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Abstract

In this paper, using a generating function approach, we derive several new convo-
lution sum identities involving the Fibonacci m-step numbers. As special instances
of the results derived herein, we obtain many new and known results involving the
Fibonacci, Tribonacci, Tetranacci, and Pentanacci numbers. In addition, we establish
some general results providing insights into the inner structure of such convolutions.
Finally, we state some mixed convolutions involving the Fibonacci m-step, Jacobsthal,
and Pell numbers.

1 Motivation and preliminaries

The motivation for writing this paper comes from three recently published papers by Dres-
den and his collaborators: Dresden and Wang [3, 5] and Dresden and Tulskikh [4]. In
these papers, convolutions involving important number sequences like the Fibonacci num-
bers (Fn)n≥0, the Lucas numbers (Ln)n≥0, the Pell numbers (Pn)n≥0, the Jacobsthal numbers
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(Jn)n≥0, the Tribonacci numbers (Tn)n≥0, and others are studied. Dresden and Wang close
their article [5] with a short discussion of the two seemingly unrelated convolutions

n
∑

j=0

JjFn−j = Jn+1 − Fn+1 (1)

and
n
∑

j=0

TjFn−j = Tn+2 − Fn+2 (2)

(see [16] for (1) and [1, 6, 8] for (2), respectively). A third example of this nature is the
following convolution, which can be found in [10, 19]:

n
∑

j=0

PjFn−j = Pn − Fn. (3)

A hidden link between (2) and (3) will be revealed later. At this point we can clearly see
that identities (1)–(3) look suspiciously similar. Dresden and Wang [5] ask “... if there are
other general convolution formulas waiting to be discovered?”. The answer to this question is
“Definitely yes!”. Building on a generating function approach (also see [8, 13, 14, 15, 17]) for
the Fibonacci m-step numbers we prove many new convolution identities, recovering known
results as special cases, including the identities presented above.

We note that the generating function approach is not a novel discovery. However, the
referenced articles show that this approach has received a lot of attention in the recent
years. In this context, we mention the recent article by Gessel and Kar [9], which provides an
extensive analysis of (binomial) convolutions of sequences with rational generating functions.

As for the Fibonacci m-step sequences, there seems to be a lack of a general approach to
some of the convolution identities involving these sequences and other recurrence relations,
mentioned at the beginning of the article and many more. Our response to this is a step
forward towards a better understanding of the general inner structure of these convolutions.
To keep things coherent and focused on a single topic, this article is devoted exclusively to
the Fibonacci m-step numbers. Thus, identities related to the Lucas (m-step) sequences
(see, for example, [3, 4]) are the subject of another study.

We start with a definition. The m-step Fibonacci numbers are defined for all m ≥ 1 by

F
(m)
1 = 1, and F (m)

n = 0 for all n = −(m− 2), . . . , 0

(F
(1)
0 = 0) and for all n ≥ 2,

F (m)
n =

m
∑

j=1

F
(m)
n−j .

Their arithmetic structure was studied in a recent article by the second author [12]. The
ordinary generating function for the m-step Fibonacci numbers is given by

F (m)(x) =
x

1− x− x2 − · · · − xm
.
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We introduce the following notation for a selection of particular Fibonacci m-step num-
bers. Let F

(2)
n = Fn, F

(3)
n = Tn, F

(4)
n = Qn, and F

(5)
n = Pn denote the Fibonacci, Tribonacci,

Tetranacci, and Pentanacci numbers, respectively. Therefore, the following can be stated.

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Tn = Tn−1 + Tn−2 + Tn−3, T0 = 0, T1 = T2 = 1,

Qn = Qn−1 +Qn−2 +Qn−3 +Qn−4, Q0 = 0, Q1 = Q2 = 1, Q3 = 2,

Pn = Pn−1 + Pn−2 + Pn−3 + Pn−4 + Pn−5, P0 = 0, P1 = P2 = 1, P3 = 2, P4 = 4.

Let F (x), T (x), Q(x), and P (x) denote the ordinary generating functions of these sequences,
respectively. Hence, we have

F (x) = F (2)(x), T (x) = F (3)(x), Q(x) = F (4)(x) and P (x) = F (5)(x).

These special candidates will be used later to highlight particular cases of the results
obtained in this paper.

1.1 Outline of the strategy of proofs

It is difficult to identify an universal approach for proving the identities which we present
in the work. This is mainly due to the complexity of the problem, which is built up of
at least three dimensions: the general nature of the m-step Fibonacci sequence comprising
recurrences of arbitrary high order, the specific type of a convolution, and the number
of sequences involved in such a convolution. The interplay between the three dimensions
does not allow us to formulate one crucial observation from which all other results would
follow. Nevertheless, some general ideas can be communicated which are valid for all the
convolutions under consideration, both in the case of convolution of two sequences and in
the case of convolution of more than two sequences.

The basis of our idea is the manipulation of generating functions to the extent that
the relevant functional equations can be written down. In such equations, one component
will contain the product of the generating functions of all the sequences under consideration,
while the other components will contain the products of the smaller number of sequences un-
der consideration. To give an explicit example, a convolution consisting of three sequences
will be expressed as a combination of convolutions involving two of these sequences and
“lower terms”. The foundation of our method is to indicate the appropriate elementary ma-
nipulations, which usually begin with a transformation of the relevant polynomial occurring
in the denominator of the generating function of the sequence in question.

The next step is to use the functional equations and proceed to the power series, from
which we will obtain identities expressed in the language of the sequences and their terms.
Finally, we will make use of such identities by performing further manipulations (often using
recursion of one of the sequences) to extract the final explicit formula. The explicit formula,
in its best possible form, should contain on one side of the equality sign the convolution of
the selected sequences, and on the other side an expression that is linearly dependent only
on certain expressions of the sequences considered.
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2 General convolution identities with the Fibonacci m-

step numbers

This section contains general formulas for the Fibonacci m-step numbers. We consider

several forms of formulas. First, we investigate convolutions of F
(m)
n with F

(m′)
n for m 6= m′.

Then we show a few somewhat curious identities with convolutions exhibiting what we call
a “switch effect”. One such convolution is

n
∑

j=0

Fj

(

Tn−j −Qn−j

)

=
n−1
∑

j=0

(

Fj − Tj

)

Qn−1−j,

where “switching” refers to “switch the parentheses”. Finally, we consider convolutions
whose steps differ by 2.

2.1 Mixed convolution

Theorem 1. For all n ≥ m, we have

n−m
∑

j=0

F
(m)
j F

(m+1)
n−m−j = F (m+1)

n − F (m)
n . (4)

Proof. Notice that

1− x− x2 − · · · − xm =
x

F (m)(x)
.

