D.

The corresponding α ∈ PF↑
n is given by α = (1, 2, 2, 4, 5, 5, 7). Move the underlined numbers

in α to the front (in decreasing order) to get α′ = (7, 4, 2, 1, 2, 5, 5) which has the desired
descent set [3].

For an example of the reverse direction, consider α′ = (5, 3, 2, 1, 1, 2, 2), which has descent
set [3]. Underline the first 3 entries and write α′ in nondecreasing order (1, 1, 2, 2, 2, 3, 5).
The 2’s are repeated and the right-most 2 is the underlined value. Then construct w′ =
U U D U U U D U D D U D D D. Replacing U D with X in w′ yields

w = U U D U U X X D X D D.

Then w corresponds to the standard Young tableau

T =
1 2 4 5

3 8 10 11

6

7

9

.

Although we have a recursive formula for the number of parking functions of length n
with descent set I ⊆ [n− 1] (Theorem 18), we pose the following problem.

Problem 26. Give non-recursive formulas for the number of parking functions with other
interesting descent sets I ⊆ [n− 1]?
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4 Peaks of parking functions

The Catalan numbers are one of the most well-studied integer sequences, with 214 different
combinatorial explanations in Stanley’s work [15], and many more are found on the OEIS
A000108. We now establish that the set of parking functions of length n that have no peaks
and no ties, i.e., peakless-tieless parking functions, are a new set of Catalan objects.

We begin by setting some needed definitions and notation.

Definition 27. Let α = (a1, a2, . . . , an) ∈ [n]n.

• Define the tie set of α as

Tie(α) = {j + 1 ∈ [n] : aj = aj+1}

and order the elements Tie(α) = {t1 < t2 < · · · < tj}, where j = |Tie(α)|.

• Define the value set of α as

Val(α) = {b′1, b
′
2, . . . , b

′
k},

such that set of elements of α are in increasing order 1 = b′1 < b′2 < · · · < b′k, where k
is the number of distinct elements of α.

Definition 28. Define the function ϕ : PF↑
n → N

n by

ϕ(α) = (tj, tj−1, . . . , t2, t1, b1, b2, . . . , bk), (11)

where Tie(α) = {tj > tj−1 > · · · > t1 > 1} and Val(α) = {1 = b1 < b2 < · · · < bk} are as in
Definition 27.

In fact, we show ϕ : PF↑
n → PTPFn and illustrate these definitions next.

Example 29. Consider the nondecreasing parking function α = (1, 1, 2, 3, 4, 4) ∈ PF↑
6. Then

Tie(α) = {2, 6} and Val(α) = {1, 2, 3, 4}. Now ϕ(α) returns the tuple whose first |Tie(α)|
elements are the integers in Tie(α) arranged in decreasing order, while the remaining values
are the elements of Val(α) listed in increasing order. Namely, ϕ(α) = (6, 2, 1, 2, 3, 4). The
result is a peakless-tieless parking function, as claimed.

Theorem 30. The function ϕ in Definition 28 is a well-defined bijection ϕ : PF↑
n → PTPFn.

Proof. Let α ∈ PF↑
n. In this construction, |Val(α)| = k is the number of values appearing

in α and |Tie(α)| = j is the number of ties in α. Because α ∈ PF↑
n and a value in α either

repeats or appears exactly once, k + j = n. Moreover, the construction in Equation (11)
ensures b1 = 1 since the letter 1 must appear in PF↑

n. Also, the letters before 1 (if they exist)
decrease down to 1, and the letters after 1 (if they exist) increase. Hence, ϕ(α) has no peaks
and no ties. Additionally, all cars are still able to park with preferences ϕ(α). To see this,
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observe that α = (a1, a2, . . . , an) ∈ PF↑
n. The cars park in the order they arrive: car 1 parks

in spot 1, car 2 in spot 2, and so on. To show that ϕ(α) parks, we define γ = (g1, . . . , gn) from
α by replacing each ai where ai = ai−1 with i. Because α parks, each unchanged preference
satisfies gi ≤ i. If gj is a changed preference, then gj = j ≤ j. Thus, we conclude that γ
parks. Now, since γ and ϕ(α) may be permuted into each other, ϕ(α) must also park. Thus,
ϕ(α) ∈ PTPFn.

Injectivity: Let α, β ∈ PF↑
n, and let ϕ(α) = ϕ(β). This implies that Tie(α) = Tie(β)

and Val(α) = Val(β). Notice that nondecreasing parking functions x ∈ PF↑
n are completely

determined by their tie sets, Tie(x), and their value sets, Val(x). When reconstructing α
and β from the value set and the tie set, the repeated values in x are the same for both ϕ(α)
and ϕ(β). Thus, α = β.

