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Abstract

Define the minimal excludant of an overpartition π, denoted mex(π), to be the
smallest positive integer that is not a part of the non-overlined parts of π. For a
positive integer n, the function σmex(π) is the sum of the minimal excludants over all
overpartitions of n. In this paper, we prove that the σmex(π) equals the number of
partitions of n into distinct parts using three colors. We also provide an asymptotic
formula for σmex(π) and show that σmex(π) is almost always even and is odd exactly
when n is a triangular number. Moreover, we generalize mex(π) using the least r-
gaps, denoted mexr(π), defined as the smallest part of the non-overlined parts of the
overpartition π appearing less than r times. Similarly, for a positive integer n, the
function σrmex(π) is the sum of the least r-gaps over all overpartitions of n. We derive
a generating function and an asymptotic formula for σrmex(π). Lastly, we study the
arithmetic density of σrmex(π) modulo 2k, where r = 2m · 3n,m, n ∈ Z≥0.

1 Introduction

The minimal excludant (mex) of a subset S of a well-ordered set U is the smallest value in U
that is not in S. In particular, the minimal excludant of a set S of positive integers, denoted
mex(S), is the least positive integer not in S, i.e., mex(S) = min(Z+ \ S). The history of
the minimal excludant goes way back in the 1930s when it was first used in combinatorial
game theory by Sprague and Grundy [8, 12].
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In 2019, Andrews and Newman [2] studied the minimal excludant of an integer partition
π, denoted mex(π), which is defined as the smallest positive integer that is not a part of π.
Moreover, they also introduced the arithmetic function

σmex(n) :=
∑

π∈P(n)

mex(π),

where P(n) is the set of all partitions of n.
In their paper, Andrews and Newman proved the following interesting relationship be-

tween σmex(n) and D2(n) which is the number of partitions of n into distinct parts using
two colors:

σmex(n) = D2(n).

Moreover, they showed that σmex(n) is almost always even; in particular, they showed that
σmex(n) is odd exactly when n = j(3j ± 1) for some j ∈ Z

+.
Recall that an overpartition of a positive integer n is a non-increasing sequence of natural

numbers whose sum is n in which the first occurrence of a number may be overlined. We
denote by p(n) the number of overpartitions of n. For example, p(3) = 8 since there are 8
overpartitions of 3 which are:

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

The goal of this paper is to extend the notion of minimal excludant of partitions to
overpartitions. There are several ways to obtain such a generalization. (For example, see
Section 4 of [7] for one such definition of minimal excludant of overpartitions and its relation
to the Ramanujan function R(q).) We propose the following definition below (Definition
1). We justify using this definition through the results we obtain, which are overpartition
analogues of results concerning the classical partition function (see Proposition 10). We also
note that our definition coincides with the one given in a recent paper of Yang and Zhou on
identities involving mex-related partitions [14].

Definition 1. The minimal excludant of an overpartition π, denoted mex(π), is the smallest
positive integer that is not a part of the non-overlined parts of π. For a positive integer n,
denote the sum of mex(π) over all overpartitions π of n as σmex(n) :

σmex(n) =
∑

π∈P(n)

mex(π),

where P(n) is the set of all overpartitions of n. We set σmex(0) = 1.

For example, consider n = 3. The table below shows all overpartitions of 3 and their
corresponding minimal excludant.
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π mex(π)
3 1
3 1

2 + 1 3
2 + 1 2
2 + 1 1
2 + 1 1
1+1+1 2
1 + 1 + 1 2

Table 1: Minimal excludants of overpartitions of 3.

Thus, σmex(3) = 13. The table below shows the first ten values of σmex(n).

n 0 1 2 3 4 5 6 7 8 9
σmex(n) 1 3 6 13 24 42 73 120 192 302

Table 2: First ten values of σmex(n).

We observe that these are also the first ten values of the sequence A022568 in OEIS which
is (D3(n)), the sequence of number of partitions of n into distinct parts using three colors.
In Section 2, we derive the generating function of σmex(n) and prove the aforementioned
observation relating σmex(n) and D3(n). This result generalizes the results of Andrews and
Newman, which relates σmex(n) and D2(n).

Theorem 2. For all positive integers n, we have

σmex(n) = D3(n).

We also derive an asymptotic formula for σmex(n) and prove a theorem regarding the
parity of σmex(n).

Theorem 3. We have

σmex(n) ∼ eπ
√
n

8n3/4

as n → ∞.