Subtracting xm+1 and rearranging we obtain

1− x− x2 − · · · − xm − xm+1 =
x− xm+1F (m)(x)

F (m)(x)
,

and thus
F (m)(x)

x− xm+1F (m)(x)
=

F (m+1)(x)

x
.

This gives
F (m+1)(x)− F (m)(x) = xmF (m)(x)F (m+1)(x) (5)

or
∞
∑

n=0

(F (m+1)
n − F (m)

n )xn = xm
(

∞
∑

n=0

F (m)
n xn

)(

∞
∑

n=0

F (m+1)
n xn

)

=
∞
∑

n=0

n
∑

j=0

F
(m)
j F

(m+1)
n−j xn+m

=
∞
∑

n=m

n−m
∑

j=0

F
(m)
j F

(m+1)
n−m−jx

n.
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This proves the theorem, since for all n < m we have

n−m
∑

j=0

Fm
j Fm+1

n−m−j = 0 and Fm+1
n − Fm

n = 0.

As a corollary, we obtain Theorem 2.1 from [6] (identity (6) below) and many more.

Corollary 2. Let n ≥ 0 be an integer. Then

n
∑

j=0

FjTn−j = Tn+2 − Fn+2, (6)

n
∑

j=0

TjQn−j = Qn+3 − Tn+3, (7)

n
∑

j=0

QjPn−j = Pn+4 −Qn+4. (8)

Proof. Set m = 2, m = 3, and m = 4, in turn, in Theorem 1.

It is interesting that Theorem 1 can be generalized further.

Theorem 3. Let p ≥ 0 be an integer. For all n ≥ m we have the identity

p−1
∑

k=0

n−m−k
∑

j=0

F
(m)
j F

(m+p)
n−m−k−j = F (m+p)

n − F (m)
n . (9)

Proof. This follows from the relation

x

F (m+p)(x)
=

x−
(
∑p

k=1 x
m+k

)

F (m)(x)

F (m)(x)

or equivalently

F (m+p)(x)− F (m)(x) =
(

p
∑

k=1

xm+k−1
)

F (m)(x)F (m+p)(x).

The remaining part of the proof is similar to the proof of Theorem 1.

When p = 1 then we get Theorem 1. When p = 2 then we get the following.

Corollary 4. For all n ≥ m we have the following identity

n−m−1
∑

j=0

F
(m)
j (F

(m+2)
n−m−j + F

(m+2)
n−m−j−1) = F (m+2)

n − F (m)
n .
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Corollary 4 allows one to obtain many different identities involving convolutions of two
sequences. We give the following two examples.

Example 5. Set m = 1 in Corollary 4 to get

Tn − 1 =
n−2
∑

j=0

Tj +
n−3
∑

j=0

Tj = 2
n−3
∑

j=0

Tj + Tn−2.

This gives (after replacing n by n+ 3)

n
∑

j=0

Tj =
1

2
(Tn+3 − Tn+1 − 1) =

1

2
(Tn+2 + Tn − 1), (10)

which is a well-known partial sum formula (see, for example, [1, 7, 11]).

Example 6. For any n ≥ 0 we have

n
∑

j=0

Fj+2Qn−j = Qn+3 − Fn+3. (11)

This follows from setting m = 2 in Corollary 4 and calculating

Qn − Fn =
n−3
∑

j=0

Fj(Qn−2−j +Qn−3−j)

=
n−4
∑

j=0

Fj+1Qn−3−j +
n−3
∑

j=0

FjQn−3−j

=
n−3
∑

j=0

Fj+2Qn−3−j.

Finally, we point out that when m = 1 in Theorem 3 then we get the partial sum formula
for the Fibonacci m-step numbers.

Corollary 7. For any n ≥ p,

F (p+1)
n − 1 =

p−1
∑

k=0

n−2−k
∑

j=0

F
(p+1)
j . (12)

In fact, rewriting (12) in a slightly more convenient way we can get the following general
identity.
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Theorem 8 (Partial sum formula for the Fibonacci m-step numbers). For any m ≥ 2 we

have
n
∑

k=0

F
(m)
k =

1

m− 1

(

F
(m)
n+m −

m−2
∑

k=1

kF
(m)
n+k − 1

)

. (13)

Proof. Substitute p+ 1 → m in (12) to get

F (m)
n − 1 =

m−2
∑

k=0

n−2−k
∑

j=0

F
(m)
j

=
n−m
∑

k=0

F
(m)
k +

n−2
∑

k=n−m+1

F
(m)
k

+
n−m
∑

k=0

F
(m)
k +

n−3
∑

k=n−m+1

F
(m)
k

...

+
n−m
∑

k=0

F
(m)
k + F

(m)
n−m+1

+
n−m
∑

k=0

F
(m)
k

= (m− 1)
n−m
∑

k=0

F
(m)
k +

m−2
∑

k=1

kF
(m)
n−m+k.

Substituting n → n+m and rearranging the terms leads to the desired formula.

We note that Theorem 8 is not new. For instance, in [18] the partial sum formula is
proved using induction but the proof is two pages long. A shorter proof of an equivalent
version of the partial sum formula is given by Dresden and Wang in [3]. The second author
has recently shown a proof without words of this identity in [11]. Here, we obtained it as a
corollary of a more general result.

We have seen from (11) that it is possible to derive a formula for the convolution of the
Fibonacci and Tetranacci numbers. In the following, we gather all closed formulas for mixed
convolutions of two Fibonacci m-step numbers with 2 ≤ m ≤ 5, that are not present in
Corollary 2.
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Corollary 9. Let n ≥ 0 be an integer. Then

n
∑

j=0

FjQn−j = Qn+1 +Qn−1 − Fn+1, (14)

n
∑

j=0

FjPn−j =
1

2

(

Pn+2 + Pn−1 − Fn+2

)

, (15)

n
∑

j=0

PjTn−j =
1

2

(

Pn+3 + Pn+1 + Pn−1 − Tn+3 − Tn+1

)

. (16)

Proof. Identity (14) follows from (11) after fixing the summation range. To show (15) we
use Theorem 3 with m = 2 and p = 3, and perform some easy algebraic manipulations. To
show (16) we use Theorem 3 with p = 2 and m = 3, and we get

Pn − Tn =
n−4
∑

j=0

Pj(Tn−3−j + Tn−4−j). (17)

Then, using (17) twice, second time with n + 2 in place of n, and adding up we get after
rearranging the terms,

Pn+2 + Pn − Tn+2 − Tn = 2
n−4
∑

j=0

PjTn−1−j + 2Pn−3 + Pn−2.