Surjectivity: Let β = (tj, tj−1, . . . , t2, t1, b1, b2, . . . , bk) ∈ PTPFn, where T = {1 < t1 < t2 <
· · · < tj−1 < tj} and B = {1 = b1 < b2 < · · · < bk}. It is sufficient to find α ∈ PF↑

n with
Tie(α) = T and Val(α) = B. Order the elements of X = [n] \ T = {x1 < x2 < · · · < xn−j}.
Construct α = (a1, a2, . . . , an) as follows.

1. In α, place the elements of B in order 1 = b1 < b2 < · · · < bk at the indices indexed by
X in order x1 < x2 < · · · < xn−j = xk. Namely, let axi

= bi for all 1 ≤ i ≤ k.

2. For every j ∈ T , set aj = aj−1.

Since α = (a1, a2, . . . , an) is a nondecreasing tuple, α parks if and only if ai ≤ i for all
1 ≤ i ≤ n. If ai = ai−1 and ai−1 ≤ i− 1, then ai ≤ i. Therefore, it is sufficient to check that
axi

= bi ≤ xi for all 1 ≤ i ≤ n− j.
Let P = (p1, p2, . . . , pn) be β in nondecreasing order. This is a parking function, so pi ≤ i.

1. If there is no duplicate in (a1, . . . , ai): t1 > i. Then in P , t1 has index at lest i + 1,
implying Val(a1, . . . , ai) ⊂ Val(p1, . . . , pi).

2. If there is a duplicate, without loss of generality, we assume ai−1 = ai.
Then Val(a1, . . . , ai−1) ⊂ Val(p1, . . . , pi−1). Notice then, that since ai−1 = ai, we have

Val(a1, . . . , ai) = Val(a1, . . . , ai−1) ⊂ Val(p1, . . . , pi−1) ⊆ Val(p1, . . . , pi).

Because of this, we satisfy the claim. If we take ai ∈ α, we can find some ℓi ≤ i such that
ai = pℓi ≤ ℓi ≤ i. Then ai ≤ i and α ∈ PF↑

n.

The bijection in Theorem 30 immediately implies the following.

Corollary 31. If n ≥ 1, then |PTPFn| = Cn, the nth Catalan number.
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We now provide a connection between peakless-tieless parking functions and the entries
of the Catalan triangle A009766, which are defined by

Cn+1,i =
i∑

j=0

Cn,j. (12)

Table 3 provides some of the initial values in the Catalan triangle. The sum along the nth
row of the Catalan triangle is given by Cn.

n \ k 1 2 3 4 5 6 7
1 1
2 1 1
3 1 2 2
4 1 3 5 5
5 1 4 9 14 14
6 1 5 14 28 42 42
7 1 6 20 48 90 132 132

Table 3: The entries of the Catalan triangle for 1 ≤ n, i ≤ 7.

Corollary 32. If PTPFn(i) = {α = (a1, a2, . . . , an) ∈ PTPFn : an = i}, then |PTPFn(i)| =
Cn,i.

Proof. We proceed by induction on n and i ∈ [n]. When n = 1, the set |PTPF1(1)| =
|{(1)}| = 1 = C1,1. When n = 2, the set |PTPF2(1)| = |{(2, 1)}| = 1 = C2,1 and
|PTPF2(2)| = |{(1, 2)}| = 1 = C2,2.

Assume for induction that for all n ≤ k and i ≤ n, |PTPFn(i)| = Cn,i. Let β =
(b1, b2, . . . , bn−1, i) ∈ PTPFn(i). Prepending n + 1 to β yields (n + 1, b1, b2, . . . , bn−1, i) ∈
PTPFn+1(i). By induction, we construct Cn,i many elements of PTPFn+1(i). For every
element γ = (b1, b2, . . . , bn−1, j) ∈ PTPFn(j) with 1 ≤ j ≤ i − 1, appending i to γ yields
(b1, b2, . . . , bn−1, j, i) ∈ PTPFn+1(i), and we construct

∑i−1
j=1Cn,j elements. These construc-

tions yield distinct elements of PTPFn+1(i) since the construction creates tuples beginning
with n+1, while the second begins with b1 ∈ [n]. As these are the only possible values with
which the tuple may begin, applying the induction hypothesis yields

|PTPFn+1(i)| = Cn,i +
i−1∑

j=1

Cn,j =
i∑

j=1

Cn,j = Cn+1,i

where the last equality holds by Equation (12).
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4.1 Valleys of parking functions

In permutations, the map i → n − i + 1 gives a bijection on permutations, which sends
peaks to valleys. This establishes that the number of permutations with k peaks is the
same as the number of permutations with k valleys. However, this map is not well-defined
for parking functions. For example, (1, 1, 1) goes to (3, 3, 3) which is not even a parking
function. Moreover, the number of parking functions with k peaks is not the same as the
number with k valleys. For example, when n = 3, there are four parking functions with one
peak:

(1, 2, 1), (1, 3, 1), (1, 3, 2), (2, 3, 1).