Theorem 4. For a positive integer n, we have

σmex(n) ≡
{

1 (mod 2), if n = j(j+1)
2

for some j ∈ N;

0 (mod 2), otherwise.
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Ballantine and Merca [3] explored the least r-gap of a partition π, denoted gr(π), which
is the smallest part of π appearing less than r times. In particular, g1(π) is the minimal
excludant of π. They defined the arithmetic function

σr mex(n) =
∑

π∈P(n)

gr(π)

which is the sum of the least r-gaps in all partitions of n. They also derived the following
generating function for σr mex(n):

∞
∑

n=0

σr mex(n)qn =
(q2r; q2r)∞

(q; q)∞(qr; q2r)∞

where (a; q)∞ :=
∏∞

k=0(1− aqk).
In this paper, we generalize mex(π) into r-gaps.

Definition 5. The least r-gap of an overpartition π, denoted mexr(π) is the smallest part
of the non-overlined parts of π appearing less than r times. Moreover, the function

σrmex(n) =
∑

π∈P(n)

mexr(π)

is the sum of the least r-gaps over all overpartitions of n. Moreover, we set σrmex(0) = 1.

For example, let r = 2 and n = 3. The table below shows all overpartitions of 3 and
their corresponding least 2-gap.

π mex(π)
3 1
3 1

2 + 1 1
2 + 1 1
2 + 1 1
2 + 1 1
1+1+1 2
1 + 1 + 1 2

Table 3: Least 2-gaps of overpartitions of 3.

Thus, σ2mex(2) = 10. The first ten values of σ2mex(n) are given in the following table
below.

n 0 1 2 3 4 5 6 7 8 9
σ2mex(n) 1 2 5 10 18 32 55 90 144 226

Table 4: First ten values of σ2mex(n).
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We observe that these are also the first ten values of the sequence A001936 in OEIS which
is the sequence of coefficients of qn in the expansion of

(−q; q)∞(q4; q4)∞
(q; q)∞(q2; q4)∞

.

In Section 3, we derive the generating function and asymptotic formula for σrmex(n).

Theorem 6. For all positive integers r, we have

∞
∑

n=0

σrmex(n)qn =
(−q; q)∞(q2r; q2r)∞
(q; q)∞(qr; q2r)∞

.

Theorem 7. For all positive integers r, we have

σrmex(n) ∼ eπ
√
n

8
√
rn3/4

as n → ∞.

Chakraborty and Ray [6] studied the arithmetic density of σ2 mex(n) and σ3 mex(n)
modulo 2k for a positive integer k and proved that for almost every nonnegative integer n
lying in an arithmetic progression, the integer σr mex(n) is a multiple of 2k where r ∈ {2, 3}.

We also study the arithmetic density of σrmex(n) when r = 2m · 3n, where m,n ∈ Z≥0.
In Section 4, we prove the following result.

Theorem 8. Let r = 2m · 3n where m,n ∈ Z≥0 and k ≥ 1 be a positive integer. Then

lim
X→+∞

#{n ≤ X : σrmex(n) ≡ 0 (mod 2k)}
X

= 1.

Equivalently, for almost every nonnegative integer n lying in an arithmetic progression,
the integer σrmex(n) is a multiple of 2k when r = 2m · 3n,m, n ∈ Z≥0.

2 Minimal excludant of an overpartition

2.1 Generating function of σmex(n)

Proof of Theorem 2. Let pmex(m,n) be the number of overpartitions π of n with mex(π) =
m. Then we have the following double series M(z, q) in which the coefficient of zmqn is
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pmex(m,n):

M(z, q) :=
∞
∑

n=0

∞
∑

m=1

pmex(m,n)zmqn =
∞
∑

m=1

zmq1 · q2 · · · · qm−1 ·

∞
∏

n=1

(1 + qn)

∞
∏

n=1
n 6=m

(1− qn)

=
∞
∑

m=1

zmq(
m
2 ) · (−q; q)∞

(q; q)∞
· (1− qm)

=
(−q; q)∞
(q; q)∞

∞
∑

m=1

zmq(
m
2 ) · (1− qm).

