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Abstract

The binomial convolution of two sequences (an) and (bn) is the sequence whose
nth term is

∑n
k=0

(
n
k

)
akbn−k. If (an) and (bn) have rational generating functions, then

so does their binomial convolution. We discuss an efficient method, using resultants,
for computing this rational generating function and give several examples involving
Fibonacci and tribonacci numbers and related sequences. We then describe a similar
method for computing Hadamard products of rational generating functions. Finally, we
describe two additional methods for computing binomial convolutions and Hadamard
products of rational power series, one using symmetric functions and one using partial
fractions.
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1 Introduction

The ordinary convolution of two sequences (αn) and (βn) is the sequence (γn) defined by γn =
∑n

k=0 αkβn−k. Ordinary convolutions are closely related to ordinary generating functions: if
(γn) is the ordinary convolution of (αn) and (βn) then

( ∞∑

n=0

αnx
n

)( ∞∑

n=0

βnx
n

)

=
∞∑

n=0

γnx
n.

The binomial convolution of two sequences (an) and (bn) is the sequence (cn) defined
by cn =

∑n
k=0

(
n
k

)
akbn−k. The exponential generating function

∑∞
n=0 cnx

n/n! for (cn) is the
product of the exponential generating functions for (an) and (bn). So binomial convolutions
of sequences with simple exponential generating functions are easily dealt with.

We are concerned here with binomial convolutions of sequences with rational ordinary
generating functions. Let us define an operation ⊙ on formal power series in x with coeffi-
cients in a field of characteristic 0 by

∞∑

n=0

anx
n ⊙

∞∑

n=0

bnx
n =

∞∑

n=0

cnx
n, (1)

where cn =
∑n

k=0

(
n
k

)
akbn−k. In other words, (1) is equivalent to

( ∞∑

n=0

an
xn

n!

)( ∞∑

n=0

bn
xn

n!

)

=
∞∑

n=0

cn
xn

n!
. (2)

We call A(x)⊙B(x) the binomial product of A(x) and B(x). (This operation is sometimes
called the Hurwitz product [1, 9] or shuffle product [3].) It follows from the equivalence of
(1) and (2) that ⊙ is associative, with identity element 1, and that the inverse with respect
to ⊙ of 1/(1−αx) is 1/(1+αx). As we will see in Theorem 6, if A(x) and B(x) are rational,
then so is A(x) ⊙ B(x). We will discuss several methods for computing binomial products
of rational power series and give examples.

In Section 4 we describe a method for computing binomial products of rational power se-
ries efficiently, using resultants. In Section 5 we give several examples of binomial convolution
formulas involving Fibonacci, tribonacci, and Perrin numbers.

We discuss in Section 6 a similar method, using resultants, for computing Hadamard
products of rational power series. Then in Section 7 we discuss a different method, using
symmetric functions, for computing binomial products and Hadamard products of ratio-
nal power series, and in Section 8 we discuss another method for binomial and Hadamard
products, using partial fractions to compute constant terms of Laurent series.
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1.1 Computing binomial convolutions

For rational power series with denominators of degree 2, it is not difficult to compute binomial
convolutions directly. For example, for the Fibonacci numbers Fn, with

∞∑

n=0

Fnx
n =

x

1− x− x2
,

we have the explicit formula Fn = (αn−βn)/
√
5, where α = (1+

√
5)/2 and β = (1−

√
5)/2.

Thus since α + 1 = α2 and β + 1 = β2, we have

n∑

k=0

(
n

k

)

Fk =
1√
5

n∑

k=0

(
n

k

)

(αk − βk)

=
(
(α + 1)n − (β + 1)n

)
/
√
5

= (α2n − β2n)/
√
5 = F2n,

as is well known. (Note that our computation does not use the explicit values of α and β, but
only the quadratic equation that they satisfy.) In the same way, we can prove the binomial
convolution

n∑

k=0

(
n

k

)

FkFn−k =
1

5
(2nLn − 2), (3)

where Ln is the Lucas number Fn−1 + Fn+1, as shown by Church and Bicknell [6].
More challenging are sequences whose generating functions have a denominator of de-

gree 3. One well-known example is the tribonacci sequence, defined by T−1 = T0 = 0, T1 = 1,
and Tn = Tn−1 + Tn−2 + Tn−3 for n ≥ 2, with generating function

∞∑

n=0

Tnx
n =

x

1− x− x2 − x3
.

(There are several different conventions for the index of the first nonzero tribonacci number.
We start with T1, following Komatsu [20], but some authors start with T0 or T2.) The
tribonacci numbers are sequence A000073 in the On-Line Encyclopedia of Integer Sequences
(OEIS) [15].

Komatsu [21] found a formula, given in (22), for the numbers

n∑

k=0

(
n

k

)

TkTn−k (4)

by using the exponential generating function for Tn, which involves the zeros of a cubic
polynomial. We will give a simpler proof of Komatsu’s formula, and a generalization, in
Section 5.3.
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Prodinger [26] proved Komatsu’s formula by first computing the binomial product

x

1− x− x2 − x3
⊙ x

1− x− x2 − x3
=

1

11

(
1 + x+ 10x2

1− 2x− 4x2 − 8x3
− 1 + x− 8x2

1− 2x+ 2x3

)

.

He used the following approach to computing binomial products of rational power series.
Suppose we know the generating functions

∑∞
n=0 anx

n = A(x) and
∑∞

n=0 bnx
n = B(x).

Then a straightforward computation gives

∞∑

n=0

xn

n∑

k=0

(
n

k

)

ak

∞∑

m=k

ymbm−k =
1

1− x
A

(
xy

1− x

)

B(y). (5)

The binomial convolution
∑n

k=0

(
n
k

)
akbn−k is the coefficient of xnyn in (5), so the binomial

product A(x) ⊙ B(x) may be obtained by extracting the diagonal from (5). For A(x) and
B(x) rational, Prodinger did this using Hautus and Klarner’s residue method [13]. We will
discuss a more efficient method for computing the diagonal of (5) in Section 8.

Ekhad and Zeilberger [8] used another efficient method for computing binomial products
of rational power series by solving a system of linear equations, using the fact that a proper
rational power series in x with a denominator of degree d is determined by the coefficients
of xi for 0 ≤ i ≤ 2d. (Recall that a proper rational function is one in which the degree of
the numerator is less than the degree of the denominator.)

Cerlienco, Mignotte, and Piras [5, Section A IV 1] sketched another approach, using
determinants, for computing binomial and Hadamard products.