Finally, notice that

n−4
∑

j=0

PjTn−1−j =
n−1
∑

j=0

PjTn−1−j − Pn−2 − Pn−3,

which gives
n−1
∑

j=0

PjTn−1−j =
1

2

(

Pn+2 + Pn + Pn−2 − Tn+2 − Tn

)

.

This implies (16).

The method used to obtain identities (15) and (16) will be explored in the general case
in Section 4.

2.2 Mixed convolutions with the “switch effect”

In the following theorem we show a convolution-type formula whereby switching the place of
parentheses and the minus sign with minor adjustment of indices, we obtain the equality. It
is also important to mention that the formula has an interesting connection to convolution
sums of three sequences. The connection will be established in the next two sections.
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Theorem 10. For all n ≥ 1 and m ≥ 3 we have

n
∑

j=0

F
(m−2)
j

(

F
(m)
n−j − F

(m−1)
n−j

)

=
n−1
∑

j=0

F
(m)
j

(

F
(m−1)
n−1−j − F

(m−2)
n−1−j

)

.

Proof. Since

1− x− x2 − · · · − xm = 1− x− x2 − · · · − xm−1 − x(1− x− x2 − · · · − xm−2)

+ x(1− x− x2 − · · · − xm−1),

it follows that
1

F (m)(x)
=

1

F (m−1)(x)
−

x

F (m−2)(x)
+

x

F (m−1)(x)

or equivalently

F (m−2)(x)
(

F (m)(x)− F (m−1)(x)
)

= xF (m)(x)
(

F (m−1)(x)− F (m−2)(x)
)

.

Passing to the power series and comparing coefficients of xn we obtain the identity.

The next corollary is again a rediscovery of Theorem 2.1 in [6].

Corollary 11. For all n ≥ 1 we have

Tn+1 − Fn+1 =
n−1
∑

j=0

TjFn−1−j.

Furthermore, for all n ≥ 1 we also have

n
∑

j=0

Fj

(

Tn−j −Qn−j

)

=
n−1
∑

j=0

(

Fj − Tj

)

Qn−1−j

and
n
∑

j=0

Tj

(

Qn−j − Pn−j

)

=
n−1
∑

j=0

(

Tj −Qj

)

Pn−1−j. (18)

Proof. Set m = 3 in Theorem 10 and simplify using equation (10) and

n
∑

j=0

Fj = Fn+2 − 1.

This gives the first identity. To get the remaining two identities, set m = 4 and m = 5, in
turn, in Theorem 10 and simplify.
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It is also possible to obtain the “switch” effect in the following sense.

Theorem 12. For all m,n ≥ 2 we have

n
∑

j=0

F
(m−1)
j F

(m)
n−j =

n−2
∑

j=0

2j
(

F
(m−1)
n−1−j − F

(m)
n−2−j

)

.

Proof. The relation

1− x− x2 − · · · − xm = 1− 2x+ x(1− x− x2 − · · · − xm−1)

translates to
1

F (m)(x)
=

1

P2(x)
+

x

F (m−1)(x)

with

P2(x) =
x

1− 2x
= x

∞
∑

n=0

2nxn.

This gives
P2(x)F

(m−1)(x) = F (m)(x)F (m−1)(x) + xP2(x)F
(m)(x).

Passing to the power series and comparing coefficients of xn we obtain the identity.

Corollary 13. For all n ≥ 0,

n
∑

j=0

2jFn−j = 2n+1 − Fn+3, (19)

n
∑

j=0

2j
(

Fn+1−j − Tn−j

)

= Tn+4 − Fn+4, (20)

n
∑

j=0

2jTn−j = 2n+2 − Tn+4, (21)

n+2
∑

j=0

TjQn−j =
n
∑

j=0

2j
(

Tn+1−j −Qn−j

)

. (22)

Proof. Set m = 2 in Theorem 12, simplify, and replace n by n+ 2. This shows (19). To get
(20), set m = 3 in Theorem 12, use Corollary 11, and replace n by n+ 2. The identity (21)
follows from combining (19) with (20). Finally, set m = 4 in Theorem 12, and replace n by
n+ 2 to obtain (22).

Identities (19) and (21) can be generalized for Fibonacci m-step numbers as is seen in
the next theorem.
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Theorem 14. For all n ≥ 0 and m ≥ 1

n
∑

j=0

2jF
(m)
n−j = 2n−1+m − F

(m)
n+1+m.

Proof. We use induction on m. The statement is true for m = 1 and m = 2. Assume the
identity is true for a fixed m− 1 > 2 (and all n). Replacing n by n+2 in Theorem 12 yields

n
∑

j=0

2jF
(m)
n−j =

n
∑

j=0

2jF
(m−1)
n+1−j −

n+2
∑

j=0

F
(m−1)
j F

(m)
n+2−j.

But from Theorem 1 upon making the replacement n 7→ n+ 2 +m we get

n+2
∑

j=0

F
(m)
j F

(m+1)
n+2−j = F

(m+1)
n+2+m − F

(m)
n+2+m.

and upon making the replacement m 7→ m− 1 we eventually get

n+2
∑

j=0

F
(m−1)
j F

(m)
n+2−j = F

(m)
n+1+m − F

(m−1)
n+1+m.

From here using the inductive hypothesis we can calculate

n
∑

j=0

2jF
(m)
n−j =

n
∑

j=0

2jF
(m−1)
n+1−j − F

(m)
n+1+m + F

(m−1)
n+1+m

=
n+1
∑

j=0

2jF
(m−1)
n+1−j − F

(m)
n+1+m + F

(m−1)
n+1+m

= 2n+1−1+(m−1) − F
(m−1)
n+1+1+(m−1) − F

(m)
n+1+m + F

(m−1)
n+1+m

= 2n−1+m − F
(m)
n+1+m.

2.3 Three other general identities

The next convolution identities involve an alternating sum. They all share the same struc-
ture; we convolve two sequences with indices m that differ by 2.

Theorem 15. For any n ≥ 2m− 1 we have

n−1
∑

j=0

(−1)j
(

F
(2m)
j − F

(2m−2)
j

)

= (−1)n+1

n−2m+1
∑

j=0

F
(2m)
j F

(2m−2)
n−2m+1−j . (23)

11



Proof. As

1+x−x2+x3∓· · ·−x2(m−1)+x2m−1−x2m = 1+x−x2+x3∓· · ·−x2(m−1)+x2m−1(1−x),

we obtain the functional equation

1

F (2m)(−x)
=

1

F (2m−2)(−x)
− x2m−1 1

F (1)(x)

or equivalently
(

F (2m)(−x)− F (2m−2)(−x)
)

F (1)(x) = x2m−1F (2m)(−x)F (2m−2)(−x).

As a corollary, we can give a different proof of identity (14).

