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Abstract

We study the three-term nested recurrence relation B(n) = B(n−B(n−1))+B(n−
B(n−2))+B(n−B(n−3)) subject to initial conditions where the first N terms are the
integers 1 through N . This recurrence is the three-term analog of Hofstadter’s famous
Q-recurrence. Nested recurrences are highly sensitive to their initial conditions. Some
initial conditions lead to finite sequences, others lead to predictable sequences, and yet
others lead to sequences that appear to be chaotic and infinite. This work parallels a
previous study on the Q-recurrence. As with that work, we consider two families of
sequences, one where terms with nonpositive indices are undefined and a second where
terms with nonpositive indices are defined to be zero. We find similar results here as
with the Q-recurrence, as we can completely characterize the sequences for sufficiently
large N . The results here are, in a sense, simpler, as our sequences are all finite for
sufficiently large N .

1 Introduction

Numerous studies have focused on the Hofstadter Q-recurrence [10]

Q(n) = Q(n−Q(n− 1)) +Q(n−Q(n− 2))
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and the sequences it generates from various choices of initial conditions. Hofstadter’s original
Q-sequence starts with initial conditions Q(1) = Q(2) = 1. This sequence, A005185 in the
OEIS [13], has tantalizing properties that have thus far evaded proof, though they have been
the subject of statistical studies [2, 11]. As such, most studies of the Q-recurrence analyze
sequences generated by other initial conditions [3, 4, 7, 9, 12]. One recent approach involves
studying a family of initial conditions described by a parameter [8].

In this paper, we apply the parametrized initial condition approach to a different recur-
rence, the three-term Hofstadter-like recurrence

B(n) = B(n−B(n− 1)) +B(n−B(n− 2)) +B(n−B(n− 3)).

This recurrence is known to generate a well-behaved sequence [6] when given initial conditions
B(1) = 1, B(2) = 2, B(3) = 3, B(4) = 4, and B(5) = 5. For convenience, we refer to
this well-behaved sequence (A278055) as the B-sequence. Aside from that one article, this
recurrence has not been widely reported on. This is presumably because most natural initial
conditions lead to finite sequences. If a sequence B∗(n) generated by the B-recurrence ever
has B∗(n − 1) ≥ n or B∗(n − 1) ≤ 0, then B∗(n) would be undefined. When this sort of
behavior occurs, we say that the sequence dies after n− 1 terms, or that it dies at index n.
This assumes, as is standard, that the first term defined by the initial conditions is B∗(1). In
this paper, we consider such initial conditions, but we also consider infinite initial conditions
that define values for B∗(n) when n ≤ 0. In this realm, B∗(n − 1) ≥ n does not lead to
sequence death, but B∗(n− 1) ≤ 0 still does. So, to avoid some confusion later in the paper,
when a sequence dies because B∗(n− 1) ≤ 0, we say that the sequence ends.

1.1 Notation

Going forward, the only recurrence relation we discuss is the B-recurrence, but we study it
with many different initial conditions. We introduce analogous notation to prior work of this
type on the Q-recurrence [8]. The notation B(n) refers to the nth term of the B-sequence
itself. The notation B∗(n) refers to a generic sequence that satisfies the B-recurrence. For
other specific sequences satisfying the B-recurrence, we use B with a subscript that we define
for each of those particular sequences.

We use angle brackets to denote our initial conditions. For example, ⟨1, 2, 3, 4, 5⟩ is short-
hand for the initial conditions for the B-sequence. Sometimes, we wish to define B∗(n) = 0
for all n ≤ 0 in order to prevent our sequences from dying too soon. This convention is noted
with a symbol 0̄ followed by a semicolon at the start of the initial conditions. For example,
⟨0̄; 1, 1, 1⟩ is shorthand for B∗(n) = 0 for n ≤ 0, B∗(1) = 1, B∗(2) = 1, and B∗(3) = 1.

1.2 Methodology

Our approach to studying families of solutions to the B-recurrence mirrors the process from
previous work on the Q-recurrence [8]. We start from symbolic initial conditions in terms of
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a symbol N representing a large positive integer. Then, we attempt to sequentially compute
terms immediately following the initial conditions. Both the indices and values of these terms
are in terms of N . While doing these calculations, we keep track of several requirements
that give lower bounds on the values of N for which our calculations are valid.

• Whenever a term of the form B∗(a) occurs for some positive integer a, we must have
N ≥ a. This ensures that B∗(a) is described by the initial conditions.

• Whenever a term of the form B∗(N − a) occurs for some positive integer a, we must
have N > a. This ensures that B∗(N − a) is described by the initial conditions.