Our main method for computing binomial products is based on resultants of polynomials.
If the denominator of A(x) is

∏

i(1 − αix) and the denominator of B(x) is
∏

j(1 − βjx)
then A(x)⊙ B(x) is a rational function with denominator (not necessarily in lowest terms)
∏

i,j(1−αiβjx), and this product can be computed from the coefficients of the denominators
of A(x) and B(x) in terms of a resultant, with no need to factor these denominators into linear
factors. We use a similar resultant method to compute the denominator of the Hadamard
product of two rational generating functions in Section 6.

Alecci, Barbero, and Murru [1, Theorem 5] have also observed that resultants can be
used to compute binomial products.

2 On rational power series over a field

We first prove a useful fact that clarifies the status of rational power series over a field.
Another proof was given by Klazar and Horský [19, Theorem 3]. The result can also be
derived using properties of determinants; for example, Equation (10) of Cerlienco, Mignotte,
and Piras [5] yields a determinantal formula for the denominator of a rational power series
in terms of its coefficients.
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Theorem 1. Suppose that

A(x) =
∞∑

n=0

anx
n =

p(x)

q(x)
,

where each an is in a field F , and p(x) and q(x) are polynomials with coefficients in an
extension field G of F . Then there exist polynomials P (x) and Q(x) with coefficients in F
such that

A(x) =
P (x)

Q(x)
.

In order to prove Theorem 1, we first prove two lemmas from linear algebra.

Lemma 2. Let F ⊆ G be fields. If a subset W of F n is linearly independent over F then it
is linearly independent over G.

Proof. Let W ⊂ F n be linearly independent over F . Since W is finite, we may let the
elements of W be (wi,1, wi,2, . . . , wi,n), for i = 1, . . . , |W |, and consider the matrix M =
(wi,j)i=1,...,|W |;j=1,...,n. We can convert M to a matrix M ′ in row-echelon form by operations
that preserve the span of its rows over both F and G, and the dimension of the row space
of M ′ over both F and G is the number of nonzero rows.

Lemma 3. Let F ⊆ G be fields. Suppose that S is a set of vectors in F n and that there is
a nonzero vector t in Gn such that s · t = 0 for all s ∈ S, where · is the usual dot product
defined by (s1, . . . , sn) · (t1, . . . , tn) = s1t1+ · · ·+sntn. Then there is a nonzero vector u ∈ F n

such that s · u = 0 for all s ∈ S.

Proof. The hypothesis implies that the dimension of the span of S over G is less than n.
Since the dimension of the span of S (over either F or G) is the size of a largest linearly
independent subset, Lemma 2 implies that the dimension of S over F is also less than n.

The lemma then follows from a basic fact of linear algebra: If K is a field and U is a set
of vectors in Kn then the dimension of the span of U over K is less than n if and only if
there is a nonzero vector t ∈ Kn such that u · t = 0 for every u ∈ U .

Proof of Theorem 1. Let q(x) = q0+q1x+ · · ·+qmx
m. Since q(x)

∑∞
n=0 anx

n is a polynomial
in x, it follows that for some N ,

aiqm + ai+1qm−1 + · · ·+ ai+mq0 = 0

for all i ≥ N . Then by Lemma 3, there exist Q0, . . . , Qm in F , not all 0, such that

aiQm + ai+1Qm−1 + · · ·+ ai+mQ0 = 0

for all i ≥ N . Thus
(Q0 +Q1x+ · · ·+Qmx

m)A(x)

is a polynomial in x with coefficients in F , so A(x) is a quotient of polynomials with coeffi-
cients in F .

5



In what follows, we will be working with power series with coefficients in a field F , and we
will derive formulas for these power series that express them as quotients of polynomials with
coefficients in an extension field of F . Theorem 1 guarantees that we can express these power
series as quotients of polynomials with coefficients in F . Moreover, Theorem 1 allows us to
use the term “rational power series over the field F” to mean both a rational power series
with coefficients in F and a power series which is a quotient of polynomials with coefficients
in F .

3 Rationality of binomial products

We now prove that the binomial product of two rational power series is rational. There
are more direct proofs but our approach proves some useful formulas along the way. For
other proofs see Fliess [9, Proposition 3], Bacher [3, Proposition 3.2], and Alecci, Barbero,
and Murru [1, Theorem 5]. Another proof, pointed out by Alin Bostan, that the binomial
product of rational power series is rational follows from the fact that

∑∞
n=0 anx

n is rational
if and only if

∑∞
n=0 anx

n/n! is a linear combination of series of the form xieαx, as these are
clearly closed under multiplication.

Lemma 4. For all nonnegative integers j and k and all α, β ∈ F we have

xj

(1− αx)j+1
⊙ xk

(1− βx)k+1
=

(
j + k

j

)
xj+k

(
1− (α + β)x

)j+k+1
. (6)

Proof. For any α 6= 0 we define fn(α, k) for n, k ∈ N (where N is the set of nonnegative
integers) by fn(α, k) = αn−k

(
n
k

)
. We define fn(0, k) to be the limit limα→0 fn(α, k), so

fn(0, k) =

{

1, if n = k;

0, otherwise.

(More precisely, for fixed n and k, fn(α, k) is a polynomial in α. If n < k then this polynomial
is identically 0 and if n ≥ k this polynomial is a constant times a nonnegative power of α;
in all cases fn(0, k) is obtained by setting α = 0 in this polynomial.) It is easy to check that

∞∑

n=0

fn(α, k)x
n =

xk

(1− αx)k+1

and
∞∑

n=0

fn(α, k)
xn

n!
=

xk

k!
eαx

for all α, including α = 0. Thus
( ∞∑

n=0

fn(α, j)
xn

n!

)( ∞∑

n=0

fn(β, k)
xn

n!

)

=

(
j + k

j

)
xj+k

(j + k)!
e(α+β)x,

and (6) follows from the equivalence of (1) and (2).
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We note a useful consequence of (6).

Corollary 5. For any power series A(x) and any β ∈ F , we have

A(x)⊙ 1

1− βx
=

1

1− βx
A

(
x

1− βx

)

.

Proof. By linearity, it is sufficient to prove the formula for A(x) = xj, which is the case
α = 0, k = 0 of (6).

Theorem 6. Let A(x) and B(x) be rational power series over F . We may express A(x) as

A(x) =
R(x)

∏m
i=1(1− αix)

,

where R(x) is a polynomial of degree less than m and the αi lie in some extension field of
F , but they need not be distinct nor nonzero. We may express B(x) similarly as

B(x) =
S(x)

∏n
j=1(1− βjx)

.