Corollary 16. For any n ≥ 0 we have

n
∑

j=0

FjQn−j = Qn+1 +Qn−1 − Fn+1. (24)

Proof. Set m = 2 in Theorem 15 and use

n
∑

j=0

(−1)jFj = (−1)nFn−1 − 1

as well as [20]
n
∑

j=0

(−1)jQj = (−1)n(Qn+3 − 2Qn+2 +Qn+1 −Qn)− 1.

These results produce

n−3
∑

j=0

FjQn−3−j = Qn+2 − 2Qn+1 +Qn −Qn−1 − Fn−2,

and the statement follows upon replacing n by n+ 3 and simplifying.

The companion result for Theorem 15 for the Fibonacci m-step numbers with odd m is
stated next.

Theorem 17. For any n ≥ 2m we have

n−1
∑

j=0

(−1)j+1
(

F
(2m+1)
j − F

(2m−1)
j

)

= (−1)n
n−2m
∑

j=0

F
(2m+1)
j F

(2m−1)
n−2m−j . (25)
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Proof. This result follows from the functional equation

1

F (2m+1)(−x)
=

1

F (2m−1)(−x)
+ x2m 1

F (1)(x)
.

We proceed with two corollaries. The first identity is known (see for instance Equa-
tion (18) in [7]), the second identity is a rediscovery of (16) with a slightly different (but
equivalent) right-hand side.

Corollary 18. For any n ≥ 0 we have

n
∑

j=0

(−1)jTj =
1

2
((−1)n(Tn+1 − Tn−1)− 1)

and
n
∑

j=0

PjTn−j =
1

2
(−Pn+7 + 2Pn+6 − Pn+5 + 2Pn+4 + Pn+3 − Tn+4 + Tn+2).

Proof. Set m = 1 in Theorem 17 and simplify to get the first identity. For the second
identity, set m = 2 in Theorem 17 and simplify while making use of (see [21])

n
∑

j=0

(−1)jPj =
1

2
((−1)n(−Pn+4 + 2Pn+3 − Pn+2 + 2Pn+1 + Pn)− 1).

We conclude this section with the remark that identities involving Fibonacci m-step
numbers and other important number sequences can be obtained fairly easily using the
generating function approach. We give an example involving Jacobsthal numbers, which is
related to identity (1).

Theorem 19. Let Jn be the Jacobsthal numbers, i.e., J0 = 0, J1 = 1, and Jn+2 = Jn+1+2Jn.
Then, for m ≥ 3 and any n ≥ 2 we have

n
∑

j=0

F
(m)
j F

(m−2)
n−j = Jn−1 +

n−2
∑

j=0

Jj
(

F
(m−2)
n−j − F

(m)
n−2−j

)

. (26)

Proof. We have

1− x− x2 − x3 − · · · − xm = 1− x− 2x2 + x2(1− x− x2 − · · · − xm−2),

which implies
x

F (m)(x)
=

x

J(x)
+

x3

F (m−2)(x)
,

where J(x) = x
1−x−2x2 is the ordinary generating function for Jacobsthal numbers.

13



Corollary 20. For any n ≥ 0 we have

n
∑

j=0

JjTn−j = Jn+1 +
1

2
(Jn+2 − Tn+3 − Tn+1).

Proof. Use the previous theorem with m = 3 in conjunction with (10) and

n
∑

j=0

Jj =
1

2
(Jn+2 − 1).

3 Convolutions of multiple sequences

The main goal of this section is to derive convolution identities of three and more Fibonacci
m-step sequences. For convenience, we introduce the following notation:

K(ℓ, b) = {(k1, . . . , kℓ) ∈ Z
ℓ
≥0 : k1 + · · ·+ kℓ = b}.

Before providing an analysis of the m-step sequences, we present a result for the Pell
sequence. Then we consider a general convolution of three Fibonacci m-step sequences and
derive all mixed convolutions with 2 ≤ m ≤ 5. Finally, we delve into the convolution of four
sequences.

3.1 A Pell-Fibonacci relation

Theorem 21. Let Pn be the Pell numbers, i.e., P0 = 0,P1 = 1, and Pn+2 = 2Pn+1 + Pn.

Then, for all n ≥ 1 and m ≥ 2 we have the following Pell-Fibonacci-m-step-relation:

∑

K(3,n−1)

Pk1F
(m−1)
k2

F
(m)
k3

=
n
∑

j=0

F
(m−1)
j

(

Pn−j − F
(m)
n−j

)

−
n−1
∑

j=0

PjF
(m)
n−1−j.

Proof. Let P(x) = x
1−2x−x2 denote the generating function for the Pell numbers. From

1− x− x2 − x3 − · · · − xm = 1− 2x− x2 + x(1− x− x2 − · · · − xm−1) + x2,

we get
1

F (m)(x)
=

1

P(x)
+ x

F (m−1)(x) + 1

F (m−1)(x)
,

or
xP(x)F (m−1)(x)F (m)(x) = F (m−1)(x)

(

P(x)− F (m)(x)
)

− xP(x)F (m)(x).

The result follows upon passing to power series and comparing the coefficients of xn.
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As a first corollary, we rediscover identity (3).

Corollary 22. For any n ≥ 0 we have

n
∑

j=0

PjFn−j = Pn − Fn.

Proof. Set m = 2 in Theorem 21 and simplify.

Corollary 23. For any n ≥ 0 we have

∑

K(3,n)

Pk1Fk2Tk3 = Pn+1 + Fn+2 − Tn+3 −
n
∑

j=0

PjTn−j.

or
∑

K(3,n)

Pk1Fk2Tk3 =
1

2
(Pn+1 − Tn+3 − Tn+2) + Fn+2. (27)

Proof. Set m = 3 in Theorem 21, use (2) and (3), and simplify. To get (27), let R(x) = x
1−x2

and notice that
1

T (x)
=

1

P(x)
+ x ·

1

R(x)
,

which is equivalent to
xP(x)T (x) = R(x)(P(x)− T (x)).

Using

R(x) =
x

2

(

1

1− x
+

1

1 + x

)

and passing to power series, we get

n
∑

j=0

PjTn−j =
1

2

n
∑

j=0

Pj +
1

2

n
∑

j=0

(−1)n−jPj −
1

2

n
∑

j=0

Tj −
1

2

n
∑

j=0

(−1)n−jTj .

Recall the well-known identities for Pell numbers (see for example [2]):

n
∑

j=0

Pj =
1

2
(Pn+1 + Pn − 1) and

n
∑

j=0

(−1)jPj =
1

2
((−1)n(Pn+1 − Pn)− 1) .

