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Abstract

We give part-preserving bijections between three fundamental families of objects
that serve as natural framework for many problems in enumerative combinatorics.
Specifically, we consider compositions, Dyck paths, and partitions of a convex polygon,
and identify suitable building blocks that are then appropriately decorated to achieve
matching cardinalities. Our bijections are constructive and apply for the general case
where the building blocks are allowed to come in different colors.

1 Introduction

Motivated by the approach suggested by Birmajer, Gil, and Weiner [2], we use known enu-
meration formulas in terms of partial Bell polynomials to establish connections between
colored compositions, colored Dyck paths, and colored partitions of convex polygons.

Let us start by recalling some basic definitions and known results.

1.1 Compositions

A composition of a positive integer n is an ordered k-tuple (j1, . . . , jk), for k ≥ 1, of positive
integers (parts) such that j1+ · · ·+ jk = n. For example, (1, 3, 3, 2) is a composition of n = 9
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with k = 4 parts.
There are

(
n−1
k−1

)
compositions of n with k parts. Moreover, given a sequence of nonneg-

ative integers γ = (γj)j∈N, a γ-color composition of n is a composition such that part j can
take on γj colors. If γj = 0, then j is not admissible as part of the composition. We let
cn,k(γ) denote the number of γ-color compositions of n with exactly k parts.

Proposition 1 (Hoggatt & Lind [4]).

cn,k(γ) =
k!

n!
Bn,k(1!γ1, 2!γ2, . . . ) for n ≥ 1,

where Bn,k is the (n, k)-th partial Bell polynomial.1

1.2 Dyck paths

A Dyck path of semilength n (or n-Dyck path) is a lattice path from (0, 0) to (2n, 0), consisting
of steps (1, 1) ; U and (1,−1) ; D, never going below the x-axis.

Figure 1: Dyck path of semilength n = 9 with 4 peaks.

Note that every Dyck path can be constructed using primitive blocks of the form

U,UD,UD2,UD3,UD4, . . .

or alternatively, using primitive blocks of the form

D,UD,U2D,U3D,U4D, . . .

For instance, the path shown in Figure 1 could be written as UUU(UD3)(UD2)U(UD)U(UD3)
or as (U4D)DD(UD)D(U2D)(U2D)DD, depending on the chosen set of building blocks.

There are 1
n

(
n

k−1

)(
n
k

)
n-Dyck paths with exactly k peaks. Given a sequence of nonnegative

integers γ = (γj)j∈N, we let dn,k(γ) denote the number of n-Dyck paths with k peaks such
that the primitive component of length j +1 (e.g. UDj) may be colored in γj different ways.

Proposition 2 (Mansour & Sun [5]).

dn,k(γ) =
1

(n− k + 1)!
Bn,k(1!γ1, 2!γ2, . . . ) for n ≥ 1.

1For the definition and properties of these polynomials, see the book by Comtet [3, Sec. 3.3].
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1.3 Polygon partitions

Finally, we consider the set of rooted convex polygons partitioned by noncrossing diagonals.
Given a sequence of nonnegative integers γ = (γj)j∈N, we let pn,k(γ) be the number of

colored partitions of a rooted convex (n+ 2)-gon made by k − 1 noncrossing diagonals into
k polygons such that each (j + 2)-gon may be colored in γj different ways.

Figure 2: Partition of a rooted 11-gon.

Proposition 3 (Birmajer, Gil & Weiner [1]).

pn,k(γ) =
1

n+ 1

(
n+ k

k

)
k!

n!
Bn,k(1!γ1, 2!γ2, . . . ) for n ≥ 1.

It is clear that the aforementioned sets are not equinumerous, but with appropriate
markings, they can be bijectively connected. In fact, based on the above three propositions,
it is straightforward to see that for any coloring sequence γ = (γj)j∈N, we have(

n

k − 1

)
cn,k(γ) = k dn,k(γ),(

n+ k

k

)
dn,k(γ) =

(
n+ 1

k

)
pn,k(γ),

(n+ 1)pn,k(γ) =

(
n+ k

k

)
cn,k(γ).

(1)

The goal of this paper is to provide constructive combinatorial proofs for these identities.

2 Map from Dyck paths to compositions

In this section, we give a bijective proof of the following result.