Then

A(x)⊙B(x) =
T (x)

∏m
i=1

∏n
j=1

(
1− (αi + βj)x

) . (7)

for some polynomial T (x) of degree at most mn− 1.

Proof. We first find the usual partial fraction decomposition of A(1/x)/x,

A(1/x)/x = U(x) +
M∑

i=1

ei∑

k=0

Aik

(x− ai)k+1

where U(x) is a polynomial, the ai and Aik lie in some extension field of F , the ai are
distinct (one of them may be 0), and the ei are nonnegative integers. Replacing x with 1/x
and dividing by x gives us

A(x) =
U(1/x)

x
+

M∑

i=1

ei∑

k=0

Aikx
k

(1− aix)k+1
. (8)

Since A(x) has a power series expansion, U(x) must be 0. (We note that A(x) is proper if
and only if ai 6= 0 for all i.)

Similarly we have the partial fraction expansion

B(x) =
N∑

j=1

fj∑

l=0

Bjlx
l

(1− bjx)l+1
.
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Then

A(x)⊙B(x) =
M∑

i=1

N∑

j=1

ei∑

k=0

fj∑

l=0

AikBjl

(
k + l

k

)
xk+l

(
1− (ai + bj)x

)k+l+1
by (6)

=
M∑

i=1

N∑

j=1

Pij(x)
(
1− (ai + bj)x

)ei+fj+1
(9)

where Pij(x) is a polynomial of degree at most ei + fj.
It follows from (9) that

A(x)⊙B(x) =
Q(x)

∏M
i=1

∏N
j=1

(
1− (ai + bj)x

)ei+fj+1
(10)

for some polynomial Q(x) of degree less than
∑M

i=1

∑N
j=1(ei + fj + 1). In particular, A(x)⊙

B(x) is rational.
Now choose a sequence α1, . . . , αm, where m =

∑M
i=1(ei +1), consisting of ei occurrences

of ai for each i, so that
∏m

i=1(1 − αix) =
∏M

i=1(1 − aix)
ei+1 and similarly choose β1, . . . , βn,

where n =
∑N

j=1(fj + 1), so that
∏n

j=1(1− βjx) =
∏N

j=1(1− bjx)
fj+1. Then

m∏

i=1

n∏

j=1

(
1− (αi + βj)x

)
=

M∏

i=1

N∏

j=1

(
1− (ai + bj)x

)(ei+1)(fj+1)
.

Since (ei +1)(fj +1)− (ei + fj +1) = eifj ≥ 0, multiplying the numerator and denominator

of the right side of (10) by
∏M

i=1

∏N
j=1

(
1 − (ai + bj)x

)eifj gives the desired representation
(7).

We may restate Theorem 6 in a less elegant but more computationally practical way by
separating out the αi and βj that are equal to 0.

Corollary 7. Let

A(x) =
R(x)

∏m
i=1(1− αix)

,

and

B(x) =
S(x)

∏n
j=1(1− βjx)

,

where R(x) and S(x) are polynomials and the αi and βj are all nonzero. Let

u = max
(
degR(x) + 1−m, 0

)
and v = max

(
degS(x) + 1− n, 0

)
.

Then

A(x)⊙B(x) =
T (x)

(∏m
i=1(1− αix)

)v(∏n
j=1(1− βjx)

)u∏m
i=1

∏n
j=1

(
1− (αi + βj)x

) . (11)

for some polynomial T (x) of degree less than (u+m)(v + n).
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Note that A(x) ⊙ B(x) need not be proper even if A(x) and B(x) are; for example by
Lemma 6 we have

xj

(1− x)j+1
⊙ xk

(1 + x)k+1
=

(
j + k

j

)

xj+k.

As is clear from the proof of Theorem 6, the denominator in lowest terms of A(x)⊙B(x)
will in many cases be a proper divisor of that given by (7) or (11), but these formulas,
together with Theorem 10, which allows us to compute

∏m
i=1

∏n
j=1

(
1− (αi + βj)x

)
without

factoring the denominators of A(x) and B(x), are efficient enough in all of our applications.
One important special case is when A(x) and B(x) have the same denominator. If we

assume, for simplicity, that A(x) and B(x) are proper and have no repeated zeros, then
the partial fraction expansion (9) shows that A(x)⊙B(x) can be written with denominator
∏n

i=1(1− 2αix)
∏

1≤i<j≤n

(
1− (αi + αj)x

)
.

As a first example, with proper rational functions and no repeated factors, we have

x

(1− x)(1− 2x)
⊙ x

(1− 3x)(1− 5x)
=

x2(2− 11x)

(1− 4x)(1− 5x)(1− 6x)(1− 7x)
.

An example with an improper rational function is

x3

1− x
⊙ 1

1− 2x
=

x3

(1− 2x)3(1− 3x)
.

With the notation of Corollary 7, here we have m = 1, n = 1, u = 3, and v = 0. Finally, a
more complicated example is

x2

(1− x)2
⊙ x2

(1− 2x)2
=

x4(6− 30x+ 49x2 − 27x3)

(1− x)2(1− 2x)2(1− 3x)3
.

Here the denominator given by Corollary 7 is (1− x)2(1− 2x)2(1− 3x)4 but because of the
multiple factors in the denominators (1 − x)2 and (1 − 2x)2, the actually denominator is a
proper divisor of this product.

An alternative approach to binomial products of improper rational power series is to
decompose a rational function as a polynomial plus a proper rational function. For proper
rational power series we can take all the αi and βj in Theorem 6 to be nonzero; equivalently, in
Corollary 7 we have u = v = 0. We then need to compute binomial products of polynomials
with rational power series. By linearity, it is sufficient to compute xm ⊙ A(x) in terms of
A(x). The next lemma tells us how to do this.

Lemma 8. Let A(x) be a power series in x. Then for any nonnegative integer m we have

xm ⊙ A(x) =
xm

m!

dm

dxm

(
xmA(x)

)
. (12)

Proof. By linearity, it is sufficient to prove (12) in the case A(x) = xn. In this case we have

xm

m!

dm

dxm

(
xmA(x)

)
=

xm

m!

dm

dxm
xm+n =

(
m+ n

m

)

xm+n = xm ⊙ A(x).
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4 Resultants

4.1 The resultant of two polynomials

Given two polynomials

A(x) =
m∑

i=0

aix
i = am

m∏

i=1

(x− αi)

and

B(x) =
n∑

j=0

bjx
k = bn

n∏

j=1

(x− βj),

their resultant with respect to the variable x may be defined by

Res(A(x), B(x), x) = anmb
m
n

∏

i,j

(αi − βj). (13)

It is well known [12] that Res(A(x), B(x), x) can be computed as a determinant.