Thus we have

∑

n≥0

σmex(n)qn =
∂

∂z

∣

∣

∣

z=1
M(z, q)

=
(−q; q)∞
(q; q)∞

∞
∑

m=0

mq(
m
2 )(1− qm)

=
(−q; q)∞
(q; q)∞

( ∞
∑

m=1

mq(
m
2 ) −

∞
∑

m=1

mq(
m
2 ) · qm

)

=
(−q; q)∞
(q; q)∞

( ∞
∑

m=1

mq(
m
2 ) −

∞
∑

m=1

(m− 1)q(
m
2 )

)

=
(−q; q)∞
(q; q)∞

∞
∑

m=0

q(
m+1

2 )

=
(−q; q)∞
(q; q)∞

· (q
2; q2)∞

(q; q2)∞

= (−q; q)∞ · (q2; q2)∞
(q; q)∞(q; q2)∞

, (by [1], Eq. (2.2.13))

= (−q; q)∞ · (−q; q)2∞
= (−q; q)3∞

=
∑

n≥0

D3(n)q
n.

As an illustration, observe that the thirteen 3-colored partitions of 3 are: 31, 32, 33, 21 +
11, 21 + 12, 21 + 13, 22 + 11, 22 + 12, 22 + 13, 23 + 11, 23 + 12, 23 + 13, 11 + 12 + 13, Indeed,
D3(3) = 13 = σmex(3).
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2.2 Asymptotic formula for σmex(n)

To derive an asymptotic formula for σmex(n), we use the following asymptotic result by
Ingham [5] about the coefficients of a power series.

Proposition 9. Let A(q) =
∑∞

n=0 a(n)q
n be a power series with radius of convergence equal

to 1. Assume that (a(n)) is a weakly increasing sequence of nonnegative real numbers. If
there are constants α, β ∈ R, and C > 0 such that

A(e−t) ∼ αtβe
C
t , as t → 0+, A(e−z) ≪ |z|βe

C
|z| as z → 0,

with z = x+ iy (x > 0, y ∈ R) in each region of the form |y| ≤ ∆x for ∆ > 0. Then

a(n) ∼ α

2
√
π

C
2β+1

4

n
2β+3

4

e2
√
Cn, as n → ∞.

Proof of Theorem 3. Note that σmex(n) = D3(n) and (D3(n)) is an increasing sequence of
nonnegative real numbers, thus σmex(n) is also an increasing sequence of nonnegative real
numbers. Let A(q) = (−q; q)3∞, where a(n) = σmex(n) as in Proposition 9. From [4], we
have

1

(e−t; e−t)∞
∼
√

t

2π
e

π2

6t as t → 0+. (1)

Moreover, we use the following identity:

(−q; q)∞ =
1

(q; q2)∞
=

(q2; q2)∞
(q; q)∞

. (2)

By (1) and (2), as t → 0+, we obtain

(−e−t; e−t)∞ =
(e−2t; e−2t)∞
(e−t; e−t)∞

∼

√

t
2π
e

π2

6t

√

2t
2π
e

π2

12t

=
1√
2
e

π2

12t .

Hence, as t → 0+, we get

A(e−t) = (−e−t; e−t)3∞ ∼
(

1√
2
e

π2

12t

)3

=
1

2
√
2
e

π2

4t . (3)

Moreover, from [5], if z = x+ iy (x > 0) with |y| ≤ ∆x, then

1

(e−z; e−z)∞
∼
√

z

2π
e

π2

6z , as z → 0. (4)
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Similarly, we have

A(e−z) = (−e−z; e−z)3∞ =
(e−2z; e−2z)3∞
(e−z; e−z)3∞

∼ 1

2
√
2
e

π2

4z

as z → 0, in these regions. From Remark 2 in [5], this implies that

A(e−z) ≪ |z|0e
π2

4|z| , as z → 0

in each region of the form |y| ≤ ∆x for ∆ > 0.
Take α = 1

2
√
2
, β = 0 and C = π2

4
. By Proposition 9, we obtain

σmex(n) ∼
1

2
√
2

2
√
π

(

π2

4

)1/4

n3/4
e2

√

π2

4
n =

eπ
√
n

8n3/4

as n → ∞.

2.3 Parity of σmex(n)

Proof of Theorem 4. We have

∑

n≥0

σmex(n)qn = (−q; q)3∞

=
∞
∏

n=1

(1 + qn)3

≡
∞
∏

n=1

(1− qn)3 (mod 2)

= (q; q)3∞

=
∞
∑

j=0

(−1)j(2j + 1)q
j(j+1)

2 , by Jacobi’s identity [10].