Theorem 4. Let 1 ≤ k ≤ n. For any coloring sequence γ = (γj)j∈N, we have(
n

k − 1

)
cn,k(γ) = k dn,k(γ).
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We first assume γ = (1, 1, 1, . . . ) and represent every composition of n as a tiling of an
n× 1 rectangular board with n unit squares. For example,

(1, 3, 3, 2) ←→

Moreover, we can represent every lattice path with steps U and D as a word over the
alphabet {U,D} with valuations val(U) = 1 and val(D) = −1. A Dyck word w is then a
word over that alphabet with val(w) = 0 and such that, if w = uv, then val(u) ≥ 0.

Let C(k−1)
n,k be the set of compositions of n with k parts and such that k− 1 of the n unit

squares are marked. Moreover, let D(peak)
n,k be the set of n-Dyck paths with k peaks and such

that one peak is marked.
We now proceed to give a bijective map φdc : D(peak)

n,k → C(k−1)
n,k , illustrating each step of

our construction with an example.

Figure 3: Dyck path with one peak marked.

◦ Given a Dyck path P with one peak marked, write it as a word wP and extend it by
adding an extra U to the beginning ; w = UwP . Note that val(w) = 1, and if w = uv
with a nonempty word u, then val(u) > 0.

For example, the path in Figure 3 leads to w = UUUUUDDDUDDUUDUUDDD.

◦ Split the word w at each valley (occurrence of DU) into subwords w1, . . . , wk that start
with a string of U’s and end with a string of D’s, and mark the subword that corresponds
to the marked peak of the path.

(UUUUUDDD)(UDD)(UUD)(UUDDD)

◦ If needed, rotate the subwords w1, . . . , wk, repeatedly moving the last subword to the
front of the word until the marked subword is the left most subword.

(UUUUUDDD)(UDD)(UUD)(UUDDD)

↓
(UUDDD)(UUUUUDDD)(UDD)(UUD)

↓
(UUD)(UUDDD)(UUUUUDDD)(UDD)
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Note that each of the rotated words will have a left factor with valuation 0.

◦ Let ŵ denote the (rotated) word starting with the marked subword. The k parts of the
composition associated to P are the number of D’s in each of the k subwords of ŵ.

In our example, this leads to the composition .

◦ Next, we identify the first k− 1 peaks (occurrences of UD) in ŵ and mark the positions
of the corresponding U-steps. If k = 1, we skip this step.

(UUD)(UUDDD)(UUUUUDDD)(UDD)

◦ Finally, identifying the first n U-steps of ŵ with the n unit squares of the associated
composition, we place k − 1 dots at the unit squares that correspond to the positions
of the marked peaks in ŵ. The resulting marked composition is denoted by φdc(P ).

Figure 4: Marked composition corresponding to Dyck path in Figure 3.

Going back from a marked composition C to a word ŵ over the alphabet {U,D} is fairly
simple. The length of each tile in C gives the distribution of the D’s, and the location of the
dots gives the placement of the U’s (with an extra U added to the last group of D’s). By
construction, val(ŵ) = 1.

Now, split ŵ at its valleys to obtain subwords ŵ1, . . . , ŵk that start with a string of U’s
and end with a string of D’s. Mark the subword ŵ1. If ŵ has a left factor with valuation 0,
we rotate the subwords repeatedly moving the first subword to the end of the word until the
rotated subword has no left factor with valuation 0. Once that point is reached, we remove
the first U from the rotated word and obtain a marked Dyck word, φ−1

dc (C). Note that the
marked peak is the one inside the subword ŵ1.

We finish by observing that, under our bijection, each part j of a given composition
corresponds to a maximal descent UDj of the associated Dyck path, so our proof also works
for an arbitrary coloring sequence γ = (γ1, γ2, . . . ).

The rotation strategy we used to count the marked Dyck paths is known for proving
Narayana’s formula.

Remark 5. For γ = (1, 1, . . . ) and n ≥ 1, the sequence

an =
n∑

k=1

(
n

k − 1

)
cn,k =

n∑
k=1

k dn,k

gives 1, 3, 10, 35, 126, 462, 1716, 6435, 24310, 92378, . . . , cf. [6, A001700].
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3 Map from Dyck paths to polygon partitions

In this section, we discuss a connection between colored Dyck paths and colored partitions
of a convex polygon made by noncrossing diagonals.

We start by pointing out that polygon partitions are easily converted to rooted trees.
In fact, a convex (n + 2)-gon partitioned by k − 1 noncrossing diagonals can be bijectively
mapped to a rooted tree with n + 1 leaves, k − 1 internal nodes, and having no node of
outdegree 1. An example of this known bijection is illustrated in Figure 5.