• Whenever a term of the form B∗(b− aN) occurs for some positive real number a and
some real number b, we must have N ≥ b

a
. This ensures that b−aN ≤ 0, meaning that

B∗(b − aN) is undefined or zero (depending on whether or not the initial conditions
include 0̄).

We continue to compute terms and bound N from below as long as we need to for the partic-
ular application. Often, we compute terms until the sequence dies, leading to a description
of the behaviors of the whole family of sequences for sufficiently large N . Other times, we
are able to describe all terms of the sequence up to around index 2N . In situations like that,
we are able take the original initial conditions together with the newly described terms as
new initial conditions and apply the method again to compute more terms.

1.3 Structure of this paper

This paper’s structure mirrors that of the analogous study on the Q-recurrence [8]. In
Section 2, we characterize the sequences generated by the B-recurrence via the family of
initial conditions of the form ⟨1, 2, 3, . . . , N⟩. Then, in Section 3, we study the more general
initial conditions ⟨0̄; 1, 2, 3, . . . , N⟩. Finally, we suggest some future research directions in
Section 4.

Several results throughout the paper rely on tedious computations. In order to streamline
this paper, lengthy computations are omitted. Full computational results, along with asso-
ciated code, can be found on GitHub: https://github.com/nhf216/B-recurrence-data.

2 Behavior of the B-recurrence with linear initial con-

ditions

In this section, we consider sequences obtained from the B-recurrence and initial conditions
of the form ⟨1, 2, 3, . . . , N⟩ for some integer N ≥ 3. Henceforth, we let BN denote this
sequence for a given value of N .

We have the following result, which characterizes the behaviors of almost all of these
sequences.
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Index N + 1 N + 2 N + 3 N + 4 N + 5 N + 6
Term 6 N + 1 N + 2 N + 3 9 N + 4

Index N + 7 N + 8 N + 9 N + 10 N + 11 N + 12
Term N + 5 N + 6 12 N + 7 N + 8 N + 9

Index N + 13 N + 14 N + 15 N + 16 N + 17 N + 18
Term 15 N + 10 N + 11 17 N + 13 18

Index N + 19 N + 20 N + 21 N + 22 N + 23 N + 24
Term N + 13 N + 15 N + 16 22 21 2N + 11

Table 1: Terms BN(N + 1) through BN(N + 24) whenever N ≥ 9.

Theorem 1. For N = 3, N = 4, or N ≥ 10, the sequence BN dies. Furthermore, if N ≥ 14,
the sequence has exactly N + 24 terms.

Proof. Computing terms, we obtain that B3(4) = 6, B4(5) = 6, B10(1015) = 1036, B11(117)
= 120, B12(45) = 47, and B13(73) = 82. So, these sequences all die.

Now, we treat N as a symbolic parameter and apply the process outlined in Subsec-
tion 1.2. That is, we start from the symbolic initial conditions ⟨1, 2, 3, . . . , N⟩ and then
attempt to compute BN(N + 1), BN(N + 2), BN(N + 3), . . . in terms of N . While doing so,
we track lower bounds on N for which our calculations are valid. In the current setting, this
allows us to compute 24 terms following the initial conditions. These 24 terms are given in
Table 1. The full length of the computations, along with bounds on N , can be found on
GitHub. In particular, these calculations are valid for N ≥ 9.

The last term we have is B(N + 24) = 2N + 11. We now try to compute the next term.

BN(N + 25) = BN(N + 25−BN(N + 24)) +BN(N + 25−BN(N + 23))

+BN(N + 25−BN(N + 22))

= BN(N + 25− (2N + 11)) +BN(N + 25− 21)

+BN(N + 25− 22)

= BN(−N + 14) +BN(N + 4) +BN(N + 3).

If N ≥ 14, then −N + 14 ≤ 0, so BN(−N + 14) is undefined and the sequence dies, as
required.

Theorem 1 says that BN dies for all but five values N . The sequences B5 and B6 are
identical; both are the B-sequence [6]. Sequences B7, B8, and B9 (A373227, A373228,
and A373229) are more akin to Hofstadter’s Q sequence. Like Hofstadter’s, it is unclear
whether these sequences die. All last for at least 30 million terms. Plots of the first hundred
thousand terms of each of these sequences are shown in Figure 1. Sequences B10, B11,
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B12, and B13 are prefixes of OEIS sequences A373230, A373231, A373232, and A373233
respectively.

Figure 1: Plots of the first 100,000 terms of B7 (left, A373227), B8 (center, A373228), and
B9 (right, A373229).