Comparing coefficients, we have that σmex(n) ≡ 0 (mod 2) for n 6= j(j+1)
2

for every j ∈ N

and σmex(n) ≡ 1 (mod 2) otherwise. This shows that σmex(n) is almost always even and
is odd exactly when n is a triangular number.
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3 Least r-gaps

3.1 Generating function of σrmex(n)

Ballantine and Merca [3] proved that for n ≥ 0 and r ≥ 1,

∞
∑

k=0

p(n− rTk) = σr mex(n).

We extend this result to overpartitions and present an analogous proof for the following
proposition.

Proposition 10. For n ≥ 0 and r ≥ 1,

∞
∑

k=0

p(n− rTk) = σrmex(n).

Proof. Fix r ≥ 1. For each k ≥ 0, consider the staircase partition

δr(k) = (1r, 2r, . . . , (k − 1)r, kr)

where each part from 1 to k is repeated r times. We create an injection from the set of
overpartitions of n− rTk into the set of overpartitions of n with the following mapping:

φr,n,k : P(n− rTk) −֒→ P(n)

where for an overpartition π of n − rTk, φr,n,k(π) is the overpartition obtained by inserting
the non-overlined staircase partition δr(k).

For example, if π = 4 + 3 + 2 + 1 + 1 = 11, we have φ2,23,3 = 4 + 3 + 2 + 1 + 1 + 3 + 3 +
2 + 2 + 1 + 1 = 23.

Let Ar,n,k be the image of the overpartitions of n−rTk under φr,n,k. We have p(n−rTk) =
|Ar,n,k| and Ar,n,k consists of the partitions of n satisfying mexr(π) > k.

Now, suppose π is an overpartition of n with mexr(π) = k. Then π ∈ Ar,n,i, for i =
0, 1, . . . , k − 1 and π /∈ Ar,n,j with j ≥ k. Thus each overpartition of n with mexr(π) = k is

counted by the summation
∞
∑

k=0

p(n− rTk) exactly k times.

Proof of Theorem 6. We have

∞
∑

n=0

σrmex(n)qn =
∞
∑

n=0

( ∞
∑

k=0

p(n− rTk)

)

qn, by Proposition 10

9



=
∞
∑

n=0

∞
∑

k=0

p(n− rTk)q
n

=
∞
∑

n=0

∞
∑

k=0

p(n)qn+rTk

=

( ∞
∑

n=0

p(n)qn

)( ∞
∑

k=0

qrTk

)

.

Note that the generating function for p(n) is

∞
∑

n=0

p(n)qn =
(−q; q)∞
(q; q)∞

.

Moreover, from [3], we have
∞
∑

k=0

qrTk =
(q2r; q2r)∞
(qr; q2r)∞

.

Thus we have

∞
∑

n=0

σrmex(n)qn =

( ∞
∑

n=0

p(n)qn

)( ∞
∑

k=0

qrTk

)

=
(−q; q)∞(q2r; q2r)∞
(q; q)∞(qr; q2r)∞

.

3.2 Asymptotic formula for σrmex(n)

Here, we generalize our asymptotic result in Theorem 3 for the least r-gaps.

Proof of Theorem 7. Note that p(n) < p(n + 1) for n ∈ N, since for every overpartition
of n, say n = a1 + a2 + · · · + al, we correspondingly have n + 1 = a1 + a2 + · · · + al + 1
as an overpartition of n + 1. Since σrmex(n) is the sum of the least r-gaps taken over all
overpartitions of n, then we can conclude that σrmex(n) is a weakly increasing sequence.

Let A(q) =
(−q; q)∞(q2r; q2r)∞
(q; q)∞(qr; q2r)∞

, where a(n) = σrmex(n) as in Proposition 9. First,

A(q) =
(−q; q)∞(q2r; q2r)∞
(q; q)∞(qr; q2r)∞

=
(−q; q)∞(−qr; qr)2∞(qr; qr)∞

(q; q)∞
.
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Hence, using (3), as t → 0+, we get

A(e−t) =
(−e−t; e−t)∞(−e−rt; e−rt)2∞(e−rt; e−rt)∞

(e−t; e−t)∞

∼
1√
2
e

π2

12t

(

1√
2
e

π2

12rt

)2√
t
2π
e

π2

6t

√

rt
2π
e

π2

6rt

=
1

2
√
2r

e
π2

4t .