Whereas, there are three parking functions with one valley:

(2, 1, 2), (2, 1, 3), (3, 1, 2).

We now consider the set of valleyless-tieless parking functions; parking functions for
which there is no index 1 ≤ i ≤ n − 1 such that ai = ai+1 nor index 2 ≤ i ≤ n − 1 such
that ai−1 > ai < ai+1. We let VTPFn denote the set of valleyless-tieless parking functions
of length n. Our main result is as follows.

Theorem 33. Valleyless-tieless parking functions of length n are enumerated by |VTPFn| =
Fn+2, where Fn is the nth Fine number (as defined by Deutsch and Shapiro [3]) with the first
ten values of the sequence being (1 ≤ n ≤ 10):

1, 2, 6, 18, 57, 186, 622, 2120, 7338, 25724.

To prove Theorem 33, in Subsection 4.2, we establish a bijection between the set of
valleyless-tieless parking functions and certain types of peakless-tieless parking functions. In
Subsection 4.3, we show that the special set of peakless-tieless parking functions are counted
by the Fine numbers (A000957). This result implies Theorem 33.

4.2 Bijective maps

We let VTPFn+1(a1 = 1, an+1 > 1) be the set of valleyless-tieless parking functions of length
n+1 in which the first value is one and the last is larger than one. A more formal definition
of peakless-tieless parking functions of length n+ 1 is the set of parking functions of length
n+ 1 for which there is no index i ∈ [n] such that ai = ai+1 or ai−1 < ai > ai+1.

We let PTPFn+1(a1 > an+1) be the set of peakless-tieless parking functions of length
n+ 1 in which the first value is larger than the last.

Lemma 34. The function ψ : VTPFn → VTPFn+1(a1 = 1, an+1 > 1) defined by

(a1, a2, . . . , an) → (1, a1 + 1, a2 + 1, . . . , an + 1)

is a bijection.
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Proof. First, we show injectivity. If α = (a1, a2, . . . , an), β = (b1, b2, . . . , bn) ∈ VTPFn, and
ψ(α) = ψ(β), then ai + 1 = bi + 1 for all i ∈ [n]. Then ai = bi for all i ∈ [n], so α = β.

For surjectivity, suppose α = (1, a2, . . . , an) ∈ VTPFn+1(a1 = 1, an+1 > 1). We wish to
show that β = (a1 − 1, a2 − 1, . . . , an − 1) ∈ VTPFn. For i ∈ [n], ai > 1 and in general an
element of VTPFn can only have a 1 in the first and/or last position. If an instance of 1 has
a neighbor both to its left and right and there are no ties, then both of 1’s neighbors are
greater than 1, creating a valley and giving rise to a contradiction. Recall α satisfies an > 1,
so ai > 1 for all i ∈ [n]. Moreover, ai − 1 ≤ n for all i ∈ [n]. Hence, β ∈ [n]n.

Next, we show that β is a parking function. Let α↑ = (1, x1, x2, . . . , xn) be the nonde-
creasing rearrangement of α. Since α is a parking function, we know that 1 < xi ≤ i+ 1 for
all i ∈ [n]. Then the nondecreasing rearrangement β↑ of β is (x1−1, x2−1, . . . , xn−1), which
satisfies 0 < xn − 1 ≤ i, so β parks. Removing the first element of a parking function, in
particular of α, does not create a valley or a tie that was not there before. This ensures that
β also does not have ties nor valleys. This then establishes that β ∈ VTPFn and satisfies
ψ(β) = α.

Remark 35. In a valleyless-tieless parking function there is a unique maximal entry. If this
were not the case and the maximum value k appeared twice. Then either they are consecutive
entries in the tuple, creating a tie (a contradiction), or they are nonadjacent entries in the
tuple and thus the value(s) between them would either be larger or create a valley, giving a
contradiction.

In the following, we reverse parts of a tuple. To this end, we define the following.

Definition 36. Let (x1, x2, . . . , xn) ∈ [n]n. For i ∈ [n− 1] let

flicki(x) = (xi, xi−1, . . . , x1, xn, xn−1, . . . , xi+1)

and

flickn(x) = (xn, xn−1, . . . , x2, x1).

For example, if x = (1, 2, 1, 3, 5, 6, 3, 2), then flick4(x) = (3, 1, 2, 1, 2, 3, 6, 5) and flick6(x) =
(6, 5, 3, 1, 2, 1, 2, 3).