Lemma 9. The resultant can be computed by

Res(A(x), B(x), x) = det Syl(A(x), B(x)), (14)

where Syl(A(x), B(x)) is the Sylvester matrix of size (n+m)× (n+m),

Syl(A(x), B(x)) =












am · · · a0
. . . . . .

am · · · a0
bn · · · b0
. . . . . .

bn · · · b0
︸ ︷︷ ︸

m+n


















n







m

Note that unlike formula (13), the determinant formula (14) expresses the resultant in
terms of the coefficients of A and B.

4.2 Computing the binomial product with resultants

We now describe how to compute the product
∏m

i=1

∏n
j=1

(
1 − (αi + βj)x

)
in Corollary 7

without factoring the denominators.

Theorem 10. Let U(x) =
∏m

i=1(1− αix) and V (x) =
∏n

j=1(1− βjx). Then

m∏

i=1

n∏

j=1

(
1− (αi + βj)x

)
= (−1)mn Res

(

(1− y)mU
( x

1− y

)

, ynV
(x

y

)

, y

)

.
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Proof. We have

(1− y)mU
( x

1− y

)

=
m∏

i=1

(1− y − αix) = (−1)m
m∏

i=1

(
y − (1− αix)

)

and
ynV (x/y) =

∏

j=1

(y − βjx),

so the result follows from (13).

Corollary 7 and Theorem 10 together give us a procedure for computing binomial products
of rational power series that can be efficiently implemented on a computer algebra system. By
Corollary 7 we can express the binomial convolution A(x)⊙B(x) as a quotient of polynomials
T (x)/D(x), where D(x) may be computed explicitly with the help of Theorem 10, and we
have a bound on the degree of T (x), deg T (x) ≤ d. Then T (x) can be computed from

T (x) =
(
A(x)⊙B(x)

)
D(x)

by computing the coefficients up to xd on the right side.
As a simple example, let us compute in detail the binomial product of the generating

functions for the Fibonacci and Pell sequences. The generating function for the Fibonacci
sequence is A(x) = x/(1− x− x2) and that for the Pell sequence is B(x) = x/(1− 2x− x2).
Since both are proper, by Corollary 7 we know that the binomial product A(x)⊙B(x) may
be expressed as T (x)/D(x) where T (x) has degree at most 3 and D(x) is a polynomial of
degree 4 computed by Theorem 10.

With the notation of Theorem 10, we have m = n = 2, U(x) = 1 − x − x2, and
V (x) = 1− 2x− x2, so

(1− y)2U

(
x

1− y

)

= y2 + (x− 2)y − x2 − x− 1

and
y2V (x/y) = y2 − 2xy − x2.

The Sylvester matrix is







1 x− 2 −x2 − x+ 1 0
0 1 x− 2 −x2 − x+ 1
1 −2x −x2 0
0 1 −2x −x2







with determinant D(x) = 1− 6x+ 7x2 + 6x3 − 9x4. We compute directly that

A(x)⊙B(x) = 2x2 + 9x3 + 40x4 + · · ·

11



So the numerator is

T (x) = (2x2 + 9x3 + 40x4 + · · · )(1− 6x+ 7x2 + 6x3 − 9x4) = 2x2 − 3x3.

Thus
x

1− x− x2
⊙ x

1− 2x− x2
=

2x2 − 3x3

1− 6x+ 7x2 + 6x3 − 9x4
.

5 Examples

5.1 Fibonacci numbers

We first discuss some binomial convolution formulas for Fibonacci numbers. We omit the
details of the computations of binomial products, which are done by the computer using the
procedure described in Section 4.2, together with partial fraction expansion.

Recall that the Fibonacci numbers have the generating function

∞∑

n=0

Fnx
n =

x

1− x− x2
(15)

and the Lucas numbers Ln = Fn−1 + Fn+1 have the generating function

∞∑

n=0

Lnx
n =

2− x

1− x− x2

Let us first prove the identity of Church and Bicknell [6] mentioned in Section 1.1. (See also
Prodinger [26].) We find that

x

1− x− x2
⊙ x

1− x− x2
=

2x2

1− 3x− 2x2 + 4x3
=

1

5

(
2− 2x

1− 2x− 4x2
− 2

1− x

)

.

Since
2− 2x

1− 2x− 4x2
=

2− (2x)

1− (2x)− (2x)2
=

∞∑

n=0

2nLnx
n,

we have
n∑

k=0

(
n

k

)

FkFn−k =
1

5
(2nLn − 2). (16)

This identity may be generalized in many ways. We describe one generalization, based on
the multisected Fibonacci generating functions [14]

∞∑

n=0

Fpn+qx
n =

Fq + (−1)qFp−qx

1− Lpx+ (−1)px2
. (17)

12



and
∞∑

n=0

Lpn+qx
n =

Lq − (−1)qLp−qx

1− Lpx+ (−1)px2
. (18)

Here p and q may be arbitrary integers, and the Fibonacci and Lucas numbers are extended
to negative integer indices by F−n = (−1)n−1Fn and L−n = (−1)nLn. Letting f(x) =
x/(1− x− x2), we find that

5f(ax)⊙ f(bx) =
2− (a+ b) x

1− (a+ b) x− (a+ b)2 x2
− 2− (a+ b) x

1− (a+ b) x− (a2 − 3ab+ b2) x2
. (19)

The first term on the right in (19) is

∞∑

n=0

(a+ b)nLnx
n.

We would like to choose a and b so that the denominator in the second term on the right
in (19) is 1 − Lp(cx) + (−1)p(cx)2 for some p and c, so that we can apply (17) or (18). A
calculation that we omit suggests that we should take a = Fp−1 and b = Fp+1 for some p.
Once we have these values for a and b, it is easy to verify the result: We have a + b =
Fp−1 + Fp+1 = Lp and

a2 − 3ab+ b2 = (b− a)2 − ab

= (Fp+1 − Fp−1)
2 − Fp+1Fp−1 = F 2

p − Fp+1Fp−1

= (−1)p−1

by Cassini’s identity for Fibonacci numbers. Thus

5f(Fp−1x)⊙ f(Fp+1x) =
2− Lpx

1− Lpx− L2
px

2
− 2− Lpx

1− Lpx+ (−1)px2

which by (15) and (18) is equal to

∞∑

n=0

Ln
pFnx

n −
∞∑

n=0

Lpnx
n.