Figure 5: Bijection between polygon partitions and rooted trees

Theorem 6. Let 1 ≤ k ≤ n. For any coloring sequence γ = (γj)j∈N,(
n+ k

k

)
dn,k(γ) =

(
n+ 1

k

)
pn,k(γ).

As before, we start by assuming γ = (1, 1, 1, . . . ).
Every n-Dyck path with k peaks has n U-steps, and it must have k D-steps that are each

part of a peak. We let D(k steps)
n,k denote the set of such paths where k of these n+ k steps are

marked. On the other hand, a rooted convex (n + 2)-gon must have one side designated as

the base. We let P(k)
n,k be the set of partitions of a rooted convex (n+ 2)-gon made by k − 1

noncrossing diagonals, where k of the n+ 1 non-base sides of the polygon are marked.
The above bijection between rooted polygon partitions and rooted trees (depicted in

Figure 5) gives a bijection between P(k)
n,k and the set T (k)

n,k of rooted trees having n+ 1 leaves
and k nodes of outdegree greater than 1 (for a total of n + k + 1 nodes), where k of the

leaves are marked. We will give an explicit bijective map φdp : D(k steps)
n,k → T (k)

n,k along with
an illustrating example.

Figure 6: Marked Dyck path in D(6 steps)
10,6 .

6



◦ Given a marked Dyck path P , break the path at each valley so that there are k shorter
lattice paths with one peak each (as shown in Figure 6).

◦ For each segment UaDb, create a primitive rooted tree of the form . . .
b

with a + 1

leaves and the weight b (omitted if b = 1) assigned to the right-most edge. Mark the
leaves of any branches that correspond to a marked step on the Dyck path. This gives
an ordered tuple of marked trees (T1, . . . , Tk) corresponding to the given Dyck path.

4 2

Figure 7: Marked trees associated with the Dyck path in Figure 6.

◦ For every j ∈ {1, . . . , k}, let ℓj be the number of unmarked leaves in Tj and let bj be
the weight of its right-most edge. Going left to right, we proceed with the following
merging process:

If ℓ1 ≥ b1, place the root of T2 into T1 on its b1-st unmarked leaf from the right. We
denote the merged tree by T1,2 and declare the b1−1 right-most leaves of T1 as inactive.
The tree T1,2 now has ℓ1− b1+ ℓ2 unmarked active leaves, and we assign to it the weight
b2. If ℓ1 < b1, do nothing and move to T2.

We repeat this merging procedure until we reach Tk and let (Fv1 , . . . , Fvm) be the re-
sulting ordered forest of merged primitive trees.

4 2

Fv1 = T1,2 Fv2 = T3 Fv3 = T4,5,6

4

2

Figure 8: Ordered forest construction.

If m = 1, this step gives a tree in T (k)
n,k which we denote by φdp(P ).

◦ If m > 1, we define φdp(P ) by means of an additional merging procedure. Note that a
completely merged tree of the form Ti,...,j has ℓi − bi + · · · + ℓj−1 − bj−1 + ℓj unmarked
active leaves and weight bj. Moreover, for j < k, we must have

ℓi − bi + · · ·+ ℓj−1 − bj−1 + ℓj < bj,
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hence ℓi + · · ·+ ℓj + δi,...,j = bi + · · ·+ bj for some δi,...,j ≥ 1. Thus, if Fvm = Tim,...,k, the
information from the trees Fv1 , . . . , Fvm−1 implies

ℓ1 + · · ·+ ℓim−1 + (δv1 + · · ·+ δvm−1) = b1 + · · ·+ bim−1,

where δvi is the difference between the weight of the tree Fvi and the number of its
unmarked active leaves. By definition, δvi ≥ 1 for every i ∈ {1, . . . ,m− 1}. In addition,

since
k∑

i=1

ℓi = n =
k∑

i=1

bi, we have ℓim + · · ·+ ℓk − (δv1 + · · ·+ δvm−1) = bim + · · ·+ bk, and

therefore,
ℓim − bim + · · ·+ ℓk−1 − bk−1 + ℓk = δv1 + · · ·+ δvm−1 + bk.