These relations show that

n
∑

j=0

PjTn−j =
1

2
(Pn+1 − Tn+1 − Tn)

and (27) follows.
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From
P(x)F (x) = P(x)− F (x),

we get (by induction) for all r ≥ 1

P(x)F r(x) = P(x)−
r
∑

s=1

F s(x),

or equivalently

∑

K(r+1,n)

Pk1Fk2Fk3 · · ·Fkr+1
= Pn −

r
∑

s=1

∑

K(s,n)

Fk1 · · ·Fks .

Special cases of this convolution include (see Zhang’s paper [22] for the Fibonacci convo-
lutions)

∑

K(3,n)

Pk1Fk2Fk3 = Pn − Fn −
1

5
((n− 1)Fn + 2nFn−1) (n ≥ 1)

as well as

∑

K(4,n)

Pk1Fk2Fk3Fk4 = Pn − Fn −
1

5
((n− 1)Fn + 2nFn−1)

−
1

50

(

(5n2 − 9n− 2)Fn−1 + (5n2 − 3n− 2)Fn−2

)

(n ≥ 2). (28)

3.2 Convolution of three Fibonacci m-step sequences

The next theorem is the most important observation in this paper. We will use it to support
some of the observations that follow.

Theorem 24. Let m, p, q ≥ 1 be integers. Then the following functional identity holds true:

x2m+p(1− xp)(1− xq)F (m)(x)F (m+p)(x)F (m+p+q)(x)

= xm(1− x)(1− xp)F (m)(x)F (m+p+q)(x)− (1− x)2(F (m+p)(x)− F (m)(x)). (29)

In particular,

x2m+1F (m)(x)F (m+1)(x)F (m+2)(x) = xmF (m)(x)F (m+2)(x)− F (m+1)(x) + F (m)(x). (30)

Proof. We utilize the proof of Theorem 3 and work with the identity:

F (a+b)(x)− F (a)(x) =

(

b−1
∑

k=0

xa+k

)

F (a)(x)F (a+b)(x). (31)
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Applying it in two different ways we get:

F (m+p)(x) =
F (m)(x)

1−

(

p−1
∑

k=0

xm+k

)

F (m)(x)

,

F (m+p+q)(x)− F (m+p)(x) =

(

q−1
∑

k=0

xm+p+k

)

F (m+p)(x)F (m+p+q)(x). (32)

Hence, we obtain

F (m+p+q)(x)−
F (m)(x)

1−

(

p−1
∑

k=0

xm+k

)

F (m)(x)

=

(

q−1
∑

k=0

xm+p+k

)

F (m+p)(x)F (m+p+q)(x),

or, after rearranging,

(

p−1
∑

k=0

xm+k

)(

q−1
∑

k=0

xm+p+k

)

F (m)(x)F (m+p)(x)F (m+p+q)(x)

=

(

q−1
∑

k=0

xm+p+k

)

F (m+p)(x)F (m+p+q)(x)

+

(

p−1
∑

k=0

xm+k

)

F (m)(x)F (m+p+q)(x)− F (m+p+q)(x) + F (m)(x).

Simplifying using (32) yields

(

p−1
∑

k=0

xm+k

)(

q−1
∑

k=0

xm+p+k

)

F (m)(x)F (m+p)(x)F (m+p+q)(x)

=

(

p−1
∑

k=0

xm+k

)

F (m)(x)F (m+p+q)(x)− F (m+p)(x) + F (m)(x).

Finally, from the geometric series

(

p−1
∑

k=0

xm+k

)(

q−1
∑

k=0

xm+p+k

)

= x2m+p (1− xp)(1− xq)

(1− x)2
,

p−1
∑

k=0

xm+k = xm1− xp

1− x

and the functional equation follows. The particular case belongs to p = q = 1.

The special case of Theorem 24 leads to yet another identity involving triple convolutions;
namely the following result.
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Theorem 25. For any p ≥ 1 and any m ≥ 1 we have

xmF (m)(x)F (m+1)(x)F (p)(x) = F (p)(x)F (m+1)(x)− F (p)(x)F (m)(x).

In particular,

∑

K(3,n−m)

F
(m)
k1

F
(m+1)
k2

F
(p)
k3

=
n
∑

j=0

F
(p)
j F

(m+1)
n−j −

n
∑

j=0

F
(p)
j F

(m)
n−j .

Proof. Use identity (31).

We apply Theorem 24 with m = 2 and p = q = 1. This choice results in several different
functional equations, one coming directly from the theorem.

x5F (x)T (x)Q(x) = x2F (x)x3T (x)Q(x)

= x2F (x)(Q(x)− T (x))

= x2F (x)Q(x)− T (x) + F (x)

= x2F (x)Q(x) + x3T (x)Q(x)−Q(x) + F (x).

Theorem 26. We have for each n ≥ 0,
∑

K(3,n)

Fk1Tk2Qk3 = Qn+4 +Qn+2 − Tn+5 + Fn+3. (33)

Proof. Work with

x5F (x)T (x)Q(x) = x2F (x)Q(x)− T (x) + F (x).

When passing to the power series and comparing the coefficients of xn use the identity (14)
and simplify.

Working with m = 3 and p = q = 1 in Theorem 24 results in the functional equations,
where again, one comes from the theorem.

x7T (x)Q(x)P (x) = x3T (x)x4Q(x)P (x)

= x3T (x)(P (x)−Q(x))

= x3T (x)P (x)−Q(x) + T (x)

= x3T (x)P (x) + x4P (x)Q(x)− P (x) + T (x),

and this gives the next convolution.

Theorem 27. We have

∑

K(3,n−7)

Tk1Qk2Pk3 =
1

2
(Pn + Pn−2 + Pn−4 + Tn − Tn−2)−Qn

valid for each n ≥ 7.
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Proof. Using the identity

x7T (x)Q(x)P (x) = x3T (x)P (x)−Q(x) + T (x)

in conjunction with (16) we obtain, after minor simplification, the desired result.

In the following two results we find convolution sums of the remaining triples with 2 ≤
m ≤ 5 using Theorem 25.

Theorem 28. We have the following identity:

∑

K(3,n−5)

Fk1Qk2Pk3 = −Qn −Qn−2 +
1

2

(

Pn+1 + Pn−2 − Fn+1

)

+ Fn. (34)

Proof. Use Theorem 25 with m = 4 and p = 2, pass to power series, apply (14) and (15),
and simplify.

Theorem 29. We have the following identity:

∑

K(3,n−5)

Fk1Tk2Pk3 =
1

2

(

Pn − Pn−1 + Pn−2 − Tn − Tn−2 + Fn−1

)

.

Proof. Use Theorem 25 with m = 2 and p = 5, pass to power series, apply (15) and (16),
and simplify.