Thus
n∑

k=0

(
n

k

)

F k
p−1F

n−k
p+1 FkFn−k =

1

5
(Ln

pLn − Lpn). (20)

Church and Bicknell’s identity (16) is the case p = 0 of (20).
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As another example, we have

x

1− x− x2
⊙ 1

1− x2
=

x− x2

1− 2x− 3x2 + 4x3 − x4

=
1

2

(
x

1 + x− x2
+

x

1− 3x+ x2

)

=
1

2

∞∑

n=0

(−1)n−1Fnx
n +

1

2

∞∑

n=0

F2nx
n,

where we have used the case p = 2, q = 0 of (17), so

⌊n/2⌋
∑

k=0

(
n

2k

)

Fn−2k =
1
2

(
(−1)n−1Fn + F2n

)
.

The squares of the Fibonacci numbers have the well-known generating function

∞∑

n=0

F 2
nx

n =
x− x2

1− 2x− 2x2 + x3
(21)

which we will rederive as (29). We have

x− x2

1− 2x− 2x2 + x3
⊙ 10

1− 5x2
=

x− 3x2 − 2x4 − 6x5

1− 4x− 15x2 + 50x3 + 35x4 − 114x5 + 36x6

=
2− 3x

1− 3x+ x2
− 4 + 4x

1 + 2x− 4x2
+

2− 3x

1− 3x− 9x2

=
∞∑

n=0

L2nx
n +

∞∑

n=0

(−2)n+1Lnx
n +

∞∑

n=0

3nLn

and we find the binomial convolution

10

⌊n/2⌋
∑

k=0

(
n

2k

)

5kF 2
n−2k = L2n + (3n + (−2)n+1)Ln.

5.2 Second order recurrent sequences

Let g(x) = (c+ dx)/(1− ax− bx2). We find that

g(x)⊙ g(x) =
p

1− ax
+

q + rx

1− 2ax− 4bx2
,

where p, q, and r are certain rational functions of a, b, c, and d, too complicated to be worth
writing out here. If we put some restrictions on the parameters, we get a much nicer formula.
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Theorem 11. Let

g(x) =
∞∑

n=0

Gnx
n =

2− ax

1− ax− bx2
.

Then

g(x)⊙ g(x) =
2

1− ax
+ g(2x),

so
n∑

k=0

(
n

k

)

GkGn−k = 2an + 2nGn.

Special cases of Theorem 11 are a = b = 1 (Lucas numbers; this identity was given by
Church and Bicknell [6]), a = 1, b = 2 (Jacobsthal-Lucas numbers, A014551), and a = 2, b =
1 (companion Pell numbers, A002203).

5.3 Tribonacci numbers

As noted in the introduction, the tribonacci numbers Tn may be defined by the generating
function

∞∑

n=0

Tnx
n =

x

1− x− x2 − x3
.

Komatsu [20] (see also Komatsu and Li [22] and Komatsu [21]) gave the binomial con-
volution formula

n∑

k=0

(
n

k

)

TkTn−k =
1

22

(

2nT (2,3,10)
n + 2

n∑

k=0

(
n

k

)

(−1)kT
(−1,2,7)
k

)

. (22)

Here the numbers T
(s0,s1,s2)
n satisfy the tribonacci recurrence Tn = Tn−1 + Tn−2 + Tn−3 for

n ≥ 3 with initial values T
(s0,s1,s2)
0 = s0, T

(s0,s1,s2)
1 = s1, and T

(s0,s1,s2)
2 = s2, so the ordinary

tribonacci numbers are Tn = T
(0,1,1)
n . It is easy to check that the generating function for

T
(s0,s1,s2)
n is

∞∑

n=0

T (s0,s1,s2)
n xn =

a+ bx+ cx2

1− x− x2 − x3
,

where a = s0, b = s1−s0, and c = s2−s1−s0. (Equivalently, T
(s0,s1,s2)
n = aTn+1+bTn+cTn−1

with these values of a, b, and c.)
We now derive Komatsu’s formula with binomial products. Let t(x) = x/(1−x−x2−x3)

be the tribonacci generating function. Then we compute

t(x)⊙ t(x) =
2x2(1− x− x2 − 2x3)

1− 4x+ 2x3 + 12x4 − 8x5 − 16x6

=
1 + x+ 10x2

11(1− 2x− 4x2 − 8x3)
− 1 + x− 8x2

11(1− 2x+ 2x3)
, (23)
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as found by another method by Prodinger [26]. The first term in (23) is

1

22

∞∑

n=0

2nT (2,3,10)
n xn.

For the second term in (23) we can check easily that

1 + x− 8x2

1− 2x+ 2x3
=

1

1− x
⊙ 1 + 3x− 6x2

1 + x− x2 + x3

and that
1 + 3x− 6x2

1 + x− x2 + x3
=

∞∑

n=0

T (1,−2,−7)
n (−x)n = −

∞∑

n=0

T (−1,2,7)
n (−x)n,

proving Komatsu’s formula.
There is nothing really special about tribonacci numbers here; something similar will

hold in general for generating functions with a cubic denominator:

Theorem 12. Let r(x) and s(x) be proper rational functions with the same denominator
D(x) = 1+Ax+Bx2+Cx3, where C 6= 0. Suppose that D(x) = (1−α1x)(1−α2x)(1−α3x)
where 2αi 6= αj + αk for all i, j, k ∈ {1, 2, 3}. Then for some polynomials u(x) and v(x) of
degree at most 2,

r(x)⊙ s(x) =
u(x)

D(2x)
+

1

1− Ax
⊙ v(x)

D(−x)
. (24)

Proof. The denominator of r(x) ⊙ s(x) may be factored as D1(x)D2(x), where D1(x) =
(1−2α1x)(1−2α2x)(1−2α3x) and D2(x) =

(
1−(α1+α2)x

)(
1−(α1+α3)x

)(
1−(α2+α3)x

)
.

The condition on the αi implies that D1(x) and D2(x) are relatively prime, so we have the
partial fraction expansion,

r(x)⊙ s(x) =
u(x)

D1(x)
+

w(x)

D2(x)

for some polynomials u(x) and w(x) of degree at most 2. Clearly D1(x) = D(2x). Since
α1 + α2 + α3 = −A, we have

D2(x) =
(
1 + (α1 + A)x)(1 + (α2 + A)x)(1 + (α3 + A)x).

Therefore 1/(1 + Ax) ⊙ w(x)/D2(x) has denominator D(−x) and so may be expressed as
v(x)/D(−x) for some v(x) of degree at most 2; i.e.,

1

1 + Ax
⊙ w(x)

D2(x)
=

v(x)

D(−x)

Since 1/(1− Ax) and 1/(1 + Ax) are inverses with respect to ⊙, this implies that

w(x)

D2(x)
=

1

1− Ax
⊙ v(x)

D(−x)
.
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Note that the condition on the αi is equivalent to D(x) having no repeated zeros and
D1(x) and D2(x) being relatively prime, and this will be easy to check in any particular
example. If D1(x) are D2(x) are not relatively prime we will have a similar but slightly
different partial fraction expansion.