Proposition 37. Define the map ϕ : VTPFn+1(a1 = 1, an+1 > 1) → PTPFn+1(a1 > an+1)
as follows: If v = (v1, v2, . . . , vn+1) ∈ VTPFn+1(a1 = 1, ai+1 > 1) and i ∈ [n + 1] is the
unique index containing the maximal entry of v, then

ϕ(v) = flicki(v).

The map ϕ is a bijection.
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Proof. By definition, flicki is an involution that, as a rearrangement, maps parking func-
tions to parking functions. Let α = (a1, a2, . . . , an+1) ∈ PTPFn+1(a1 > an+1) with i
being the index of the unique instance of 1 ∈ α. Then it is sufficient to show that
β = (b1, b2, . . . , bn+1) = flicki(α) is an element of VTPFn+1(a1 = 1, an+1 > 1). Recall
that since α ∈ PTPFn+1(a1 > an+1), we have that

a1 > a2 > · · · > ai−1 > ai < ai+1 < · · · < an+1 (13)

and a1 > an+1. Then by definition of flicki(α) and the inequalities in Expression (13), we
have that

1 = ai < ai−1 < · · · < a2 < a1 > an+1 > an > · · · > ai+1.

So β = (b1, b2, . . . , bn+1) = flicki(α) ensures that

1 = b1 < b2 < · · · < bi−1 < bi > bi+1 > bi+2 > · · · > bn+1 (14)

with b1 = 1 and bn+1 > b1 = 1. The inequalities in Expression (14) imply that β ∈
VTPFn+1(b1 = 1, bn+1 > 1).

Then flicki is a well-defined involution between the desired domains. Therefore, we get
the bijection as desired.

4.3 Valleyless-tieless parking functions and the Fine numbers

We now define a set partition which is useful in proving Theorem 33.

Definition 38. For n ≥ 0, we partition the set PTPFn+1 as follows:

• Gn+1 = {α ∈ PTPFn+1 : a1 > an+1},

• En+1 = {α ∈ PTPFn+1 : a1 = an}, and

• Ln+1 = {α ∈ PTPFn+1 : a1 < an+1}.

For convenience G1 = L1 = ∅ and E1 = {(1)}. Let Gn+1 = |Gn+1|, En+1 = |En+1|, and
Ln+1 = |Ln+1|.

As expected,

Gn+1 + En+1 + Ln+1 = |PTPFn+1| = Cn+1, (15)

the (n+ 1)th Catalan number, and where the last equality holds by Corollary 31.

Remark 39. Let α = (a1, a2, . . . , an) be a peakless-tieless parking function of length n ≥ 2.
If ai = n for some index i, then i = 1 or i = n, but not both. This is because if both a1 = n
and an = n, then α is not a parking function. If ai = n for i ∈ [2, n− 1], then either α has a
peak at i or there is a tie in position i− 1 or i, contradicting that α is peakless and tieless.
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Lemma 40. If n ≥ 1, then En+1 = Ln, and if n ≥ 0, then Gn+1 = Ln+1.

Proof. For the first equality, we establish a bijection between En+1 and Ln, from which the
result follows.

Let e = (e1, e2, . . . , en+1) ∈ En+1, so that e1 = en+1. Notice that e is peakless-tieless.
Since e1 = en+1 and e2 < e1, then we have that e2 < en+1. Furthermore, removing e1 from
e does not create a peak, nor a tie. By Remark 39, the largest possible value in e is n − 1
and would occur at the endpoints. This implies that e1 = en+1 ≤ n − 1. Hence, the tuple
(e2, e3, . . . , en+1) would allow the cars to park. Thus, (e2, e3, . . . , en+1) ∈ Ln.

In the reverse direction, if ℓ = (ℓ1, ℓ2, . . . , ℓn) ∈ Ln, then the tuple ℓ′ = (ℓn, ℓ1, ℓ2, . . . , ℓn)
has no peaks and no ties as ℓn > ℓ1. Moreover, we know ℓn ≤ n. Hence, the largest value in
ℓ′ is n, and all n+ 1 cars can park. Therefore, we get ℓ′ ∈ En+1.

If α = (a1, a2, . . . , an+1) ∈ Gn+1, the map flickn(α) = (an+1, an, . . . , a1) gives a bijection
from Gn+1 to Ln+1. Hence, Gn+1 = Ln+1.

Theorem 41. If n ≥ 0, then |PTPFn+1(a1 < an+1)| = Fn+1, the (n+ 1)th Fine number.

Proof. Note, that PTPFn+1 = Cn+1

⊔
En+1

⊔
Ln+1, so by Equation (15), we have that

Cn+1 = Gn+1 + En+1 + Ln+1.