3 Linear initial conditions with extra zeroes

The sequences in Section 2 almost all die. As in previous work on the Q-recurrence [8], we
now consider what happens if we prevent them from dying quickly by defining their values to
be zero at nonpositive integers. For an integer N ≥ 3, let BN̄ denote the sequence obtained
from the B-recurrence with initial conditions ⟨0̄; 1, 2, 3, . . . , N⟩.

Previously [8], it was seen that the corresponding behavior for the Q-recurrence depends
on the congruence class of N modulo 5. Three of those cases lead to the end of the sequence,
one leads to a semi-predictable pattern that seems to go on forever, and the fifth case leads
to a dependence on the congruence class of N modulo 25 and, thereafter, potentially higher
powers of 5. For the sequences BN̄ , the dependence is instead on the congruence class of N
modulo 7. Here, all seven cases lead to the end of the sequence without needing to consider
cases involving higher powers of 7. But, all cases require fairly large values of N to be valid.
We have the following main result.

Theorem 2. Let N ≥ 72 be a natural number. Then the following period-7 pattern begins
at index N + 67 in BN̄ , where k denotes a positive integer:

BN̄(N + 7k) = 7k + 2;

BN̄(N + 7k + 1) = N + 7k + 2;

BN̄(N + 7k + 2) = N + 7k + 4;

BN̄(N + 7k + 3) = 7;

BN̄(N + 7k + 4) = 2N + 2k + 45;

BN̄(N + 7k + 5) = 2N + k − 7;

BN̄(N + 7k + 6) = N − 2.
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This pattern lasts through index 2N + ν, where

ν =



−1, if N ≡ 0 (mod 7);

−2, if N ≡ 1 (mod 7);

−2, if N ≡ 2 (mod 7);

−2, if N ≡ 3 (mod 7);

2, if N ≡ 4 (mod 7);

1, if N ≡ 5 (mod 7);

0, if N ≡ 6 (mod 7).

After this,

• If N ≡ 0 (mod 7) and N ≥ 196, then BN̄ ends after 2N + 27 terms.

• If N ≡ 1 (mod 7) and N ≥ 2087, then BN̄ ends after 2N + 254 terms.

• If N ≡ 2 (mod 7) and N ≥ 3201, then BN̄ ends after 2N + 524 terms.

• If N ≡ 3 (mod 7) and N ≥ 4315, then BN̄ ends after 2N + 560 terms.

• If N ≡ 4 (mod 7) and N ≥ 200, then BN̄ ends after 2N + 20 terms.

• If N ≡ 5 (mod 7) and N ≥ 32478, then BN̄ ends after 2N + 4547 terms.

• If N ≡ 6 (mod 7) and N ≥ 118, then BN̄ ends after 2N + 9 terms.

The proof of Theorem 2 uses the following lemma.

Lemma 3. Let K ≥ 7, c ≥ 1 and 0 ≤ γ ≤ 6. Then, let λ and µ be integers such that

λ ≥



−2c+ 2, if γ = 0;

−2c+ 1, if γ = 1;

−2c+ 4, if γ = 2;

−2c+ 3, if γ = 3;

−2c+ 2, if γ = 4;

−2c+ 1, if γ = 5;

−2c, if γ = 6.

and µ ≥



−c, if γ = 0;

−c, if γ = 1;

−c+ 3, if γ = 2;

−c+ 2, if γ = 3;

−c+ 1, if γ = 4;

−c, if γ = 5;

−c− 1, if γ = 6.

Define L = K − 7c− γ and M = K + L+ 5. Then, for arbitrary integers a1, a2, . . . , aL, let
BC denote the sequence resulting from the B-recurrence and the initial conditions

⟨0̄; 1, 2, . . . , K, 6, a1, a2, . . . , aL, 2K + λ− 2, 2K + µ− 1, K − 2⟩ .
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The sequence BC follows the following pattern from BC(M − 3) through BC(2K + ν)

BC(M + 7k) = L+ 7k + 7;

BC(M + 7k + 1) = M + 7k + 2;

BC(M + 7k + 2) = M + 7k + 4;

BC(M + 7k + 3) = 7;

BC(M + 7k + 4) = 2K + 2k + λ;

BC(M + 7k + 5) = 2K + k + µ;

BC(M + 7k + 6) = K − 2;

where

ν =



−2, if γ = 0;

−2, if γ = 1;

2, if γ = 2;

1, if γ = 3;

0, if γ = 4;

−1, if γ = 5;

−2, if γ = 6.