In the proofs of Theorem 28 and Theorem 29 we used a different approach. Instead of
utilizing Theorem 24, we applied Theorem 25. This is necessary here, since, otherwise, the
obtained formula would produce an identity with multiple triple convolution terms instead
of one.

We finish this part of the article by showing that one can use a completely different
approach to prove the results in this section. Namely, we can deduce the fundamental
functional equations from other relations of the respective generating functions.

Remark 30. Notice that one can prove Theorem 28 and Theorem 29 using other transfor-
mations of generating functions. For the first theorem, we can use the following identities:

P (x)−Q(x) = x4P (x)Q(x) and Q(x) =
F (x)

1 + x2 − xF (x)
,

where the formula for Q is substituted to the right-hand-side presence of Q in the first
identity. For the second theorem, we start from the identity

x

P (x)
=

x

F (x)
+

x4

F (x)
− 2x3

to obtain
P (x)− F (x) = 2x2F (x)P (x)− x3P (x). (35)

Then we substitute F (x) = T (x)
1+x2T (x)

and obtain a functional equation.
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3.3 Convolutions of four Fibonacci m-step sequences

The functional equations from Theorem 24 (as well as any other functional equations derived
in this paper) can be multiplied by arbitrary F (r)(x) or even by any product of the form

N
∏

u=1

(

F (ru)(x)
)su

, s1, . . . , sN , r1, . . . , rN positive integers.

In particular cases these functional equations can be used for a different proof of Theorems
26–29. For example, using (30) we immediately get the following.

Theorem 31. For any m ≥ 1 we have

x2m+1F (m)(x)F (m+1)(x)F (m+2)(x)F (m+3)(x)

= xmF (m)(x)F (m+2)(x)F (m+3)(x)− F (m+1)(x)F (m+3)(x) + F (m)(x)F (m+3)(x).
(36)

This theorem implies a particular closed formula for the convolution of the Fibonacci,
Tribonacci, Tetranacci, and Pentanacci numbers.

Theorem 32. We have

∑

K(4,n−5)

Fk1Tk2Qk3Pk4 =
1

2

(

Pn+4 − Pn+3 + Pn+2 + Tn+3 + Tn+1 − Fn

)

−Qn+3 −Qn+1.

Proof. Set m = 2 in Equation (36) to get

x5F (x)T (x)Q(x)P (x) = x2F (x)Q(x)P (x)− T (x)P (x) + F (x)P (x).

Pass to power series, use (34), (16) and (15), and simplify.

Remark 33. We note that identity (36) can be (after multiplication by x2) further simplified
using Theorem 25 so that the right-hand-side contains convolution sums of two sequences.

Other interesting identities involving the Fibonacci, Tribonacci, Tetranacci, and Pen-
tanacci numbers can be derived. In particular, the following holds true:

x4F (x)T (x)Q(x)P (x) = F (x)T (x)x4Q(x)P (x)

= F (x)T (x)(P (x)−Q(x))

= F (x)T (x)P (x)− xF (x)T (x)Q(x),

or

x6F (x)T (x)Q(x)P (x) = x2F (x)T (x)x4Q(x)P (x) = (T (x)− F (x))(P (x)−Q(x)). (37)

The last identity leads to the following surprising identity.
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Theorem 34. For any m ≥ 1 we have

∑

K(4,n−2m−2)

F
(m)
k1

F
(m+1)
k2

F
(m+2)
k3

F
(m+3)
k3

=
n
∑

j=0

(

F
(m+3)
j − F

(m+2)
j

)(

F
(m+1)
n−j − F

(m)
n−j

)

.

Proof. Following identity (37) and using (5) we have

x2m+2F (m)(x)F (m+1)(x)F (m+2)(x)F (m+3)(x)

=
(

xmF (m)(x)F (m+1)(x)
)(

xm+2F (m+2)(x)F (m+3)(x)
)

=
(

F (m+1)(x)− F (m)(x)
)(

F (m+1)(x)− F (m)(x)
)

,

and the identity follows after passing to power series.

4 Concluding results and comments

4.1 Higher order convolutions

We can derive identities for higher order convolutions by mimicking the argument made at
the end of the previous section. For instance, Theorem 34 has the following generalization.

Theorem 35. Fix ℓ ≥ 1 and an integer m ≥ 1. Then

∑

K(2ℓ,n−ℓ(m+ℓ−1))

2ℓ−1
∏

j=0

F
(m+j)
kj+1

=
∑

K(ℓ,n)

ℓ−1
∏

j=0

(

F
(m+2j+1)
kj

− F
(m+2j)
kj

)

(38)

and

∑

K(2ℓ+1,n−ℓ(m+ℓ−1))

2ℓ
∏

j=0

F
(m+j)
kj

=
∑

K(ℓ+1,n)

F
(m+2ℓ)
kℓ+1

(

ℓ−1
∏

j=0

(

F
(m+2j+1)
kj

− F
(m+2j)
kj

)

)

. (39)

Proof. We sketch the proof of (38). Using (31), we can write the following functional equa-
tion.

xℓ(m+ℓ−1)F (m)(x) · · ·F (m+2ℓ−1)(x)

=
(

xmF (m)(x)F (m+1)(x)
)

· · · xm+2ℓ−2
(

xmF (m+2ℓ−2)(x)F (m+2ℓ−1)(x)
)

=
(

F (m+1)(x)− F (m)(x)
)

· · ·
(

F (m+2ℓ−1)(x)− F (m+2ℓ−2)(x)
)

.

Passing to power series we obtain the desired formula.

Theorem 35, in particular, allows us to effectively cut off half of the sequences from the
initial convolution. For instance, it is sufficient to know the exact formula for the convolution
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of three among the Fibonacci to Hexanacci and Heptanacci numbers (so 2 ≤ m ≤ 7) in order
to determine the expression for the convolution of all of the sequences.

In identity (39) of Theorem 35 the sequence F
(m+2ℓ)
n does not take a part in reducing the

order of convolution. It is clear that another sequence can be distinguished in a similar way.
The change results in different summation or product ranges, which are easily adjustable for
a specific example. This implies, for instance, the following.

Corollary 36. We have

∑

K(3,n−2)

Fk1Tk2Qk3 =
n
∑

j=0

(Tj − Fj)Qn−j =
n+1
∑

j=0

Fn+1−j(Qj − Tj).

The above observation also leads to yet another look at the “switch” effect described in
Section 2. This effect turns out to be the two different versions of the simplified convolution
sum of three sequences.

Finally, we also note that identities (38) and (39) can be stated in a more general setting;
namely, the left-hand-side of either identity can be any finite product of the terms

F (m)
a F

(m+1)
b ,

even with repetitions, and the general formula can be adjusted for that case as well. We
leave the derivation of such a convoluted formula to the reader.