By Lemma 40, En+1 = Ln and Gn+1 = Ln+1, implying

Cn+1 = 2Ln+1 + Ln.

The initial values are L1 = 0; and since L2 = {(1, 2)}, we have L2 = 1. Deutsch and Shapiro
[3, p. 8] proved the following identity relating the Fine numbers to the Catalan numbers

Cn+1 = 2Fn+2 + Fn+1

where F1 = 0 and F2 = 1. Together, this implies that Ln+1 = Fn+2.

The bijections in Lemma 34 and Proposition 37, along with the the enumerative result
of Theorem 41 together imply Theorem 33, establishing that the number of valleyless-tieless
parking functions is given by a Fine number.

4.4 Open problems

There are many open problems remaining when considering the set of parking functions
of length n with j peaks and k ties, which we denote by PFn(j, k). Table 4 provides the
cardinality of the set PFn(0, k) for small values of n and k. The column corresponding to
k = 0 gives the Catalan numbers, which we prove in Corollary 31.

We prove the following two results related to the value of PFn(0, k) with k = n−2, n−1.

Lemma 42. If n ≥ 1, then |PFn(0, n− 1)| = 1.
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n \ k ties 0 1 2 3 4 5
1 1 0 0 0 0 0
2 2 1 0 0 0 0
3 5 6 1 0 0 0
4 14 32 12 1 0 0
5 42 178 110 20 1 0
6 132 1078 978 280 30 1

Table 4: Number of parking functions of length n with 0 peaks and k ties.

Proof. A tuple in [n]n with n − 1 ties must have the same value at every entry. The only
such parking functions is the all ones tuple.

Lemma 43. If n ≥ 1, then |PFn(0, n− 2)| = n(n+ 1), the nth Oblong number A002378.

Proof. Such a tuple has exactly one non-tie. If there is exactly one ascent, the tuple begins
with 1 ≤ i ≤ n many ones, followed by n − i many repeated values k where 2 ≤ k ≤ i + 1.
So the number of possibilities is given by

∑n

i=1 i = n(n + 1)/2. We can reverse the tuple
to account for the case where it has exactly one descent. This yields a total of n(n+ 1), as
claimed.

A general open problem follows.

Problem 44. For n, j, k ∈ N, give recursive or closed formulas for the value of |PFn(j, k)|.

One could also consider parking functions of length n with j peaks. This set is given by

PFj
n =

n−1−2j
⋃

k=0

PFn(j, k).

Table 5 gives the cardinality of |PFj
n| for 0 ≤ j ≤ n ≤ 6. The first column corresponding

to j = 0 peaks is also given by the row sums in Table 4. We can now pose another open
problem.

Problem 45. Characterize and enumerate the set PFk
n for general values of n and k.

5 Statistic encoding

We now study a collection of parking functions with a prescribed pattern at every index.
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n \ j peaks 0 1 2 3
1 1 0 0 0
2 3 0 0 0
3 12 4 0 0
4 59 66 0 0
5 351 825 120 0
6 2499 9704 4604 0
7 20823 115892 115959 9470
8 197565 145478 2479110 651816

Table 5: Number of parking functions of length n with j peaks.

Definition 46. Every α = (a1, a2, . . . , an) ∈ PFn gives rise to a word w = w1 w2 · · · wn−1 ∈
{A, D, T}n−1, where for each i ∈ [n− 1] we let

wi =







A, if ai < ai+1;

D, if ai > ai+1;

T, if ai = ai+1.

We call w the statistic encoding of α and denote it as stat(α).

In defining a statistic encoding, we use the letter A to denote an ascent, D to denote a
descent, and T to denote a tie. The vast majority of statistic encodings are non-unique.
For example, α = (1, 1, 2, 3, 4) and β = (1, 1, 3, 4, 5) both have w = T A A A as their statistic
encoding.

In this section, we answer the following questions:

1. Does there exist a parking function with statistic encoding w for arbitrary w?

2. When is a statistic encoding determined by a unique parking function?

To begin, we set the following notation. LetWn−1 denote the set of all statistic encodings
of length n − 1, which implies Wn−1 = {A, D, T}n−1. Our first result establishes that every
word of length n − 1 in the letters A, D, T arises as a statistic encoding for some parking
function. Before proving the result, we illustrate this notation with an example.

Example 47. To construct a parking function for the word D A T A, we begin with a parking
function whose statistic encoding is D A T, such as α = (3, 1, 2, 2). To account for the added
ascent at the end of the word D A T A, we simply append 5 to α and obtain (3, 1, 2, 2, 5) ∈ PF5.
Notice that (3, 1, 2, 2, 5) is not the only parking function with statistic encoding D A T A as we
could have also appended 3 or 4.