This means that Fvm has exactly δv1 + · · ·+ δvm−1 + bk unmarked active leaves. Finally,
we construct the tree φdp(P ) by attaching the roots of the trees Fv1 , . . . , Fvm−1 to the
unmarked active leaves of Fvm , from right to left, according to the pattern:

| | |
Fvm−1 Fv2 Fv1

· · · · · · · · · · · · · · ·

all
unmarked

active leaves
of Fvm

bkδv1δvm−2

In other words, the root of Fv1 is attached to the right-most unmarked leaf of Fvm

that allows the last bk active leaves of Fvm to stay unchanged. The remaining trees are
attached in a way that Fvi+1

is at the δvi-th unmarked leaf of Fvm to the left of Fvi . Note
that there will be δvm−1− 1 ≥ 0 unmarked leaves to the left of Fvm−1 .

4

2

Figure 9: Right-to-left merging procedure.

For the marked Dyck path given in Figure 6, the above construction leads to the marked
tree shown in Figure 10.

Conversely, there is an algorithm to label and decompose each element of T (k)
n,k into an

ordered forest of primitive rooted trees that leads to an element of D(k steps)
n,k .

Suppose we are given T ∈ T (k)
n,k . Such a tree consists of k primitive subtrees, k−1 internal

nodes, n+ k edges, and n+ 1− k unmarked leaves.

8



↭

Figure 10: Marked tree and its corresponding polygon partition.

◦ Starting at the root of T , and going around clockwise, denote its primitive components
by T1, . . . , Tk. For i ∈ {1, . . . , k − 1}, label the right-most edge of Ti with the number
λi ≥ 1 of unmarked nodes needed to arrive at the root of Ti+1. This gives a sequence of
labels λ1, . . . , λk−1 with λ1 + · · ·+ λk−1 ≤ n. We let λk = n− (λ1 + · · ·+ λk−1).

1

1

1

1

3

3

Figure 11: Labeled element of T (6)
10,6.

Let ai + 1 be the number of edges of Ti, so a1 + · · ·+ ak = n. Let di = ai − λi.

◦ If
j∑

i=1

di ≥ 0 for every j ∈ {1, . . . , k − 1}, then we let φ−1
dp (T ) be the marked Dyck

path Ua1Dλ1 · · ·UakDλk , where a subpath UaiD is marked at each step corresponding to
the marked leaves of Ti. Otherwise, if the above path does not satisfy the Dyck path
condition, we let ℓ > 1 be the smallest index such that

j∑
i=ℓ

di ≥ 0 for every j ∈ {ℓ, . . . , k − 1}.

In this case, φ−1
dp (T ) is defined to be the Dyck path

UaℓDλℓ · · ·UakDλk+1 Ua1Dλ1 · · ·Uaℓ−1Dλℓ−1−1 (2)

associated with the sequence (Tℓ, . . . , Tk, T1, . . . , Tℓ−1), and marked accordingly.

For example, for the tree in Figure 11, we have ℓ = 4 and the associated Dyck path is
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(UUUD)(UD)(UUDDDD)(UD)(UD)(UUDD).

To verify that (2) is indeed a Dyck path, note that by definition, dℓ−1 < 0. If there is a
J < ℓ− 1 such that dJ+1 + · · ·+ dℓ−1 < 0 but dJ + dJ+1 + · · ·+ dℓ−1 ≥ 0, then

dJ ≥ −(dJ+1 + · · ·+ dℓ−1) > 0,

and so
j∑

i=J

di ≥ 0 for every j ∈ {J, . . . , k − 1}. This contradicts the minimality of ℓ.

Therefore,
ℓ−1∑
i=j

di < 0 for every j ∈ {1, . . . , ℓ − 1}. By definition,
k∑

i=1

di = 0, so if we let

v =
k∑

i=ℓ

di, then v > 0 and v +
j∑

i=1

di > 0 for every j ∈ {1, . . . , ℓ − 2}. In addition, note

that since v − 1 ≥ 0, we have (aℓ − λℓ) + · · ·+ (ak − (λk + 1)) ≥ 0.

Under our bijection, a primitive subtree with a+1 leaves ((a+2)-gon on the polygon) cor-
responds to a primitive block UaD on the Dyck path. Therefore, our proof applies verbatim
to the case of an arbitrary coloring sequence γ = (γ1, γ2, . . . ).