5.4 Perrin numbers

Another interesting third-order recurrent sequence is the Perrin sequence (A001608) with
generating function

P (x) =
∞∑

n=0

Pnx
n =

3− x2

1− x2 − x3
.

Here the parameter A of Theorem 12 is 0, so (24) will simplify. However, the result turns
out to be even nicer than we have any reason to expect.

We have

P (x)⊙ P (x) = 3
3− 11x2 − 15x3 + 4x4 + 4x5

1− 5x2 − 7x3 + 4x4 + 4x5 − 8x6

=
3− 4x2

1− 4x2 − 8x3
+

6− 2x2

1− x2 + x3

= P (2x) + 2P (−x).

Thus we have the unexpectedly simple formula

n∑

k=0

(
n

k

)

PkPn−k =
(
2n + 2(−1)n

)
Pn.

More generally, if we set Q(x) = (3 − x2)/(1 − x2 − ax3), where a is arbitrary, then
Q(x)⊙Q(x) = Q(2x) + 2Q(−x).

Surprisingly, the Jacobsthal number generating function J(x) = x/(1− x− 2x2) satisfies
a very similar formula, 3J(x)⊙ J(x) = J(2x) + 2J(−x).

We give one more curious identity, involving a fourth-order recurrent sequence. Let

R(x) =
1− 2x3

1− 8x3 + 4x4
.

Then

R(x)⊙R(x) =
1

4

(
R(2x) + P (4x2)

)
,

where P (x) is the Perrin sequence generating function.
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6 The Hadamard product of rational power series

The Hadamard product [16] of the power series A(x) =
∞∑

n=0

anx
n and B(x) =

∞∑

n=0

bnx
n is

defined by

A(x) ∗B(x) =
∞∑

n=0

anbnx
n. (25)

As we shall see, Hadamard products have some similarity to binomial products. We
give here a brief account of the computation of Hadamard products of rational power series
using resultants. Another approach to Hadamard products of rational power series using
determinants has been given by Potekhina and Tolovikov [25, 24].

It is well known and easy to prove (see, e.g., Stanley [28, Theorem 4.1.1]) that f(x)
is a proper rational power series if and only if the coefficient of xn in f(x) is of the form
∑

i Pi(n)α
n
i where each Pi(n) is a polynomial in n and each αi is nonzero. Clearly the

product of two functions of this type is also of this type, so the Hadamard product of proper
rational power series is a proper rational power series, and it follows easily that the Hadamard
product of any two rational power series is rational.

There is an interesting explicit formula, somewhat analogous to Lemma 4, for a special
case of Hadamard products. We have

xi

(1− ax)m+1
∗ xj

(1− bx)n+1
=

∞∑

k=0

(
m+ k − i

k − i

)(
n+ k − j

k − j

)

ak−ibk−jxk

=

∑∞
k=0

(
m+j−i
k−i

)(
n+i−j
k−j

)
ak−ibk−jxk

(1− abx)m+n+1
. (26)

The numerator of (26) may be expressed as a Hadamard product; it is xi(1 + ax)m+j−i ∗
xj(1 + bx)n+i−j.

Equation (26) is equivalent to a classical formula of Euler for hypergeometric series [2,
p. 2, Equation (2)]. See also Kar [16, Theorem 4.1] for another proof of the case i = j = 0.
This formula actually holds for all m and n, where the binomial coefficient

(
a
b

)
is defined to

be a(a− 1) · · · (a− b+ 1)/b! if b is a nonnegative integer, and is 0 otherwise.
If m and n are nonnegative integers then the sum in the numerator of (26) has only

finitely many nonzero terms. In particular, if m and n are nonnegative integers, i ≤ m+ j,
and j ≤ n+ i, which is always the case when (26) represents a Hadamard product of proper
rational functions, then the nonzero terms in the numerator range from k = max(i, j) to
k = min(n+ i,m+ j).

It follows from (26) (or otherwise) that if A(x) is a proper rational function with denom-
inator (1 − ax)m+1 and B(x) is a proper rational function with denominator (1 − bx)n+1

then A(x) ∗ B(x) is a proper rational function that may be written with denominator
(1− abx)(m+1)(n+1). Thus we have the following analogue of Theorem 6.
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Theorem 13. Let A(x) be a rational power series with denominator
∏m

i=1(1− αix) and let
B(x) be a rational power series with denominator

∏n
j=1(1 − βjx). Then A(x) ∗ B(x) is a

rational power series that may be written with denominator
∏m

i=1

∏n
j=1(1−αiβjx). Moreover,

if A(x) and B(x) are proper then so is A(x) ∗B(x).

We now give the analogue for Hadamard products of Theorem 10.

Theorem 14. Let U(x) =
∏m

i=1(1− αix) and V (x) =
∏n

j=1(1− βjx). Then

m∏

i=1

n∏

j=1

(1− αiβjx) = (−1)mn Res
(
U(y), ynV (x/y), y

)
.

Proof. We have

U(y) = (−1)m
m∏

i=1

αi

m∏

i=1

(y − α−1
i )

and

ynV (x/y) =
m∏

j=1

(y − βjx).

Thus

Res
(
U(y), ynV (x/y), y

)
= (−1)mn

( m∏

i=1

αi

)n m∏

i=1

n∏

j=1

(α−1
i − βjx)

= (−1)mn

m∏

i=1

n∏

j=1

(1− αiβjx).

As with binomial products, the numerator of A(x) ∗ B(x) can be found by multiplying
the denominator with the first mn terms of the infinite series expansion of A(x) ∗B(x).

As an example, we use this method to find the Hadamard product of

A(x) =
x

1− ax− bx2

and
B(x) =

x

1− cx− dx2
.

Examples of well-known second-order recurrent sequences with generating functions of this
type are Fibonacci (A000045), Pell (A000129), and Jacobsthal (A001045).