If instead we want to construct a parking function with statistic encoding A T A DD, we
begin with the parking function β = (1, 2, 2, 3, 1) with a corresponding statistic encoding
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A T A D. To construct a parking function with statistic encoding A T A DD, we must create a
new descent at the end of β. To do this, we begin by incrementing every entry in β by
one, resulting in the tuple (2, 3, 3, 4, 2). Then append 1 to the end of that tuple creating
(2, 3, 3, 4, 2, 1), which is an element of PF6 and has the desired statistic encoding A T A DD.

We are now ready to settle Question (1).

Theorem 48. If w ∈ Wn−1, then there exists α ∈ PFn which has w as its statistic encoding.

Proof. We proceed by induction on n, the length of the parking function. We begin with the
base case where n = 1 and observe that the empty statistic encoding arises from the parking
function (1).

Assume for induction that for n > 1 and for every w ∈ {A, D, T}n−1 there is a parking
function α = (a1, a2, . . . , an) ∈ PFn with statistic encoding w.

Now consider a word w ∈ Wn = {A, D, T}n such that w = w′x where w′ ∈ {A, D, T}n−1 and
x ∈ {A, D, T}. By the inductive step, we can find some P ′ = (p′1, p

′
2, . . . , p

′
n) ∈ PFn whose

statistic encoding is w′. To obtain a parking function α ∈ PFn+1 with statistic encoding
w = w′x, we append a new preference to P ′ ∈ PFn based on the letter x by the following
criteria:

C1: If x = T, we append p′n to P ′ constructing

α = (p′1, p
′
2, . . . , p

′
n, p

′
n).

Note, α is a parking function of length n + 1 as P ′ is a parking function of length n,
and appending the value p′n ensures that car n+ 1 parks in spot n+ 1. Moreover, this
ensures that the parking function ends with a tie.

C2: If x = A, we append n+ 1 to P ′ to get

α = (p′1, p
′
2, . . . , p

′
n, n+ 1).

Note, α is a parking function of length n+ 1 and P ′ is a parking function of length n.
Appending the value n+ 1 to α ensures that car n+ 1 parks in spot n+ 1. Moreover,
this ensures that the parking function ends with an ascent.

C3: If x = D, we modify P ′ by incrementing each p′i by one and then appending the value
1 at the end of P ′ to get

α = (p′1 + 1, p′2 + 1, . . . , p′n + 1, 1).

Note, P ′ is a parking function of length n, and by incrementing its values by one, the
cars 1 through n in α park in spots 2 through n+1. Then car n+1 with preference 1
parks in spot 1. Thus, α is a parking function of length n+ 1. Moreover, this ensures
that the parking function ends with a descent.
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In the next result, we use the notation A∗ T∗ to describe a word with some nonnegative
integer number of A’s followed by a nonnegative integer number of T’s. When we specify that
A∗ T∗ ∈ Wn−1, then the total number of A’s and T’s must be equal to n − 1. Whenever we
want to specify the full set of such words, we write {A∗ T∗}. Likewise for T∗D∗ and {T∗D∗}.

With this notation in mind, we now settle Question (2).

Lemma 49. Let w ∈ Wn−1. If there is a unique α ∈ PFn such that stat(α) = w, then for
all indices i ∈ [n−1], |αi+1−αi| ≤ 1. Moreover, if mp(α) > 0, then mq(α) > 0 for all q < p.

Proof. Let w ∈ Wn−1. Assume towards a contradiction that α is a parking function with an
index i such that |αi+1 − αi| > 1. Without loss of generality, suppose p = αi+1 > αi. Let
j be the first index after i such that αj 6= αj+1. In other words, let α have the following
structure:

(α1, . . . , αi, p
︸︷︷︸

i+1

, p, . . . , p
︸︷︷︸

j

, αj+1, . . . , αn),

where αi, αj+1 6= p. Then the tuple

α′ = (α1, . . . , αi, p− 1
︸ ︷︷ ︸

i+1

, p− 1, . . . , p− 1
︸ ︷︷ ︸

j

, αj+1, . . . , αn)

has the same statistic encoding as α. We know that α′ is a parking function because reduc-
ing the value of an element in a parking function always yields a parking function. Then
stat(α′) = w, yielding a contradiction. Thus, α is not the unique parking function such that
stat(α) = w.

The second part of the lemma results from induction on the maximal value p in α. First,
observe that 1 appears at least once in every parking function. Then if p = 1 or p = 2 the
proposition is straightforward. Now assume the inductive hypothesis on a parking function
α with maximum value p. Let i be the first index such that exactly one of αi and αi+1 is
equal to p. Without loss of generality, assume αi = p and αi+1 6= p. Then by the first part of
the lemma, αi+1 = p−1. Then mp−1(α) > 0, so by mq(α) > 0 for all q < p by induction.