Proof. The proof is by induction on the index. The base cases are BC(M − 3) through
BC(M − 1), which are part of the initial conditions. Now, suppose M ≤ n ≤ 2K + ν, and
suppose that BC(n

′) is what we want it to be for all M − 3 ≤ n′ < n.
There are seven cases to consider:

n−M ≡ 0 (mod 7): In this case, n = M + 7k for some k. Applying the B-recurrence, we
have

BC(M + 7k) = BC(M + 7k −BC(M + 7k − 1))

+BC(M + 7k −BC(M + 7k − 2))

+BC(M + 7k −BC(M + 7k − 3))

= BC(M + 7k − (K − 2))

+BC(M + 7k − (2K + k − 1 + µ))

+BC(M + 7k − (2K + 2k − 2 + λ))

= BC(L+ 7k + 7) +BC(−K + L+ 6k + 6− µ)

+BC(−K + L+ 5k + 7− λ).

We know that n ≤ 2K + ν. Since n = M +7k, we have n−M = 7k ≤ 2K + ν −M =
K − L− 5 + ν = 7c+ γ − 5 + ν. Observe that

γ − 5 + ν =


−7, if γ = 0;

−6, if γ = 1;

−1, otherwise.
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Since 7k ≡ 0 (mod 7), we actually have 7k ≤ 7c − 7, since
⌊
γ−5+ν

7

⌋
always equals

−1. In particular, this means that L + 7k + 7 ≤ L + 7c = K − γ ≤ K. As a result,
BC(L+ 7k + 7) = L+ 7k + 7.

We also have

−K + L+ 6k + 6− µ = −7c− γ + 6k + 6− µ

≤ −7c− γ +
6

7
(7c− 7) + 6− µ

= −c− γ − µ.

Observe that

−c− γ − µ ≤


0, if γ = 0;

−1, if γ = 1;

−5, otherwise,

which implies that −c− γ−µ ≤ 0. In turn, this means that −K +L+6k+6−µ ≤ 0,
implying that BC(−K + L+ 6k + 6− µ) = 0.

Similarly, we have that

−K + L+ 5k + 7− λ = −7c− γ + 5k + 7− λ

≤ −7c− γ +
5

7
(7c− 7) + 7− λ

= −2c− γ + 2− λ.

Observe that

−2c− γ + 2− λ ≤

{
0, if γ = 0 or γ = 1;

−4, otherwise,

which implies that −2c−γ+2−λ ≤ 0. In turn, this means that −K+L+5k+7−λ ≤ 0,
implying that BC(−K+L+5k+7−λ) = 0. So, BC(M+7k) = L+7k+7, as required.

n−M ≡ 1 (mod 7): In this case, n = M + 7k + 1 for some k. Applying the B-recurrence
in a similar manner to the first case, we obtain

BC(M + 7k + 1) = BC(K − 1) +BC(L+ 7k + 8)

+BC(−K + L+ 6k + 7− µ).

We know that BC(K−1) = K−1. We also know that n ≤ 2K+ν. Since n = M+7k+1,
we have n−M − 1 = 7k ≤ 2K+ ν−M − 1 = K−L− 6+ ν = 7c+ γ− 6+ ν. Observe
that

γ − 6 + ν =


−8, if γ = 0;

−7, if γ = 1;

−2, otherwise.
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Since 7k ≡ 0 (mod 7), we actually have

7k ≤

{
7c− 14, if γ = 0;

7c− 7, otherwise.

In particular, this means that if γ = 0 then L + 7k + 8 ≤ L + 7c − 6 = K − 6 < K,
and if γ ̸= 0 then L + 7k + 8 ≤ L + 7c + 1 = K − γ + 1 ≤ K. As a result,
BC(L+ 7k + 8) = L+ 7k + 8.

We also have −K + L + 6k + 7 − µ = −7c − γ + 6k + 7 − µ. When γ = 0, we have
−7c−γ+6k+7−µ ≤ −7c−γ+ 6

7
(7c− 14)+7−µ = −c−γ− 5−µ = −5 < 0. When

γ ̸= 0, we have −7c− γ + 6k+ 7− µ ≤ −7c− γ + 6
7
(7c− 7) + 7− µ = −c− γ + 1− µ.

Observe that

−c− γ + 1− µ ≤


1, if γ = 0;

0, if γ = 1;

−4, otherwise.

So, −c− γ+1−µ ≤ 0 when γ ̸= 0. In turn, this means that −K +L+6k+7−µ ≤ 0
for all γ, implying that BC(−K + L + 6k + 7 − µ) = 0. So, BC(M + 7k + 1) =
(K − 1) + (L+ 7k + 8) = K + L+ 7k + 7 = M + 7k + 2, as required.

n−M ≡ 2 (mod 7): In this case, n = M + 7k + 2 for some k. Applying the B-recurrence
in a similar manner to the first case, we obtain

BC(M + 7k + 2) = BC(0) +BC(K) +BC(L+ 7k + 9).