To compute A(x) ∗ B(x) we take U(x) = 1 − ax − bx2 = (1 − α1x)(1 − α2x) and
V (x) = 1−cx−dx2 = (1−β1x)(1−β2x) in Theorem 14. For the denominator of A(x)∗B(x)
we have

2∏

i=1

2∏

j=1

(1− αiβjx) = Res(1− ay − by2, y2 − cxy − dx2, y)

= 1− acx− (a2d+ bc2 + 2bd)x2 − abcdx3 + b2d2x4. (27)
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Multiplying the denominator (27) by the initial terms of

A(x) ∗B(x) = x+ acx2 + (a2 + b)(c2 + d)x3 + (a3 + 2ab)(c3 + 2cd)x4 + · · ·

we find the numerator x− bdx3. So

A(x) ∗B(x) =
x− bdx3

1− acx− (a2d+ bc2 + 2bd)x2 − abcdx3 + b2d2x4
. (28)

A combinatorial proof of (28) was given by Shapiro [27] and further combinatorial proofs of
similar Hadamard product identities were given by Kim [17, 18].

As a special case of (28) we have the well-known generating function for the squares of
the Fibonacci numbers used in Section 5,

∞∑

n=0

F 2
nx

n =
x− x3

1− x− 4x2 − x3 + x4
=

x− x2

1− 2x− 2x2 + x3
. (29)

Frontczak, Goy, and Shattuck [10, 11] give several formulas for Hadamard products of
two or three second-order recurrent sequences that can be easily be derived by our methods.

7 Symmetric functions

In this section we briefly describe an alternative approach to computing denominators for
binomial products and Hadamard products of rational power series. This method has been
used by Dvornicich and Traverso [7] to compute the resultants corresponding to these de-
nominators. Bostan, Flajolet, Salvy, and Schost [4] reformulated this approach with a view
to computational efficiency, obtaining a “nearly optimal” algorithm for computing these
resultants.

Let U(x) =
∏m

i=1(1−αix) and V (x) =
∏n

j=1(1−βjx). We want to express
∏

i,j

(
1− (αi+

βj)x
)
and

∏

i,j(1− αiβjx) in terms of the coefficients of U(x) and V (x).
Let ek(u1, . . . , un) denote the ith elementary symmetric polynomial in u1, . . . , un,

ek(u1, . . . , un) =
∑

1≤i1<i2<···<ik≤n

ui1ui2 . . . uin ,

with e0(u1, . . . , un) = 1. Then the coefficient of xk in
∏n

i=1(1− uix) is equal to

(−1)kek(u1, . . . , un),

and ek(u1, . . . , un) = 0 for k > n. Thus to find the denominator polynomials for the binomial
and Hadamard products, it is sufficient to express ek(α1 + β1, . . . , αi + βj, . . . , αm + βn)
and ek(α1β1, . . . , αiβj, . . . , αmβn) in terms of the ek(α) and ek(β), where for any symmetric
polynomial f , f(α) means f(α1, . . . , αm) and similarly for f(β).
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To do this we use the power sum symmetric polynomials pj(u1, . . . , un) = uj
1 + · · · +

uj
n. They are related to the elementary symmetric polynomials by the generating function

formula
∞∑

k=0

ekz
k = exp

( ∞∑

j=1

(−1)j−1pj
j
zj
)

, (30)

where we are omitting the arguments to ek and pj, which upon differentiating with respect
to z yields Newton’s recurrence

kek =
k∑

i=1

(−1)i−1ek−ipi, (31)

from which the elementary and power sum symmetric polynomials can easily be determined
from each other. (With a computer algebra system it may be easier, though less efficient, to
use (30) directly.) We will also need the value p0(u1, . . . , un) = n.

Let us write pk(α⊙ β) for

pk(α1 + β1, . . . , αi + βj, . . . , αm + βn)

and pk(α ∗ β) for
pk(α1β1, . . . , αiβj, . . . , αmβn).

It is easy to see that
pk(α ∗ β) = pk(α)pk(β), (32)

and for pk(α⊙ β) we have

pk(α⊙ β) =
∑

i,j

(αi + βj)
k =

∑

i,j

k∑

l=0

(
k

l

)

αl
iβ

k−l
j

=
k∑

l=0

(
k

l

)

pl(α)pk−l(β). (33)

We can then compute pk(α) and pk(β) for k from 1 to mn from the coefficients of U(x)
and V (x) using (31), then compute pk(α⊙ β) and pk(α ∗ β) from (32) and (33), and finally
compute ek(α⊙ β) and ek(α ∗ β) from (31).

As an example, we consider again the Fibonacci and Pell sequences; A(x) = x/(1−x−x2)
and B(x) = x/(1−2x−x2). Here we have e1(α) = 1, e2(α) = −1, e1(β) = 2, and e2(β) = −1.
Using (30) or (31) we compute pn(α), which are the Lucas numbers, and pn(β), which are
the companion Pell numbers (A002203), for n from 0 to 4. We then compute pn(α ∗ β) and
pn(α⊙β) from (32) and (33), and finally we compute en(α ∗β) and en(α⊙β) from (30) and
(31). The values that occur in this computation are listed in Table 1.

Thus the denominator of A(x) ∗B(x) is 1− 2x− 7x2 − 2x3 + x4 and the denominator of
A(x)⊙B(x) is 1− 6x+ 7x2 + 6x3 − 9x4.

We note that the generating function A(x) ∗B(x) = (x− x3)/(1− 2x− 7x2 − 2x3 + x4)
can be found in the OEIS [15] at A001582. See also Mező [23, Remark 9].
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n 0 1 2 3 4

en(α) 1 1 −1 0 0
en(β) 1 2 −1 0 0
pn(α) 2 1 3 4 7
pn(β) 2 2 6 14 34

pn(α ∗ β) 4 2 18 56 238
pn(α⊙ β) 4 6 22 72 278
en(α ∗ β) 1 2 −7 2 1
en(α⊙ β) 1 6 7 −6 −9

Table 1: Fibonacci and Pell sequence computation

8 Partial fractions

Here we describe briefly another method, using partial fractions, for computing Hadamard
and binomial products of rational power series. This method was used by Xin [29, Section
1-2] for Hadamard products.

We start with a simple example, the Hadamard product of the generating functions
for Fibonacci and Pell numbers. Let A(x) = x/(1 − x − x2) =

∑∞
n=0 Fnx

n and B(x) =
x/(1− 2x− x2) =

∑∞
n=0 Pnx

n. Then

f = A(t)B(x/t) =
∞∑

m,n=0

FmPnx
ntm−n. (34)

With series like (34) involving infinitely many negative powers of variables, we must be careful
about the power series ring in which we are working. Here we are in the ring Q((t))[[x]] of
formal power series in x with coefficients that are Laurent series in t. So although elements
of this ring may have arbitrary negative powers of t, the coefficient of any power of x involves
only finitely many negative powers of t.

