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Abstract

The mth-order linear recursive sequence of (wp)p>0 is defined by the recursion
Wy = A1Wp_1 + AG2Wp_o + -+ + ApWp_m for n > m. In previous discussions of the
reciprocal sums and products of (wy,)n>0, the condition a; > as > -+ > a, > 1 was
typically imposed. In this paper, we extend previous research and allow the coefficients
to be arbitrary positive integers.

1 Introduction

For positive integers aq, as,..., a, with a,, # 0, the mth-order linear recursive sequence
(W )n>o is defined by

Wy, = G Wy—1 + QWn g + -+ AWy, N >M, (1)

where the initial values w; € N, and at least one is not zero. The characteristic polynomial
of the sequence (wy,)n>0 is

plr) =a™ —arz™ " — = AT — = (= M) (= N)™ (2)

where the \; are called the roots of the sequence. If the absolute value of a root of the
sequence (wy,)n>o is strictly largest, the root is called the dominant root.
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If m=2,a =ay=1, and wy = 0, wy; = 1, the resulting sequence (w,),>o is the famous
Fibonacci sequence (f,)n>0. Ohtsuka and Nakamura [10] considered the reciprocal sums of
the Fibonacci sequence and obtained the following result:

-1
io: i =S if n is even and n > 2;
— Jr fon_o—1, ifnisodd and n > 1,

where [z| denotes the floor function.

o
Computing the floor function of () wik)_l is a difficult problem. Some researchers have

[e.e]
studied the nearest integer to (>
k=n

exists a positive integer n; such that

k=n
wik)_l. For example, Wu and Zhang [13] proved that there

=1
(Z w_k-)_l = Wy — Wp—1, nZ ny,
k=n
where a; > ay > -+ > a,, > 1 and ||z|| denotes the nearest integer function, defined by

Izl = [ + 3]
If two sequences (uy)n>0 and (v, ),>o satisfy the condition that (u,/v,),>0 tends to 1 as
n — 00, we call them asymptotically equivalent. Some researchers have continued the study

of reciprocal sums by finding a sequence that is asymptotically equivalent to (( > wik)*).
k=n

Specifically, Trojovsky [12] proved that the sequences

(wi

00 1 »
(( B )>> and (P(wy) = P, 1)),

k=n

are asymptotically equivalent, where P(z) is a non-constant polynomial with P(z) € C[z].
For more on reciprocal sums and products, see [3, 6, 15, 2, 1, 4, 9, 14, 16, §|.

In previous research concerning reciprocal sums and products of (wy,),>0, the condition
a; > as > -+ > a, > 1 was typically imposed. In this paper, we allow the coefficients
to be arbitrary positive integers, and obtain a series of sequences that are asymptotically

equivalent to (( 3 w%)_l) and (1 - 10— wik))_1> The main results are summarized in
k=n k=n

the following theorem.

Theorem 1. Let (w,)n>0 be an mth-order linear recursive sequence defined by (1). The

sequences N
<( i)_1> and  (w, —w,_1) (3)



are asymptotically equivalent, and the sequences

((1 ~Tlo- i))*) and  (w, 1), @)
k=n Wk n

are asymptotically equivalent.

2 Some lemmas

In this section, we shall give several lemmas that are useful for the proofs of the theorem.

Lemma 2. (Descartes rule of signs). Let ¢(x) = ap, ™ +- - -+a,, 2™ be a polynomial where
the n; are integers and ny > ng > --- > ng > 0. The number of positive roots of ¢(x) is at
most the number of sign changes of adjacent nonzero coefficients.

Lemma 3. ([5, 7] Enestrom-Kakeya theorem). Let ¢'(x) = ag + ayx + --- + a,2" be a
polynomial of order n with real coefficients. If 0 < ag < a1 < --- < a,, then all complex
roots z of ¢ () satisfy |z| < 1.