We know that BC(0) = 0 and that BC(K) = K. We also know that n ≤ 2K+ν. Since
n = M+7k+2, we have n−M−2 = 7k ≤ 2K+ν−M−2 = K−L−7+ν = 7c+γ−7+ν.
Observe that

γ − 7 + ν =


−9, if γ = 0;

−8, if γ = 1;

−3, otherwise.

Since 7k ≡ 0 (mod 7), we actually have

7k ≤

{
7c− 14, if γ = 0 or γ = 1;

7c− 7, otherwise.

In particular, this means that if γ ≤ 1 then L+7k+9 ≤ L+7c− 4 = K − γ− 4 < K,
and if γ ≥ 2 then L + 7k + 9 ≤ L + 7c + 2 = K − γ + 2 ≤ K. As a result,
BC(L+ 7k + 9) = L+ 7k + 9. So, BC(M + 7k + 2) = K + L+ 7k + 9 = M + 7k + 4,
as required.

9



n−M ≡ 3 (mod 7): In this case, n = M + 7k + 3 for some k. Applying the B-recurrence
in a similar manner to the first case, we obtain

BC(M + 7k + 3) = BC(−1) +BC(1) +BC(K + 1) = 0 + 1 + 6 = 7,

as required.

n−M ≡ 4 (mod 7): In this case, n = M + 7k + 4 for some k. Applying the B-recurrence
in a similar manner to the first case, we obtain

BC(M + 7k + 4) = BC(M + 7k − 3) +BC(0) +BC(2).

We know that BC(0) = 0 and that BC(2) = 2. By induction, we have BC(M+7k−3) =
2K + 2k + λ− 2. So, BC(M + 7k + 4) = 2K + 2k + λ, as required.

n−M ≡ 5 (mod 7): In this case, n = M + 7k + 5 for some k. Applying the B-recurrence
in a similar manner to the first case, we obtain

BC(M + 7k + 5) = BC(−K + L+ 5k + 10− λ)

+BC(M + 7k − 2) +BC(1).

We know that BC(1) = 1. By induction, we have BC(M + 7k − 2) = 2K + k + µ− 1.
We also know that n ≤ 2K + ν. Since n = M + 7k + 5, we have n −M − 5 = 7k ≤
2K + ν −M − 5 = K − L− 10 + ν = 7c+ γ − 10 + ν. Observe that

γ − 10 + ν =


−12, if γ = 0;

−11, if γ = 1;

−6, otherwise.

Since 7k ≡ 0 (mod 7), we actually have

7k ≤

{
7c− 14, if γ = 0 or γ = 1;

7c− 7, otherwise.

From here, we have −K + L+ 5k + 10− λ = −7c− γ + 5k + 10− λ. When γ ≤ 1, we
have −7c− γ+5k+10−λ ≤ −7c− γ+ 5

7
(7c− 14)+ 10−λ = −2c− γ−λ < 0. When

γ ≥ 2, we have −7c−γ+5k+10−λ ≤ −7c−γ+ 5
7
(7c−7)+10−λ = −2c−γ+5−λ.

Observe that −2c − γ + 5 − λ ≤ −1 when γ ≥ 2, which is less than 0. In turn, this
all means that −K + L + 5k + 10 − λ ≤ 0 regardless of value of γ, implying that
BC(−K +L+5k+10−λ) = 0. Therefore BC(M +7k+5) = 2K + k+µ, as required.

n−M ≡ 6 (mod 7): In this case, n = M + 7k + 6 for some k. Applying the B-recurrence,
we have

BC(M + 7k + 6) = BC(−K + L+ 6k + 11− µ)

+BC(−K + L+ 5k + 11− λ)

+BC(M + 7k − 1).
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By induction, we have BC(M + 7k − 1) = K − 2. We also know that n ≤ 2K + ν.
Since n = M +7k+6, we have n−M − 6 = 7k ≤ 2K+ ν−M − 6 = K−L− 11+ ν =
7c+ γ − 11 + ν. Observe that

γ − 11 + ν =


−13, if γ = 0;

−12, if γ = 1;

−7, otherwise.

Since 7k ≡ 0 (mod 7), we actually have

7k ≤

{
7c− 14, if γ = 0 or γ = 1;

7c− 7, otherwise.