4.2 Some general cases of convolution of two sequences

In Section 2, we derived convolution identities that involve all pairs of sequences up to
m = 5. However, following the proof of Corollary 9 we can do more. In fact, we can deliver
the general algorithm for finding a simple and closed form of the convolution of F (m) with
F (m+p) in the following cases.

Case 1: p | m.
Case 2: p | m+ 1.
Case 3: p = 2m+ 2.
We start with Case 1. So let m = ℓ · p for some integer ℓ ≥ 1. Applying Theorem 3 we

get
F ((ℓ+1)p)(x)− F (ℓ·p)(x) =

(

xℓ·p + · · ·+ x(ℓ+1)p−1
)

F (ℓ·p)(x)F ((ℓ+1)p)(x). (40)

Multiplying (40) repeatedly by xp we stack up a total of ℓ equalities:

xpF ((ℓ+1)p)(x)− xpF (ℓ·p)(x) =
(

x(ℓ+1)p + · · ·+ x(ℓ+2)p−1
)

F (ℓ·p)(x)F ((ℓ+1)p)(x),

...

x(ℓ−1)pF ((ℓ+1)p)(x)− x(ℓ−1)pF (ℓ·p)(x) =
(

x(2ℓ−1)p + · · ·+ x2ℓ·p−1
)

F (ℓ·p)(x)F ((ℓ+1)p)(x).
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Adding everything up we get

ℓ−1
∑

j=0

xj·p
(

F ((ℓ+1)p)(x)− F (ℓ·p)(x)
)

=
(

xℓ·p + · · ·+ x2ℓ·p−1
)

F (ℓ·p)(x)F ((ℓ+1)p)(x). (41)

In the next part of our computation we use the following convention. Whenever we
combine several sums into one with a fixed summation range, the remaining terms that are
not included in the combined sum are called other terms and are referred as o.t. Depending
in the exact case, these terms can be explicitly derived. We do not do that in the below
computation as it makes the formula presented in the algorithm difficult to follow. Thus,
only the important terms are explicit.

We go back to (41) and rewrite this in a power series to obtain

ℓ−1
∑

j=0

(

F
((ℓ+1)p)
n−j·p − F

(ℓ·p)
n−j·p

)

=

n−(2ℓ·p−1)
∑

k=0

F
((ℓ+1)p)
k

(

ℓ·p−1
∑

j=0

F
(ℓ·p)
n−(2ℓ·p−1)−k−j

)

+ o.t.

=

n−(2ℓ·p−1)
∑

k=0

F
((ℓ+1)p)
k F

(ℓ·p)
n−(2ℓ·p)−k

+ o.t.

From this we can derive the closed formula for the desired convolution.

Example 37. Set m = 4, p = 2, and denote sn = F
(6)
n . It follows that

sn−2 −Qn−2 + sn −Qn =
n−7
∑

j=0

sjQn−3−j + o.t. (42)

It is now easy to find that
o.t. = 2sn−6 + sn−5,

and this establishes the formula.
Setting m = p = 2 restores (11).

We now move to Case 2: p | m+ 1. So, let m = ℓ · p− 1 for some positive integer ℓ. The
further reasoning is similar to case p | m. Applying Theorem 3 we get

F ((ℓ+1)p−1)(x)− F (ℓ·p−1)(x) =
(

xℓ·p−1 + · · ·+ x(ℓ+1)p−2
)

F (ℓ·p−1)(x)F ((ℓ+1)p−1)(x). (43)

We multiply (43) again by xp to get

xpF ((ℓ+1)p−1)(x)− xpF (ℓ·p−1)(x) =
(

x(ℓ+1)p−1 + · · ·+ x(ℓ+2)p−2
)

F (ℓ·p)(x)F ((ℓ+1)p)(x),

...

x(ℓ−1)pF ((ℓ+1)p−1)(x)− x(ℓ−1)pF (ℓ·p−1)(x) =
(

x(2ℓ−1)p−1 + · · ·+ x2ℓ·p−2
)

F (ℓ·p−1)(x)F ((ℓ+1)p−1)(x).
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Adding everything up and passing to power series, we have

ℓ−1
∑

j=0

(

F
((ℓ+1)p−1)
n−j·p − F

(ℓ·p)−1
n−j·p

)

=

n−(2ℓ·p−2)
∑

k=0

F
((ℓ+1)p−1)
k

(

ℓ·p−1
∑

j=0

F
(ℓ·p−1)
n−(2ℓ·p−2)−k−j

)

+ o.t.

= 2

n−(2ℓ·p−2)
∑

k=0

F
((ℓ+1)p)−1
k F

(ℓ·p−1)
n−(2ℓ·p−1)−k

+ o.t.

Example 38. Setting p = 3 and m = 2 we reproduce the proof of (15). Setting p = 2 and
m = 3 we reproduce the identity (16).

Finally, consider Case 3 and p = 2m + 2. The key feature of this case is the following
simple lemma.

Lemma 39. For any m ≥ 2 and any n ≥ 0 we have

2m+1
∑

k=0

F
(m)
n+k = 4F

(m)
n+2m. (44)

Proof. Write

4F
(m)
n+2m =

(

2F
(m)
n+m + · · ·+ 2F

(m)
n+2m−1

)

+ 2F
(m)
n+2m

= 2F
(m)
n+m +

(

2F
(m)
n+m+1 + · · ·+ 2F

(m)
n+2m

)

= F (m)
m + · · ·+ F

(m)
n+m−1 + F

(m)
n+m

+ F
(m)
n+m+1 + · · ·+ F

(m)
n+2m + F

(m)
n+2m+1.

We now apply Theorem 3 to obtain

F 3m+2(x)− F (m)(x) =
(

xm + · · ·+ x3m+1
)

F (m)(x)F (3m+2)(x).

This implies, using (44), that

F (3m+2)
n − F (m)

n =

n−(3m+1)
∑

k=0

F
(3m+2)
k

(

F
(m)
n−(3m−1)−k

+ · · ·+ F
(m)
n−m−k

)

+ o.t.

= 4

n−(3m+1)
∑

k=0

F
(3m+2)
k F

(m)
n−m−1−k + o.t.
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Example 40. Set m = 2 and let O = F (8). Then we have

On − Fn = 4
n−7
∑

j=0

OjFn−3−j +On−3 + 2On−4 + 4On−5 + 7On−6

= 4
n−3
∑

j=0

OjFn−3−j +On−3 − 2On−4 −On−6.