Lemma 4. Let p(z) = 2™ — ax™t — - — o1 — a,y, be the characteristic polynomial of
(W )n>0, where the coefficients ay, asa, ..., a,, are positive integers. Then the following hold:

e ©(x) has only one positive root \y, called X\, and X\ > 1;

e The other m — 1 roots of p(x) lie in the circle |z| < X. Therefore X is the dominant
root of ().

Proof. By Lemma 2, the characteristic polynomial p(z) = 2™ — a1z Ce = gy 1T — Gy
has at most one positive root A, called A. In addition, lim ¢(z) = 400, and, by ¢(1) <0,
T—r 00

m—1 __

we obtain that A > 1 and A is the only positive root of ¢(x).
By using the relation

A =g A e N AN A,
we obtain that ¢(x) = (z — \)i(z), where
P() =™+ (N —a)a™ 2+ (N = a A —ag)a™ P 4
+ A= AT — =g )T AT g AT — e —
Claim 1. If z is a root of ¥(z), then |z] < .
In fact, we prove that all the roots of U(z) := ¥ (Ax) are in the closed unit ball. The

polynomial
U(z) = A" (N —a) A" 222 4 (A — @\ — ap) NPT
+ (A2 — g AT — e =g ) AT AT — g AT — =y
= AT (T — g AT (AT — g N = ap )™
+ (A= @ AT =N AT g N — .
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Since

AL S AL g N2 s AL g N2 g N s
SN @ AT — = A S AT g VTR — gy = A /A > 0,

which A is positive root of ¢(z). By Lemma 3, this completes the proof of Claim 2.

Claim 2. On the circle |z| = A, the polynomial ¢(z) has the unique root .
If p(z) = 0, then
2™ = a2 2™ a1 2+ G
The triangle inequality is satisfied:
2™ < a2 a2 e 2] A (5)

If z = ), then ¢(z) = 0. So (5) must be an equality. Therefore, a;2™!, ay2™2,

vy Qm_1Z2, G, all on the same ray leaving the origin. Since ai, ao, ..., a, are all
the elements of R*, z™~1 2™=2 . z must be elements of R*. Therefore we obtain
¢(z) € R*. On the circle |z| = A, we obtain z = A. This completes the proof of Claim
2.

[l
We define f(z) = O(g(z)) to mean that the quotient f(z)/g(z) is bounded for x > a.

Lemma 5. Let (w,)n>0 be mth-order linear recursive sequence defined by (1). Then the
asymptotic formula of (wy)n>o0 is as follows:

wy, = A"+ O((M)?) (6)

where ¢ is a constant. The \ defined by Lemma 4 is the dominant root of ¢(x), and p is the
largest absolute value of the remaining m — 1 roots of ¢(x).

Proof. By [11], there exist unique nonzero polynomials ¢4, ..., £, € Q({\}_,) [z], with
deg¢; < m; — 1 (where m; is the multiplicity of A; as a root of the characteristic polynomial
p(z)) for 1 <i <, such that

wy, = Li(n)A] + -+ 4(n)N,  for all n.
By Lemma 4, we get

l
wy = A"+ Y Li(n)A, Li(n) € Rn],
1=2



where A is the dominant root of ¢(z), ¢ is a nonzero constant, and
degl;i(n) <m; —1, for i=2,...)l, mo+---+m=m-—1,
Therefore, we obtain that
Wy = A" 4+ O™ ") = A" + O((Mn)2),

n
2

where n™ < ‘ﬁ for all sufficiently large n. O]

Remark 6. For discussing the reciprocal product of mth-order linear recursive sequences, we
assume that > 1. When p < 1, as in [3], we write w,, = ¢\ + O(c¢™"), for some ¢ > 1).

Lemma 7. Let A > |u| > 1. We get

[T0- oy =1-3 -+ oD, @

where ¢ 1s a constant.