From here, we have −K+L+6k+11−µ = −7c−γ+6k+11−µ. When γ ≤ 1, we have
−7c−γ+6k+11−µ ≤ −7c−γ+ 6

7
(7c−14)+11−µ = −c−γ−1−µ < 0. When γ ≥ 2,

we have −7c−γ+6k+11−µ ≤ −7c−γ+ 6
7
(7c−7)+11−µ = −c−γ+5−µ. Observe that

−c−γ+5−µ ≤ 0 when γ ≥ 2. In turn, this all means that −K+L+6k+11−µ ≤ 0
regardless of value of γ, implying that BC(−K + L + 6k + 11 − µ) = 0. Similarly,
we have −K + L + 5k + 11 − λ = −7c − γ + 5k + 11 − λ. When γ ≤ 1, we have
−7c−γ+5k+11−λ ≤ −7c−γ+ 5

7
(7c−14)+11−λ = −2c−γ+1−λ < 0. When γ ≥ 2,

we have−7c−γ+5k+11−λ ≤ −7c−γ+ 5
7
(7c−7)+11−λ = −2c−γ+6−λ. Observe that

−2c−γ+6−λ ≤ 0 when γ ≥ 2. In turn, this all means that −K+L+5k+11−λ ≤ 0
regardless of value of γ, implying that BC(−K + L + 5k + 11 − λ) = 0. Therefore,
BC(M + 7k + 6) = K − 2, as required.

We now prove Theorem 2.

Proof. We refer the reader to Table 1 for terms BN̄(1) through BN̄(N+28). The calculations
for BN also apply to BN̄ . From there, Table 2 lists terms BN̄(N +25) through BN̄(N +69).
Those calculations, which are available in detail on GitHub, are all valid provided N ≥ 67.
Observe that the values K = N , c =

⌊
N−65

7

⌋
, γ = (N −65) mod 7, λ = 65, and µ = 3 satisfy

the conditions of Lemma 3 provided that N ≥ 72 (so that c ≥ 1), and the first N + 69
terms of BN̄ can be used as initial conditions as per that lemma. Keeping in mind that these
choices of parameters mean that L = 65 and M = N + 70, Lemma 3 implies we have the
following pattern for BN̄ for some time:

BN̄(N + 70 + 7k′) = 65 + 7k′ + 7 = 7k′ + 72;

BN̄(N + 70 + 7k′ + 1) = N + 70 + 7k′ + 2 = N + 7k′ + 72;

BN̄(N + 70 + 7k′ + 2) = N + 70 + 7k′ + 4 = N + 7k′ + 74;

BN̄(N + 70 + 7k′ + 3) = 7;
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BN̄(N + 70 + 7k′ + 4) = 2N + 2k′ + 65;

BN̄(N + 70 + 7k′ + 5) = 2N + k′ + 3;

BN̄(N + 70 + 7k′ + 6) = N − 2.

Re-indexing so that k = k′ + 10 allows us to rewrite this pattern as

BN̄(N + 7k) = 7(k − 10) + 72 = 7k + 2;

BN̄(N + 7k + 1) = N + 7(k − 10) + 72 = N + 7k + 2;

BN̄(N + 7k + 2) = N + 7(k − 10) + 74 = N + 7k + 4;

BN̄(N + 7k + 3) = 7;

BN̄(N + 7k + 4) = 2N + 2(k − 10) + 65 = 2N + 2k + 45;

BN̄(N + 7k + 5) = 2N + (k − 10) + 3 = 2N + k − 7;

BN̄(N + 7k + 6) = N − 2,

which is the desired pattern. Lemma 3 guarantees that this pattern persists through index
2N + ν, where ν depends on γ, which, in turn, depends on N . Here, we have the required
result:

ν =



−1, if N ≡ 0 (mod 7);

−2, if N ≡ 1 (mod 7);

−2, if N ≡ 2 (mod 7);

−2, if N ≡ 3 (mod 7);

2, if N ≡ 4 (mod 7);

1, if N ≡ 5 (mod 7);

0, if N ≡ 6 (mod 7).

We now prove the remainder of Theorem 2, regarding the ways in which BN̄ can end. For
each possibility of N mod 7, we can compute terms of BN̄ from index 2N + ν + 1 onward,
using the now known values of BN̄ for all smaller indices. These computations are akin to
those done for the initial terms of BN̄ , and like those we track how large N needs to be for
the computations to be valid. The result is a lengthy and tedious list of terms and bounds,
but the claimed end conditions in the statement of the theorem are all validated. The full
length of the computations can be found on GitHub. The repository includes one file for
each value of N mod 7.