Moreover, if z = x+ iy (x > 0) with |y| ≤ ∆x, then from (4), we have

A(e−z) =
(−e−z; e−z)∞(−e−rz; e−rz)2∞(e−rz; e−rz)∞

(e−z; e−z)∞
∼ 1

2
√
2r

e
π2

4z , as z → 0.

From Remark 2 in [5], this implies that A(e−z) ≪ |z|0e
π2

4|z| as z → 0 in each region of the
form |y| ≤ ∆x for ∆ > 0.

Take α =
1

2
√
2r

, β = 0 and C = π2

4
, by Proposition 9, we obtain

σrmex(n) ∼
1

2
√
2r

2
√
π

(

π2

4

)1/4

n3/4
e2

√

π2

4
n =

eπ
√
n

8
√
rn3/4

as n → ∞.

4 Distribution of σrmex(n)

4.1 Preliminaries

We first discuss some preliminaries about modular forms. We define the upper-half complex
plane

H = {z ∈ C | ℑ(z) > 0}
and the modular group

SL2(Z) =

{(

a b
c d

)

∣

∣

∣
ad− bc = 1; a, b, c, d ∈ Z

}

.

For A =

(

a b
c d

)

∈ SL2(Z), the modular group SL2(Z) acts on H by the following linear

fractional transformation:

Az =

(

a b
c d

)

z =
az + b

cz + d
.
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Moreover, if N ∈ Z
+, we define the following congruence subgroups of SL2(Z) of level N :

Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z)
∣

∣

∣

(

a b
c d

)

≡
(

∗ ∗
0 ∗

)

(mod N)

}

Γ1(N) :=

{(

a b
c d

)

∈ SL2(Z)
∣

∣

∣

(

a b
c d

)

≡
(

1 ∗
0 1

)

(mod N)

}

Γ(N) :=

{(

a b
c d

)

∈ SL2(Z)
∣

∣

∣

(

a b
c d

)

≡
(

1 0
0 1

)

(mod N)

}

.

Note that the following inclusions are true:

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z).

Modular forms are complex functions on H that transforms nicely under these congruence
subgroups of SL2(Z). For this paper, we are interested on modular forms transforming nicely
with respect to Γ0(N) having a Nebentypus character χ defined as follows.

Definition 11. Let χ be a Dirichlet character modulo N (a positive integer). Then a
modular form f ∈ Mk(Γ1(N)) has Nebentypus character χ if

f

(

az + b

cz + d

)

= χ(d)(cz + d)kf(z)

for all z ∈ H and all

(

a b
c d

)

∈ Γ0(N). The space of all such modular forms is denoted

Mk(N,χ).

In particular, we look at modular forms involving the Dedekind eta function which is
defined as follows.

Definition 12. The Dedekind eta function is the function η(z) where z ∈ H :

η(z) = e
πiz
12

∞
∏

n=1

(1− e2πinz).

Defining q := e2πiz, we have:

η(z) = q
1
24

∞
∏

n=1

(1− qn).

Definition 13. A function f(z) is called an eta-product if it is expressible as a finite product
of the form

f(z) =
∏

δ|N
ηrδ(δz)

where N and each rδ is an integer.
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We use the next two theorems to prove that an eta-product is a holomorphic modular
form.

Theorem 14 (Gordon, Hughes, Newman). If f(z) =
∏

δ|N ηrδ(δz) is an eta-product for
which

∑

δ|N
δrδ ≡ 0 (mod 24) (5)

and

∑

δ|N

N

δ
rδ ≡ 0 (mod 24) (6)

then f(z) satisfies
f(Az) = χ(d)(cz + d)kf(z)

for all A =

(

a b
c d

)

∈ Γ0(N) where k =
∑

δ|N
rδ. Here the character χ is defined by χ(d) =

(

(−1)ks

d

)

and s =
∏

δ|N
δrδ .

Theorem 15 (Ligozat). Let c, d and N be positive integers with d | N and gcd(c, d) = 1.
With the notation as above, if the eta-product f(z) satisfies (5) and (6), then the order of
vanishing of f(z) at the cusp c

d
is

1

24

∑

δ|N

N gcd(d, δ)2rδ

gcd
(

d, N
d

)

dδ
.

4.2 Proof of main result

Before we prove Theorem 8, we prove two propositions first.

Proposition 16. Let k be a positive integer. Then

fr,k(z) :=
η(48z)η(24rz)2

k−1

η(24z)2η(48rz)2k−1−2
≡

∞
∑

n=0

σrmex(n)q24n+3r (mod 2k).