Remark 7. For γ = (1, 1, . . . ) and n ≥ 1, the sequence

an =
n∑

k=1

(
n+ k

k

)
dn,k =

n∑
k=1

(
n+ 1

k

)
pn,k

gives 2, 9, 54, 375, 2848, 22981, 193742, 1688427, 15101778, 137930199, . . . [6, A368178].

4 Map from compositions to polygon dissections

We now aim at providing a combinatorial proof for the last identity in (1):

Theorem 8. Let 1 ≤ k ≤ n. For any coloring sequence γ = (γj)j∈N,

(n+ 1)pn,k(γ) =

(
n+ k

k

)
cn,k(γ).

As in the previous two sections, our bijection will be part preserving, so without loss of
generality we assume γ = (1, 1, 1, . . . ). The general case follows verbatim.

To prove the above identity, we will replace polygon dissections with rooted trees (as done
in the previous section, see Figure 5), and it is more convenient to think of a composition as
a binary word starting with 1 and having no consecutive 1’s. More precisely, a composition
of n with k parts, say (j1, . . . , jk), can be represented by the binary word wj1 · · ·wjk of
length n+ k, where wji consists of a one followed by ji zeros. For example, the composition
(1, 3, 2, 4) corresponds to the binary word 10100010010000.

10

https://oeis.org/A368178


With this in mind, we let T (1)
n,k be the set of rooted trees having n+1 leaves and k nodes

of outdegree greater than one, where one of the leaves is marked. Moreover, we let B(k)
n,k

be the set of binary words of length n + k starting with 1, having n 0’s and k 1’s, no two
consecutive 1’s, and where k of the letters are marked. Clearly,

|T (1)
n,k | = (n+ 1)pn,k and |B(k)

n,k| =
(
n+ k

k

)
cn,k.

Our goal is to give a bijective map φbt : B(k)
n,k → T

(1)
n,k along with illustrating examples.

◦ Every binary word in B(k)
n,k is of the form w = wj1 · · ·wjk , where wj = 10 j (a one followed

by j zeros) and k of the letters in w are marked. Split w into its k primitive components
(wj1 , . . . , wjk), and for every component wji make a primitive rooted tree Ti with ji + 1
leaves. Mark the leaves that correspond to marked letters in the binary word. For
example, the word 10101001001010 in B(6)

8,6 leads to the decomposition

10 10 100 100 10 10

(3)

◦ Combine the sequence of primitive trees (T1, . . . , Tk) by shifting each component to the
left (starting with T2) so that its root is placed on the right-most marked leaf of the tree
to its immediate left. If there is no marked leaf to place Ti, move to Ti+1 and continue
the process until you reach Tk. This step gives an ordered forest (F1, . . . , Fm) of merged
primitive trees with a total of m marked leaves, all of them on Fm.

Figure 12: Left shifting procedure

◦ If m = 1, let φbt(w) be the tree obtained from F1 by removing the marks from its
internal nodes. If m > 1, attach the trees F1, . . . , Fm−1 (from right to left) to the m− 1
left-most marked leaves on Fm and remove the internal marks from the merged tree.
The resulting tree will be φbt(w) ∈ T (1)

n,k .

The inverse map is straightforward. Let T ∈ T (1)
n,k . Such a tree consists of k primitive

subtrees, k − 1 internal nodes, and one marked leaf.
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;

Figure 13: Right shifting procedure

◦ Starting at the root of T , and going around clockwise, denote its primitive components
by T1, . . . , Tk. Let Tm be the subtree with the marked leaf.

◦ If the nodes of Tm to the right of the marked leaf have a total of j descendants, consider
the ordered forest (Tm+j+1, . . . , Tk, T1, . . . , Tm+j) and mark the leaves that correspond
to internal nodes of T .

T1

T2

T3

T4T5

T6

; (T4, T5, T6, T1, T2, T3)

Figure 14: Right shifting procedure

◦ For a primitive tree with j + 1 leaves, assign the word 10 j and mark the letters that
correspond to the marked leaves of the tree (like in (3)). Finally, φ−1

bt (T ) is obtained by
concatenating the k words associated with (Tm+j+1, . . . , Tk, T1, . . . , Tm+j) into a single
binary word.

Remark 9. For γ = (1, 1, . . . ) and n ≥ 1, the sequence

an =
n∑

k=1

(n+ 1)pn,k =
n∑

k=1

(
n+ k

k

)
cn,k

gives 2, 9, 44, 225, 1182, 6321, 34232, 187137, 1030490, 5707449, . . . , cf. [6, A176479].
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