The sequences corresponding to the minimum values of N for each congruence class
in Theorem 2 are all available in OEIS: A373234, A373235, A373236, A373237, A373238,
A274058, and A373239.
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Index N + 25 N + 26 N + 27 N + 28 N + 29 N + 30
Term 2N + 5 9 18 2N + 20 2N + 23 N + 9

Index N + 31 N + 32 N + 33 N + 34 N + 35 N + 36
Term 22 N + 30 N + 35 N + 13 27 36

Index N + 37 N + 38 N + 39 N + 40 N + 41 N + 42
Term N + 37 2N + 10 N + 4 39 N + 38 N + 44

Index N + 43 N + 44 N + 45 N + 46 N + 47 N + 48
Term N + 8 42 N + 40 N + 47 16 N + 39

Index N + 49 N + 50 N + 51 N + 52 N + 53 N + 54
Term N + 8 42 N + 40 N + 47 16 N + 39

Index N + 55 N + 56 N + 57 N + 58 N + 59 N + 60
Term N + 16 46 N + 49 N + 60 25 38

Index N + 61 N + 62 N + 63 N + 64 N + 65 N + 66
Term 58 4N + 51 2N + 14 N + 4 61 71

Index N + 67 N + 68 N + 69
Term 2N + 63 2N + 2 N − 2

Table 2: Terms BN̄(N + 25) through BN̄(N + 69) whenever N ≥ 67.

3.1 The remaining values of N

Theorem 2 characterizes the behavior of BN̄ for all but 6079 values of N ≥ 3. These
sequences can be studied individually by generating the sequences and observing the terms.
This study is carried out in Fox’s doctoral thesis [5]; what follows is a summary of those
findings. All of these sequences end before 150 million terms except when

N ∈ {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 81, 182, 193, 429, 822,
1892, 2789, 3442, 7292, 20830, 23511, 25163}.

Of these B5̄ and B6̄ are the B-sequence (A278055), so they last forever. For

N ∈ {4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18},

BN̄ appears to last forever but exhibits chaotic behavior, akin to the sequences in Figure 1.
To discuss the remaining values, we need four more results like Lemma 3. All come from
Fox’s thesis and are stated here without proof. All proofs are straightforward but tedious
inductive arguments, much like the proof of Lemma 3. Here, unlike in Lemma 3, the bounds
on the parameters are generally not optimized.

Lemma 4. [5, Proposition 9.9] Let K ≥ 1 and M ≥ K + 5 be integers. Then, for arbitrary
integers a1, a2, . . . , aK, let BD denote the sequence resulting from the B-recurrence and the
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initial conditions
⟨0̄; a1, a2, . . . , aK , 2,M, 2⟩ .

The sequence BD follows the following pattern starting from BD(K+1) (and lasting forever):

BD(K + 2k) = 2k−1 ·M ;

BD(K + 2k + 1) = 2.

Lemma 5. [5, Proposition 9.10] Let K ≥ 3, and µ ≥ 1 be integers. Then, for arbitrary
integers a4, a5, . . . , aK, let BE denote the sequence resulting from the B-recurrence and the
initial conditions

⟨0̄; 1, 2, 3, a4, a5, . . . , aK , K + µ, 3, K + 3, K + µ+ 1, 5⟩ .

The sequence BE follows the following pattern from BE(K + 1) through BE(K +
⌊
5µ−15

2

⌋
):

BE(K + 5k) = 5;

BE(K + 5k + 1) = K + 3k + µ;

BE(K + 5k + 2) = 3;

BE(K + 5k + 3) = K + 5k + 3;

BE(K + 5k + 4) = K + 3k + µ+ 1.

Lemma 6. [5, Proposition 9.13] Let K, λ, µ1, µ2, and γ be positive integers with λ > 31+K,
µ1 > λ, µ2 > λ, and γ > λ. Then, for arbitrary integers a1, a2, . . . , aK, let BT denote the
sequence resulting from the B-recurrence and the initial conditions

⟨0̄; a1, a2, . . . , aK , λ, 7, µ2, 16, µ2, 16, µ1, λ, 7, µ2, 16, 2µ2, 16, µ2, 25, γ, λ, 7⟩ .

The sequence BT follows the following pattern from BT (K + 1) through BT (λ):

BT (K + 16k) = µ1 · 2k−1 + γ − µ1;

BT (K + 16k + 1) = λ;

BT (K + 16k + 2) = 7;

BT (K + 16k + 3) = µ2 · 2k;
BT (K + 16k + 4) = 16;

BT (K + 16k + 5) = µ2 · 2k;
BT (K + 16k + 6) = 16;

BT (K + 16k + 7) = µ1 · 2k;
BT (K + 16k + 8) = λ;

BT (K + 16k + 9) = 7;
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BT (K + 16k + 10) = µ2 · 2k;
BT (K + 16k + 11) = 16;

BT (K + 16k + 12) = µ2 · 2k;
BT (K + 16k + 13) = 16;

BT (K + 16k + 14) = µ2 · 2k;
BT (K + 16k + 15) = 25.