It follows after some calculation that

n
∑

j=0

OkFn−j =
1

4
(On+3 −On + 2On−1 +On−3 − Fn+3) . (45)

The methods provided so far allow us to find a closed form of the convolution of two
different sequences out of the set of the Fibonacci, Tribonacci, Tetranacci, and Pentanacci
numbers. If we include the Hexanacci numbers (i.e. s = F (6)), then we can compute all
convolutions but the convolution of the Fibonacci and Hexanacci numbers. This is at first
glance surprising, but in fact the presented algorithm does not allow us to deal with that
case, even though we can compute the explicit form of

∑n

j=0 F
(20)
j F

(27)
n−j .

We now show how to find the sum
∑n

j=0 sjFn−j. In order to deal with this problem, we
have to use another approach.

Theorem 41. For n ≥ 3 we have

n
∑

j=0

sjFn−j =
1

5
(sn+3 + sn+1 − sn + 3sn−1 + sn−3 − Fn+3 − Fn+1) . (46)

Proof. Notice that by (31) or (9) we have

sn − Fn =
n−2
∑

j=0

sjFn−j−2 +
n−3
∑

j=0

sjFn−j−3 +
n−4
∑

j=0

sjFn−j−4 +
n−5
∑

j=0

sjFn−j−5,

sn+2 − Fn+2 =
n
∑

j=0

sjFn−j +
n−1
∑

j=0

sjFn−j−1 +
n−2
∑

j=0

sjFn−j−2 +
n−3
∑

j=0

sjFn−j−3.

Summing up and rearranging we get

sn+2 − Fn+2 + sn − Fn =
n−5
∑

j=0

sj(Fn−j−5 + Fn−j−4 + 2Fn−j−3 + 2Fn−j−2 + Fn−j−1 + Fn−j)

+ sn−1 + 2sn−2 + 5sn−3 + 9sn−4.

To proceed further, we apply the identity

Fn + Fn+1 + 2Fn+2 + 2Fn+3 + Fn+4 + Fn+5 = 5Fn+4 (47)
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valid for any n ≥ 0 and we substitute n → n+ 1 to obtain

sn+3 − Fn+3 + sn+1 − Fn+1 =
n−5
∑

j=0

5sjFn−j−1 + sn−1 + 2sn−2 + 5sn−3 + 9sn−4

= 5
n
∑

j=0

sjFn−j + sn − 3sn−1 − sn−3.

Thus, after minor adjustments, we have (46).

We note that there are more cases where an identity similar to (47) leads to a closed sum
formula. Namely, if we consider p+m ≤ 8 and let S = F (7) (the Heptanacci numbers), then
the only missing cases, not following from the rules described by the three cases, are

n
∑

j=0

SjFn−j,

n
∑

j=0

SjQn−j, and
n
∑

j=0

OjTn−j.

These sums can be derived using an approach similar to (46), but this time with the aid of
the following identities:

2Fn + 2Fn+1 + 3Fn+2 + 3Fn+3 + 3Fn+4 + Fn+5 + Fn+6 = 11Fn+4, (48)

Qn +Qn+1 +Qn+2 +Qn+3 +Qn+4 + 2Qn+5 + 2Qn+6 + 2Qn+7 +Qn+8 = 3Qn+8, (49)

2Tn + 2Tn+1 + 3Tn+2 + 5Tn+3 + 5Tn+4 + 3Tn+5 + 3Tn+6 + 2Tn+7 = 11Tn+6. (50)

To clarify how to use them, we write, for example,

Qn +Qn+1 +Qn+2 +Qn+3 +Qn+4 + 2Qn+5 + 2Qn+6 + 2Qn+7 +Qn+8

= (Qn +Qn+1 +Qn+2) + (Qn+3 +Qn+4 +Qn+5)

+ (Qn+5 +Qn+6 +Qn+7) + (Qn+6 +Qn+7 +Qn+8)

and it is clear that each bracket can be generated from the identity

S(x)−Q(x) = (x4 + x5 + x6)Q(x)S(x).

4.3 Open problems

In the previous section we presented the algorithm for computation of the convolution sum
of two sequences under (major) restrictions. We dealt with the missing case m = 2 and
p = 4 separately so that all convolution sums with m+p ≤ 8 for m ≥ 2 and p ≥ 1 have their
closed forms calculated. The first case that is not covered by our methods (that is, the case
with the smallest possible m + p and the smallest possible p) is the following convolution
sum (also see Table 1):

n
∑

j=0

PjF
(9)
n−j.
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The trick that was used above could also work here but this does not replace a general
approach to these sums (identities (47)–(50) seem to only work in the presented form, we
do not know if/how they generalize, as they were found by trial and error). In our opinion,
a good starting point is to search for an identity of the form

∑

k∈K

p−1
∑

j=0

F
(m)
n+j+k = N · F

(m)
n+ℓ (51)

valid for any n, m ≥ 2, with N and ℓ being unknown, K being a finite set, ℓ related to n

and p. Identity (47) is the case m = 2 and follows that pattern with K = {0, 2}, p = 4,
N = 5 and ℓ = 4. The identity (44) is the simplest example of that form, with K = {0}.
Any identity of the form (51) would give us yet another convolution sum. We believe that
finding any other solution (or even an infinite family of solutions) to that equation is a good
motivation for further research in the topic.

m \ p 2 3 4 5 6 7 8 9

2 (14) (15) (46) (48) (45) ? ? ?
3 (16) p | m p | m+ 1 (50) ? ? p = 2m+ 2 ?
4 (42) (49) p | m p | m+ 1 ? ? ? ?
5 p | m+ 1 p | m+ 1 ? p | m p | m+ 1 ? ? ?
6 p | m p | m ? ? p | m p | m+ 1 ? ?
7 p | m+ 1 ? p | m+ 1 ? ? p | m p | m+ 1 ?
8 p | m p | m+ 1 p | m ? ? ? p | m p | m+ 1
9 p | m+ 1 p | m ? p | m+ 1 ? ? ? p | m

Table 1: Convolution sums
∑

F
(m)
j F

(m+p)
n−j with 2 ≤ m, p ≤ 9 covered directly or indirectly in

this article. The cases m = 1 and p = 1 are covered by (13) and (4), respectively. Question
marks indicate unsolved cases.

5 Conclusion

This article was devoted to study convolutions involving the Fibonacci m-step numbers.
We have applied the prominent generating function approach to prove several appealing
results that strengthen the understanding of these numbers. Many known identities for the
Fibonacci, Tribonacci, Tetranacci, and Pentanacci numbers now follow from our results as
special cases. In addition, we have stated mixed convolutions involving the Fibonacci m-
step numbers, the Jacobsthal numbers, and the Pell numbers. To keep things coherent and
streamlined, we focused exclusively on the Fibonacci m-step numbers. There is still much
work to be done. Identities for the Lucas m-step numbers, the Pell m-step numbers, and
others, and also mixed convolutions of these sequences can be studied in the future.
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