The constant term in t in (34) is

∞∑

n=0

FnPnx
n = A(x) ∗B(x).

To compute it, we start with the partial fraction expansion of A(t)B(x/t) as a rational
function of t,

1

1− t− t2
x− x3 + (x3 + 2x2) t

1− 2x− 7x2 − 2x3 + x4
+

1

t2 − 2xt− x2

x3 − x5 + (x3 + 2x2) t

1− 2x− 7x2 − 2x3 + x4

=
1

1− 2x− 7x2 − 2x3 + x4

(
R + S

)
, (35)
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where

R =
x− x3 + (x3 + 2x2) t

1− t− t2

and

S =
(x3 − x5)t−2 + (2x2 + x3)t−1

1− 2xt−1 − x2t−2
.

We want the coefficient of t0 in (35). Note that as elements of Q((t))[[x]], R contains
only nonnegative powers of t and S contains only negative powers of t. Thus the constant
term in t of A(t)B(x/t) may be obtained by deleting S from (35) and then setting t = 0,
yielding A(x) ∗B(x) = (x− x3)/(1− 2x− 7x2 − 2x3 + x4).

We can look at the partial fraction approach in a slightly different way, which shows
how it is related to resultants. With A(x) and B(x) as above, to find the partial fraction
expansion in t of A(t)B(x/t), we need to find two polynomials L(t) and M(t) in t, each of
degree at most 1, with coefficients that are rational functions of x, such that

L(t)

1− t− t2
+

M(t)

t2 − 2xt− x2
= A(t)B(x/t) =

xt2

(1− t− t2)(t2 − 2xt− x2)
.

Equivalently,
L(t)(−x2 − 2xt+ t2) +M(t)(1− t− t2) = xt2. (36)

If we set L(t) = a + bt and M(t) = c + dt, then equating coefficients of powers of t in (36)
gives the equivalent system







−x2 −2x 1 0
0 −x2 −2x 1
1 −1 −1 0
0 1 −1 −1













a
b
c
d






=







0
0
x
0







(37)

Note that this matrix is essentially the Sylvester matrix for −x2− 2xt+ t2 and 1− t− t2,
as polynomials in t. The constant term in t of A(t)B(x/t) is obtained by setting t = 0 in
L(t) = a + bt so we may obtain this coefficient by solving for a in (37). By Cramer’s rule,
the denominator of a, as a rational function of x, will be the determinant of the matrix in
(37), so we see that this approach to Hadamard products is related to that of Section 6.

Our next theorem shows that the partial fraction method works in general for Hadamard
products. For simplicity we assume that our rational power series are proper.

Theorem 15. Let A(x) and B(x) be proper rational power series with coefficients in a field
F . Then A(t)B(x/t), as a rational function of t, has a partial fraction expansion of the form
U(x, t) + V (x, t) in which, as elements of the Laurent series field F ((t))((x)), U(x, t) has
only nonnegative powers of t and V (x, t) has only negative powers of t. Thus A(x) ∗B(x) is
obtained by setting t = 0 in U(x, t).
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Proof. Let A(x) = NA(x)/DA(x) and B(x) = NB(x)/DB(x), where NA(x), DA(x), NB(x),
and DB(x) are polynomials and DB(x) has degree n. Then

A(t)B(x/t) =
NA(t) · tnNB(x/t)

DA(t) · tnDB(x/t)
(38)

We first note that DA(t) and tnDB(x/t) are relatively prime as polynomials in t. One way
to see this is to factor DA(t) and tnDB(x/t) into linear factors over some extension field G
of F . Then the linear factors of DA(t) are all of the form t − α for α ∈ G while the linear
factors of tnDB(x/t) are all of the form t− βx for β ∈ G.

Since A(x) and B(x) are proper, it follows easily from (38) that A(t)B(x/t), as a rational
function of t, is proper. Thus A(t)B(x/t) has a partial fraction expansion of the form

RA(t, x)

DA(t)
+

RB(t, x)

tnDB(x/t)
,

where RA(t, x) and RB(t, x) are polynomials in t with coefficients that are rational functions
of x, and the degree of RB(t, x), as a polynomial in t, is less than n. Then t−nRB(t, x) is a
polynomial in t−1 with no constant term, with coefficients that are rational functions of x,
and 1/DB(x/t), as an element of the Laurent series ring F ((t))((x)), has no positive powers
of t. Thus t−nRB(t, x)/DB(x/t) has only negative powers of t.

We know that RA(t, x) is a polynomial in t, so RA(t, x)/DA(t) is a power series in t. Thus
RA(t, x)/DA(t) is the sum of all terms in A(t)B(x/t) with nonnegative powers of t, and so the
constant term in t in A(t)/B(x/t) may be obtained by setting t = 0 in RA(t, x)/DA(t).

While in principle the partial fraction method may be no more efficient than other meth-
ods, it may be easier in practice when using a computer algebra system in which partial
fraction expansion is already built in. If the denominator polynomials DA(x) and DB(x)
are not irreducible, the built-in partial fraction function may give us a more refined decom-
position than we need, but we can still apply the same method to this decomposition, or
alternatively, we may use the extended Euclidean algorithm, or solve a system of equations
by whatever method is convenient, to find the two-term partial fraction expansion.

We can compute binomial products in a similar way, using Prodinger’s observation, dis-
cussed in Section 1.1, that the binomial product of A(x) and B(x) is the diagonal of (5). It
follows that A(x)⊙B(x) is the constant term in t in

1

1− t
A

(
x

1− t

)

B
(x

t

)

(39)

which can also be computed by partial fraction expansion. (There is an analogue of Theorem
15 for binomial products.)

For example, if we take A(x) to be the Fibonacci generating function x/(1 − x − x2)
and B(x) to be the Pell generating function x/(1− x− 2x2) then expanding (39) by partial
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fractions in t gives

1

1− t
A

(
x

1− t

)

B
(x

t

)

=
x2

1− 6x+ 7x2 + 6x3 − 9x4

(
R(x, t) + S(x, t)

)
,

where

R(x, t) =
2− 5x+ x2 + 3x3 + (x− 1)t

1− x− x2 + (x− 2)t+ t2

and

S(x, t) =
(1− x)t+ 2x2 − 3x3

t2 − 2xt− x2
=

(1− x)t−1 + (2x2 − 3x3)t−2

1− 2xt−1 − x2t−2
.

Thus

A(x)⊙B(x) =
x2

1− 6x+ 7x2 + 6x3 − 9x4
R(x, 0) =

2x2 − 3x3

1− 6x+ 7x2 + 6x3 − 9x4
,

as we found by a different method in Section 4.2.
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