Lemma 7. [5, Proposition 9.16] Let K, λ, µ1, µ2, γ1, γ2, and γ3 be positive integers with
λ > 31 + K, µ1 > λ, µ2 > λ, γ1 > λ, γ2 > λ, and γ3 > λ. Then, for arbitrary integers
a1, a2, . . . , aK, let BU denote the sequence resulting from the B-recurrence and the initial
conditions

⟨0̄; a1, a2, . . . , aK , 16, µ2, 7, γ2, λ, 16, λ, 16, µ1, 10, γ3, µ2, 7, λ, 16, γ1⟩ .

The sequence BU follows the following pattern from BU(K + 1) through BU(λ):

BU(K + 16k) = µ1 · 2k + γ1 − 2µ1;

BU(K + 16k + 1) = 16;

BU(K + 16k + 2) = µ2 · 2k;
BU(K + 16k + 3) = 7;

BU(K + 16k + 4) = 7k + γ2;

BU(K + 16k + 5) = λ;

BU(K + 16k + 6) = 16;

BU(K + 16k + 7) = λ;

BU(K + 16k + 8) = 16;

BU(K + 16k + 9) = µ1 · 2k;
BU(K + 16k + 10) = 10;

BU(K + 16k + 11) = 16k + γ3;

BU(K + 16k + 12) = µ2 · 2k;
BU(K + 16k + 13) = 7;

BU(K + 16k + 14) = λ;

BU(K + 16k + 15) = 16.

For N ∈ {81, 182, 429, 822, 1892, 2789, 7292, 23511, 25163}, Lemma 4 eventually applies,
so these sequences continue forever [5, Table 9.1]. Both B193 (A28334) and B3442 (A283885)
also continue forever. Infinitely many prefixes of these sequences satisfy the hypotheses of
Lemma 5. In other words, these sequences consist of infinitely many chunks of the sort
described by Lemma 5 with some sporadic terms in between [5, Propositions 9.11 and 9.12].
Each such chunk lasts approximately six times as long as the previous one. The first ten

15

https://oeis.org/A28334
https://oeis.org/A283885


Figure 2: Plots of the first 10,000,000 terms of B193 (A283884) with linear scale (left) and
logarithmic scale (right).

million terms ofB193 are shown in Figure 2. The only remaining sequence isB20830 (A283887).
This sequence ends, but it has a total of 84975 · 2560362+31 terms, far too many to compute.
First, some initial terms of B20830 satisfy the conditions of Lemma 6, so that lemma governs
the behavior of the sequence for awhile. Then, shortly after the chunk of B20830 described
by Lemma 6 concludes, Lemma 7 applies. That lemma then governs the behavior of the
sequence for a long time. That chunk terminates at index 84975 · 2560362, after which the
sequence lasts only 31 additional terms [5, Lemma 9.17].

4 Future work

Studying nested recurrence relations with symbolic initial conditions of this type was initi-
ated recently with Hofstadter’s Q-recurrence [8], and it is continued here with the three-term
analog to that recurrence. The obvious idea is to continue adding more terms to the recur-
rence. But, that study was undertaken in Fox’s doctoral thesis [5, Section 9.3], and it suggests
that chaos reigns supreme for the recurrences with four or more terms, even for large N . One
question, then, would be whether there exist other symbolic initial conditions that lead to
predictable solutions to these recurrences. Another direction would be to study these same
sorts of initial conditions with other recurrences, such as the Conolly recurrence [1] or the
Tanny recurrence [14].

The other big research direction suggested by this work is further exploration and dis-
covery of results like Lemmas 3, 4, 5, 6, and 7. These five lemmas all describe temporary or
permanent solutions to the B-recurrence that consist of interleavings of simpler sequences.
These particular results appear in this paper because they are needed to analyze the se-
quences BN̄ for various values of N . But, they are by no means exhaustive among results of
this type. The first known solution of this type to a nested recurrence is Golomb’s solution
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(A244477) to the Q-recurrence [9], which uses initial conditions ⟨3, 2, 1⟩. Later, Ruskey gave
a solution (A188670) to the Q-recurrence with exponentially growing subsequences [12] via
initial conditions ⟨0̄; 3, 6, 5, 3, 6, 8⟩. A general algorithmic framework for finding and proving
these sorts of solutions was laid out previously [7]. All of these solutions last forever; the
first known occurrence of temporary interleaved solutions is in analogous work to this paper
on the Q-recurrence [8]. Perhaps such solutions could also be worked into aforementioned
algorithmic framework [7].
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