Proof. Consider

g(z) =
η(24rz)2

η(48rz)
=

(q24r; q24r)2∞
(q48r; q48r)∞

.

By the binomial theorem, (qr; qr)2
k

∞ ≡ (q2r; q2r)2
k−1

∞ (mod 2k). Thus we have

(q24r; q24r)2
k

∞ ≡ (q48r; q48r)2
k−1

∞ (mod 2k),
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and so

g2
k−1

(z) =
(q24r; q24r)2

k

∞
(q48r; q48r)2k−1

∞
≡ 1 (mod 2k).

Now, consider

η(48z)η(48rz)2

η(24z)2η(24rz)
· g2k−1

(z) =
η(48z)η(48rz)2

η(24z)2η(24rz)
· η(24rz)2

k

η(48rz)2k−1

=
η(48z)η(24rz)2

k−1

η(24z)2η(48rz)2k−1−2

= fr,k(z).

Observe that

fr,k(z) =
η(48z)η(48rz)2

η(24z)2η(24rz)
· g2k−1(z)

≡ η(48z)η(48rz)2

η(24z)2η(24rz)
(mod 2k)

= q3r
(q48; q48)∞(q48r; q48r)2∞
(q24; q24)2∞(q24r; q24r)∞

.

Note that

∞
∑

n=0

σrmex(n)qn =
(−q; q)∞(q2r; q2r)∞
(q; q)∞(qr; q2r)∞

=
(−q; q)∞(q2r; q2r)2∞
(q; q)∞(qr; qr)∞

=
(q2; q2)∞(q2r; q2r)2∞
(q; q)2∞(qr; qr)∞

.

Thus we have

fr,k(z) ≡ q3r
∞
∑

n=0

σrmex(n)q24n (mod 2k) =
∞
∑

n=0

σrmex(n)q24n+3r.

Proposition 17. Let r = 2m ·3n where m,n ∈ Z≥0 and k ≥ m+2n+1 be an integer greater
than 3. Then fr,k(z) ∈ M2k−2(Γ0(N), χ), where

N =

{

27 · 3n+1, if m = 0, 1, 2;

2m+4 · 3n+1, if m ≥ 3.

14



Proof. Let r = 2m · 3n where m,n ∈ Z≥0. First, the weight of fr,k(z) is

ℓ =
1

2

∑

δ|N
rδ =

1

2

[

1 + (2k − 1)− 2− (2k−1 − 2)
]

= 2k−1 − 2k−2 = 2k−2.

Second, since fr,k(z) =
η(48z)η(24rz)2

k−1

η(24z)2η(48rz)2k−1−2
, then δ1 = 48, δ2 = 24r, δ3 = 24 and δ4 = 48r

with r48 = 1, r24r = 2k − 1, r24 = −2, and r48r = 2− 2k−1. Clearly, fr,k(z) satisfies equation
(5) since

∑

δ|N
δrδ = 48 · 1 + 24r · (2k − 1) + 24 · (−2) + 48r · (2− 2k−1) ≡ 0 (mod 24).

Moreover, to satisfy equation (6), we can let N = 48ru, where u is the smallest positive
integer satisfying

∑

δ|N

N

δ
rδ ≡ 0 (mod 24).

Then we have

∑

δ|N

N

δ
rδ =

48ru

48
+

48ru

24r
(2k − 1)− 48ru

24
(2)− 48ru

48r
(2k−1 − 2)

= ru+ 2u(2k − 1)− 4ru− u(2k−1 − 2)

= u(2k+1 − 2k−1 − 3r)

= u(3 · 2k−1 − 3r) ≡ 0 (mod 24).

We have the following:

• If m = 0, then u = 8, and so N = 48 · (20 · 3n) · 8 = 27 · 3n+1.

• If m = 1, then u = 4, and so N = 48 · (21 · 3n) · 4 = 27 · 3n+1.

• If m = 2, then u = 2, and so N = 48 · (21 · 3n) · 4 = 27 · 3n+1.

• If m ≥ 3, then u = 1, and so N = 48 · (2m · 3n) · 1 = 2m+4 · 3n+1.