Lemma 50. Let w ∈ Wn−1. If there is a unique α ∈ PFn with stat(α) = w, then the statistic
encoding of the nondecreasing rearrangement β of α is of the form A∗ T∗.

Proof. For the sake of contradiction, suppose that α is the unique parking function with
stat(α) = w but the statistic encoding of the nondecreasing rearrangement β of α is not of
the form A∗ T∗. Then let i be the index of the first A in stat(β) that comes after a T. Then
αi < i. By Lemma 49, αj+1 ≤ αj + 1 for all j ∈ [n − 1]. Then using induction, αj < j for
all j > i. Now let p be the maximal value of α. In β, all instances of p are strictly less than
their index. Then let α′ be the tuple obtained by increment all instances of p in α. Then α′

is still a parking function and has the same statistic encoding of α. This contradicts α being
the unique parking function with statistic encoding w.
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Lemma 51. Let w ∈ Wn−1 with unique α ∈ PFn such that stat(α) = w. If there exist
indices 1 ≤ i ≤ j ≤ n such that αi−1 > αi = αi+1 = · · · = αj < αj+1 where αi−1 and αj+1

exist, then αi = · · · = αj = 1.

Proof. Let w ∈ Wn−1 with unique α ∈ PFn such that stat(α) = w. For the sake of contrapos-
itive, let the indices satisfy 1 ≤ i < j ≤ n such that αi−1 > αi = αi+1 = · · · = αj < αj+1 with
αi > 1. The parking function α′ obtained by replacing αi, . . . , αj with 1, . . . , 1 has the same
statistic encoding as α. Thus, α is not the unique parking function with stat(α) = w.

In other words, if α is the unique parking function with statistic encoding w, then the
local minimum in α has value 1.

Theorem 52. Let w ∈ Wn−1. Then there is a unique α ∈ PFn with statistic encoding w if
and only if w ∈ {A∗ T∗} ∪ {T∗D∗}.

Proof. (⇒) First we show that if w contains both A and D, then there are multiple parking
functions α with stat(α) = w. Suppose w contains both A and D. Then there is some n ≥ 0
such that either A TnD or DTn A is a contiguous subword of w.

• Suppose v = A TnD is a contiguous subword of w. Where v first appears in w, let i be
the index A and let j be the index of D. Let p be the minimum value in α with index
weakly less than i and let q be the minimum value in α with index strictly greater than
j. By Lemma 51, p = q = 1. Then the nondecreasing rearrangement β of α starts
with two 1’s, but is not itself all ones. This contradicts Lemma 50.

• Suppose v = DTn A is a contiguous subword of w. For the sake of contradiction, suppose
α is the unique parking function with stat(α) = w. By the previous bullet point, there
is no A that comes before D in w. Then α can be broken into a nonincreasing part
α∗, some amount of 1’s, and a nondecreasing part α∗∗. We choose α∗ and α∗∗ such
that neither contain 1’s. By Lemma 49, α∗ ends with a 2 and α∗∗ begins with a
2. Then the nondecreasing rearrangement β of α is of the form (1, . . . , 1, 2, 2, . . .). By
Lemma 50, β contains only one instance of the value 1 and has no ascents after the first
position. Then α is of the form (2, . . . , 2, 1, 2, . . . , 2). However, the parking function
α′ = (3, . . . , 3, 1, 2, . . . , 2) has the same statistic encoding as α, contradicting α being
the unique parking function with statistic encoding w.

Now we consider the case where w does not have both A and D.

• Suppose that w does not contain D. If stat(α) = w, α is nondecreasing. By Lemma 50,
w is of the form A∗ T∗.

• Suppose that w does not contain A. If stat(α) = w, α is nonincreasing. The nonde-
creasing rearrangement β of α is exactly the reverse of α. The statistic encoding of β
is of the form A∗ T∗, so the statistic encoding of α is of the form T∗D∗.
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(⇐) Let w ∈ {A∗ T∗} ∪ {T∗D∗}. We consider the case where w ∈ {A∗ T∗} and w ∈ {T∗D∗},
separately and show that α with statistic encoding w is unique.