Proof. First we prove the following equality:

[T0-+odnm=1-3% S +on?) 0

We prove (8) by mathematical induction. When m = 1, we have

[10 - + o1
= (1 - - +O((5) ) x (1= o + O((4)"))
I 1 1 e
S VRS s * 2 \2ntl * O((F) )
+O((5)) + 0((5)H) + 0((55) ™)

1 1 J

That is, (8) holds when m = 1. Now suppose that for every integer m, we have

n-+m n-+m
1 1

[Ta-—+odh) =1-Y —+o(dH.

k=n k=n



Then for m + 1, we have
n+m-+1 1

[k
1— — Ll
I] (- 5+ 0
pasig 1 1% 1 1% +m+1
=(1- ; o TOE)2) < (= oy +0((5) )
n+m n+m
1 1 1 1 . (9)
=1- Z N enntmtl + menﬂ(z C)\k) + O((A )?)
k=n k=n
M ntm41 M n 12 2n+m+1
+0((3) 2 ) +0((3)?) +0((3) )
A AP A
n+m-+1 1 [
=1- Z o T O((ﬁ)a)
k=n
Now (9) follows from (9) and mathematical induction.
Taking m — oo, we have
s 1 JYN - 1 o\ n
kl;[n(l —on o)) =1- ;W +0((33)%),
which completes the proof. O]
3 Proof of the theorem
Proof of Theorem 1. Using the geometric series, we get
1
=1 1
TTe + O(e), (10)
where € — 0. Using Lemma 5, we obtain
- 1 B 1
WE e+ O((M)E) N (L +O((5)7)) (11)
1 k JIN
=l +0(5 V)P = g HOE)R

Thus
1 11 B A pn
gw_k_E;VJrO(;(F) )_c(/\—l))\"+0(()\3) )-

Taking the reciprocal, we get

—~ 1. ., 1 B 1
Q) T S o @ T 2= 0D
C()\ - 1))\n H\n n n—1 H\n
D 0B = (e - en o)),



which yields that

w3

N e R ()
Wn = Wn-1 (A" + O((A)?)) — (A1 + O((A\p) =
)

(eA™ — c)\”_l)(l + O((%

(12)

We obtain that

S 1 1
(22 2p)
k=n
Wy, — Wp—1

tends to 1,as n — oo.

In addition, by Lemma 7 and identity (11), we obtain

[[o- o =Tla- 5 +o6nh

k=n =n

Taking the reciprocal, we get

o0

1 1 B 1
=110 = 20 = = ~ a G o)
c(A—=1)A"

M n n n—1 Hya
== 1+ 0((5)2)) = (A" = A" )AL+ O((7)2)),

which yields that

Wa— Wt (N O(O)E)) — (N + OOy
(N — XY (1+ O((4)H)

(eA® — A= 1)<1+0(M_;3‘1> O(

(X — XY (1 + O((4)F)

)
(A = A1) (1+O0((§)3) + O((5)"))

(=TI =g)™ - (A" — eXm 1)1+ O((4)%))

(13)

1

Qi)

+

w3

We obtain that

T 1\)\—1
(=TT =)
h=n tends to 1,as n — oo,
Wy — Wp-1



which completes the proof. O

Remark 8. We now discuss the relative error of the asymptotic behavior of the result in
Theorem 1. By identities (12) and (13), we obtain

A N I e (L R
Wy = Wy L+ 0((5)%) +0((4)7) (14)
by n=1 Hy 2n=1 =
:O((X) 2 >+O((X) 2) O((x) 2 ),
and
S LA I NS £ (O B
Wy, — Wp—1 1+O0((5)2)+0(%) ) (15)

When n = 101, by the identities (14) and (15), we can determine the magnitude of
the relative error of the asymptotic behavior for the following two sequences (w,,)n,>0 and

(wn)n220:

Wy, = 2Wy—1 + 3Wy_2 + TWy_3 + Wy_g + Wy 5,

Wny = 3wn71 + 5wn72 + wp—3 + 6wnf4 + Wy_5.

n—1
Wy A " 57
wy, ~3.2421 ~ —1.1509 =~ 3.2401 x 1023

Wy 42965 ~ —1.4946 ~1.1762 x 10723

Table 1: The higher-order linear recurrences.

The computations are given in Table 1. We used the software Mathematica.
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