To prove that fr,k(z) ∈ M2k−2(Γ0(N), χ), it suffices to show that fr,k(z) is holomorphic at
all cusps of Γ0(N). From Theorem 15, the order of vanishing of fr,k(z) at the cusp c

d
where

d|N and gcd(c, d) = 1, is

N

24

∑

δ|N

gcd(d, δ)2rδ

gcd
(

d, N
d

)

dδ
.

15



Hence fr,k(z) =
η(48z)η(24rz)2

k−1

η(24z)2η(48rz)2k−1−2
is holomorphic at the cusp c

d
if and only if

N

24

∑

δ|N

gcd(d, δ)2rδ

gcd
(

d, N
d

)

dδ
≥ 0 ⇐⇒

∑

δ|N

gcd(d, δ)2rδ
δ

≥ 0.

That is,

gcd(d, 48)2

48
− 2

gcd(d, 24)2

24
+ (2k − 1)

gcd(d, 24r)2

24r
− (2k−1 − 2)

gcd(d, 48r)2

48r
≥ 0.

Equivalently,

r gcd(d, 48)2 − 4r gcd(d, 24)2 + (2k+1 − 2) gcd(d, 24r)2 − (2k−1 − 2) gcd(d, 48r)2 ≥ 0. (7)

Now, ifN = 27·3n+1, then d = 2t·3s, 0 ≤ t ≤ 7, 0 ≤ s ≤ n+1. Similarly, ifN = 2m+4·3n+1,
then d = 2t · 3s, 0 ≤ t ≤ m+ 4, 0 ≤ s ≤ n+ 1.

Let (⋆) be the left-hand side of inequality (7). We now prove that (⋆) ≥ 0 for k ≥
m+ 2n+ 1. We divide our proof into 6 cases.

Case 1: d = 1.
We have gcd(d, 48) = 1, gcd(d, 24) = 1, gcd(d, 24r) = 1, and gcd(d, 48r) = 1. Then

(⋆) = (2m · 3n)− 4(2m · 3n) + (2k+1 − 2)− (2k−1 − 2)

= 2k+1 − 2k−1 − 3 · (2m · 3n)
= 3 · 2k−1 − 2m · 3n+1.

If we let k ≥ m+ 2n+ 1, then

3 · 2k−1 ≥ 3 · 2m+2n

= 3 · 2m · 22n
≥ 3 · 2m · 3n
= 2m · 3n+1,

proving that (⋆) ≥ 0 for k ≥ m+ 2n+ 1.

Case 2: d = 3s, 1 ≤ s ≤ n+ 1.
We have gcd(d, 48) = 3, gcd(d, 24) = 3, gcd(d, 24r) = gcd(d, 2m+3 · 3n+1) = 3s, and
gcd(d, 48r) = gcd(d, 2m+4 · 3n+1) = 3s. Then

(⋆) = (2m · 3n) · 9− 4(2m · 3n) · 9 + (2k+1 − 2) · 32s − (2k−1 − 2) · 32s

= 32s · 3 · 2k−1 − 3 · 9 · (2m · 3n)
= 2k−1 · 32s+1 − 2m · 3n+3.
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If we let k ≥ m+ 2n− 4s+ 5, then

2k−1 · 32s+1 ≥ 2m+2n−4s+4 · 32s+1

= 2m · 22n−4s+4 · 32s+1

≥ 2m · 3n−2s+2 · 32s+1

= 2m+4 · 3n+3,

proving that (⋆) ≥ 0 for k ≥ m+2n− 4s+5. Moreover, since m+2n− 4s+5 ≤ m+2n+1,
it follows that (⋆) ≥ 0 for k ≥ m+ 2n+ 1.

Case 3: d = 2t, 0 < t ≤ 3.
We have gcd(d, 48) = 2t, gcd(d, 24) = 2t, gcd(d, 24r) = 2t, and gcd(d, 48r) = 2t. Then

(⋆) = (2m · 3n) · 22t − 4(2m · 3n) · 22t + (2k+1 − 2) · 22t − (2k−1 − 2) · 22t

= 22t · 3 · 2k−1 − 3 · 22t · (2m · 3n)
= 2k+2t−1 · 3− 2m+2t · 3n+1.

If we let k ≥ m+ 2n+ 1, then

2k+2t−1 · 3 ≥ 2m+2n+2t · 3
= 2m+2t · 22n · 3
≥ 2m+2t · 3n · 3
= 2m+2t · 3n+1,

proving that (⋆) ≥ 0 for k ≥ m+ 2n+ 1.