• If w = Ai Tn−1−i for some i ∈ [n − 1], then a1 = 1. We claim aj = j for all 2 ≤ j ≤ i.
For the sake of contraction, suppose that there exists 1 < j′ ≤ i such that aj′ 6= j′.
Then the number j′ does not appear in α as its statistic encoding is w = Ai Tn−1−i.
This would imply that no car parks in spot j and hence α is not a parking function
giving us a contradiction. Thus, aj = j for all 1 ≤ j ≤ i. Since w = Ai Tn−1−i, we now
have that ai+1 = ai+2 = · · · = an = i. Thus, if w = Ai Tn−1−i, then α is unique and has
the form

α = (1, 2, . . . , i− 1, i, i+ 1, i+ 1, . . . , i+ 1) ∈ PFn. (16)

• If w = Tn−1−iDi for some i ∈ [n − 1], then an = 1. By a similar argument in the
bullet above, we can show w is a unique parking function. We can reverse the parking
function α given in Equation (16) to create

α∗ = (i+ 1, i+ 1, . . . , i+ 1, i, i− 1, . . . , 3, 2, 1),

which is a parking function and has w as its statistic encoding. As α was unique, so is
α∗.

We conclude by posing the following open problems.

Problem 53. Fix a statistic encoding w ∈ Wn−1. Characterize and enumerate the subset
of parking functions of length n which have w as their statistic encoding.

Problem 54. For which statistic encoding w ∈ Wn−1 is the subset of parking functions of
length n which have w as their statistic encoding the largest?

6 Acknowledgments

The authors thank the anonymous referee for an exceptionally detailed review process. We
appreciate their feedback and care.

References

[1] F. Bencs, Some coefficient sequences related to the descent polynomial, European J.
Combin. 98 (2021), 103396.

[2] S. Billey, K. Burdzy, and B. Sagan, Permutations with given peak set, J. Integer Se-
quences 16 (2012), Article 13.6.1.

32

https://cs.uwaterloo.ca/journals/JIS/VOL16/Billey/billey2.html


[3] E. Deutsch and L. W. Shapiro, A survey of the Fine numbers, Discrete Math. 241

(2001), 241–265.

[4] A. Diaz-Lopez, P. E. Harris, E. Insko, and M. Omar, A proof of the peak polynomial
positivity conjecture, J. Combin. Theory Ser. A 149 (2017), 21–29.

[5] A. Diaz-Lopez, P. E. Harris, E. Insko, M. Omar, and B. E. Sagan, Descent polynomials,
Discrete Math. 342 (2019), 1674–1686.

[6] J. F. Dillon and D. P. Roselle, Simon Newcomb’s problem, SIAM J. App. Math. 17
(1969), 1086–1093.

[7] S. Elizalde, Descents on quasi-Stirling permutations, J. Combin. Theory Ser. A 180

(2021), 105429.

[8] W. Fulton, Young Tableaux, Cambridge University Press, 1997.

[9] J. B. Gil, P. R. W. McNamara, J. O. Tirrell, and M. D Weiner, From Dyck paths to
standard Young tableaux, Ann. Comb. 24 (2020), 69–93.

[10] Hilmar Gudmundsson, Dyck paths, standard Young tableaux, and pattern avoiding
permutations, ArXiv preprint arXiv:0912.4747 [math.CO], December 23 2009. Available
at https://arxiv.org/abs/0912.4747.

[11] P. Jiradilok and T. McConville, Roots of descent polynomials and an algebraic inequality
on hook lengths, Elect. J. Combinatorics 30 (2003), P4.41. Available at https://www.
combinatorics.org/ojs/index.php/eljc/article/view/v30i4p41.

[12] P. A. MacMahon, Combinatory Analysis, Chelsea Publishing Co., 1960.

[13] Angel Raychev, A generalization of descent polynomials, Discrete Math. 346 (2023),
113105.

[14] P. R. F. Schumacher, Descents in parking functions, J. Integer Sequences 21 (2018),
Article 18.2.3.

[15] R. P. Stanley, Catalan Numbers, Cambridge University Press, 2015.

2020 Mathematics Subject Classification: Primary 05A05; Secondary 05A15.
Keywords: parking function, descent, ascent, tie, multiset, Eulerian polynomial, Catalan
number, Fine number.

(Concerned with sequences A000108, A000957, A002378, A009766, A033282, and A333829.)

33

https://arxiv.org/abs/0912.4747
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v30i4p41
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v30i4p41
https://cs.uwaterloo.ca/journals/JIS/VOL21/Schumacher/schu5.html
https://oeis.org/A000108
https://oeis.org/A000957
https://oeis.org/A002378
https://oeis.org/A009766
https://oeis.org/A033282
https://oeis.org/A333829


Received December 28 2023; revised versions received May 11 2024; October 31 2024; Novem-
ber 28 2024; November 29 2024. Published in Journal of Integer Sequences, November 30
2024.

Return to Journal of Integer Sequences home page.

34

https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Permutations of multisets
	Descent sets of parking functions
	Peaks of parking functions
	Valleys of parking functions
	Bijective maps
	Valleyless-tieless parking functions and the Fine numbers
	Open problems

	Statistic encoding
	Acknowledgments