Case 4: d = 2t, 3 < t ≤ m+ 4.
We have gcd(d, 48) = 24, gcd(d, 24) = 23, gcd(d, 24r) = gcd(d, 2m+3 · 3n+1) = 2t, and
gcd(d, 48r) = gcd(d, 2m+4 · 3n+1) = 2t. Then

(⋆) = (2m · 3n) · 28 − 4(2m · 3n) · 26 + (2k+1 − 2) · 22t − (2k−1 − 2) · 22t

= 22t · 3 · 2k−1

= 2k+2t−1 · 3 ≥ 0 for k ≥ 1.

Case 5: d = 2t · 3s, 0 < t ≤ 3, 1 ≤ s ≤ n+ 1.
We have gcd(d, 48) = 2t · 3, gcd(d, 24) = 2t · 3, gcd(d, 24r) = gcd(d, 2m+3 · 3n+1) = 2t · 3s, and
gcd(d, 48r) = gcd(d, 2m+4 · 3n+1) = 2t · 3s. Then

(⋆) = (2m · 3n) · (22t · 32)− 4(2m · 3n) · (22t · 32) + (2k+1 − 2) · (22t · 32s)
− (2k−1 − 2) · (22t · 32s)
= (22t · 32s) · 3 · 2k−1 − 3 · (22t · 32) · (2m · 3n)
= 2k+2t−1 · 32s+1 − 2m+2t · 3n+3.
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If we let k ≥ m+ 2n− 4s+ 5, then

2k+2t−1 · 32s+1 ≥ 2m+2n+2t−4s+4 · 32s+1

= 2m+2t · 22n−4s+4 · 32s+1

≥ 2m+2t · 3n−2s+2 · 32s+1

= 2m+2t · 3n+3,

proving that (⋆) ≥ 0 for k ≥ m+2n− 4s+5. Moreover, since m+2n− 4s+5 ≤ m+2n+1,
it follows that (⋆) ≥ 0 for k ≥ m+ 2n+ 1.

Case 6: d = 2t · 3s, 3 < t ≤ m+ 4, 1 ≤ s ≤ n+ 1.
We have gcd(d, 48) = 24 · 3, gcd(d, 24) = 23 · 3, gcd(d, 24r) = gcd(d, 2m+3 · 3n+1) = 2t · 3s,
and gcd(d, 48r) = gcd(d, 2m+4 · 3n+2) = 2t · 3s. Then

(⋆) = (2m · 3n) · (28 · 32)− 4(2m · 3n) · (26 · 32) + (2k+1 − 2) · (22t · 32s)
− (2k−1 − 2) · (22t · 32s)
= (22t · 32s) · 3 · 2k−1

= 2k+2t−1 · 32s+1 ≥ 0 for k ≥ 1.

In all possible cases, we have that (⋆) ≥ 0 for k ≥ m+2n+1 where k is a positive integer
greater than 3. Hence by Theorem 15, fr,k(z) is a modular form of weight 2k−2.

Lastly, we will use Serre’s theorem [13] regarding the coefficients of the Fourier expansion
of a holomorphic modular form to prove our final result.

Theorem 18 (Serre). Let k,m be positive integers. If f(z) ∈ Mk(Γ0(N), χ) has Fourier
expansion f(z) =

∑∞
n=0 c(n)q

n ∈ Z[[q]], then there is a constant α > 0 such that

#{n ≤ X : c(n) 6≡ 0 (mod m)} = O
(

X

logα X

)

.

Proof of Theorem 8. Let r = 2m · 3n where m,n ∈ Z≥0 and k ≥ m + 2n + 1, k ≥ 3 be a
positive integer. Since fr,k(z) ∈ M2k−2(Γ0(N), χ) and the Fourier coefficients of fr,k(z) are
integers, then by Serre’s theorem, we can find a constant α > 0 such that

#{n ≤ X : σrmex(n) 6≡ 0 (mod 2k)} = O
(

X

logα X

)

,

for k ≥ m+ 2n+ 1. Then

lim
X→+∞

#{n ≤ X : σrmex(n) ≡ 0 (mod 2k)}
X

= 1.

Equivalently, for almost every nonnegative integer n lying in an arithmetic progression,
σrmex(n) is a multiple of 2k where r = 2m · 3n where m,n ∈ Z≥0 and k ≥ m+2n+1, k ≥ 3.
Consequently, σrmex(n) is a multiple of 2k, where k ≥ 1.
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