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Abstract

A self-complementary magic square of order n is a magic square M whose entries
consist of the first n2 natural numbers such that when each entry i of M is replaced by
n
2 + 1− i, the resulting square is equivalent to M (under rotation or reflection). The

purpose of this paper is twofold. For any given singly even natural number n, (i) we
extend the method of Strachey to produce many magic squares (instead of just one) of
order n, and (ii) by making a variation of this extended method, we construct many
self-complementary magic squares of order n.

1 Introduction

A magic square M is an n× n array of integers (which may overlap) so that the sum of the
entries in each row, column and the diagonal is a constant. The constant sum is called the
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magic sum. In the case that the entries of M are the consecutive integers from 1, 2, . . . , n2,
then M is said to be of order n. It is easy to see that the magic sum of an n-order magic

square is n(n2+1)
2

. A doubly even order magic square is a magic square matrix of order n,
where n is divisible by 4. A singly even order magic square is a magic square matrix of order
n, where n is even but not divisible by 4.

Suppose M = (ai,j) is a magic square of order n. Then M is said to be ro-symmetrical if
ai,j+an+1−i,n+1−j = n2+1 for all 1 ≤ i, j ≤ n. It is known that the magic square constructed
using the De la Loubère method is ro-symmetrical and that ro-symmetrical magic square of
singly even order does not exist (see [5, p. 203]).

On the other hand, M is said to be ref-symmetrical if ai,j + an+1−i,j = n2 + 1 for all
1 ≤ i, j ≤ n. Alternatively, these two notions maybe expressed in the following way.

Let Jk denote the k×k matrix where all entries are 1 and let σ(M) (respectively ρ(M)) de-
note the 180-degree clockwise rotation on M (respectively reflection on the central horizontal
of M). Then M is ro-symmetrical (respectively ref-symmetrical) if M + σ(M) = (n2 + 1)Jn
(respectively M + ρ(M) = (n2 + 1)Jn). Note that equivalently, in this definition, we could
replace ρ(M) by π(M) which denotes the reflection on the central vertical of M , in which
case we have ai,j + ai,n+1−j = n2 + 1 for all 1 ≤ i, j ≤ n instead.

The methods of construction for magic squares of singly even order appear to be relatively
scarce when compared to magic squares of other orders. The earliest record for singly even
order case dates back to a letter of Strachey to Coxeter in 1918. The magic square of odd
order constructed by the De la Loubère method is used in the Strachey method. For ease of
reference, the De la Loubère and the Strachey methods of construction are given in Section
2. The magic squares which are constructed by these two methods are called the De la

Loubère square and the Strachey square respectively.
Recently, in [3], a method of producing a magic square of order 2(2m + 1) with the

reflectional symmetrical property was presented. Earlier, in [1], magic squares of singly even
orders were constructed which involves a special kind of composition (called the Yang-Hui
composition). While the Strachey method produces only one magic square for a given singly
even order, we show (in Section 3) that the method can be extended to produce (i) many
magic squares of a given singly even order, and (ii) we can use any magic square of odd order
in the construction (instead of restricting to the De la Loubère magic square).

Two magic squares M1 and M2 are said to be equivalent if φ(M1) = M2 for some φ ∈ D4

whereD4 denotes the dihedral group of order 8. SupposeM is a magic square of order n. The
complement of M is the magic square (of order n) obtained by replacing each entry i of M by
n2 +1− i. We say that M is self-complementary if M is equivalent to its complement. Self-
complementary magic squares of order n have been characterized in [3] where it was shown
that (i) if n is odd, then M is self-complementary if and only if M is ro-symmetrical, whereas
(ii) if n is even, then M is self-complementary if and only if either M is ref-symmetrical or
else M is ro-symmetrical. Note that if M is ro-symmetrical (respectively ref-symmetrical),
then σ(M) = M (respectively ρ(M) = M), where M denotes the complement of M .

Subsequently, in [2], a construction for self-complementary magic squares of doubly even
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order was given; it converts a ro-symmetrical magic square (constructed using a well-known
construction called the Generalized Doubly Even Method, [5, pp. 199–200] and [4, p. 527,
Section 34.21]) into a ref-symmetrical magic square. In quite the same spirit as in [2], in
Section 4, we provide a new method of constructing self-complementary magic squares of
singly even order. This time we make use of a ro-symmetrical magic square (which may
be constructed using the De la Loubère method) on a variation of the extended Strachey
method to produce a ref-symmetrical square of singly even order.

2 De la Loubère and Strachey squares

Let n be an odd integer. A magic square of order n can be constructed by the De la Loubère

method in which the sequence of integers 1, 2, . . . , n2 are filled successively into an n × n

square according to the following rule.

L(i) Put 1 in the middle cell of the top row of square; fill the next integer diagonally in the
north-east direction.

L(ii) When the top row is reached, the next integer is written in the bottom row as if it
came immediately above the top row (for example, the integers 2 and 9 in the magic
square below for the case n = 5).

L(iii) When the last column is reached, the next integer is written in the first column as
if it immediately succeeded the last column (for example, the integers 4 and 10 in the
magic square below).

L(iv) When the next cell to be filled is already occupied or when the top-right cell is reached,
the move drops directly below it and continue to mount again (for example, the integers
6, 16 and 21 in the magic square below).













17 24 1 8 15
23 5 7 14 16
4 6 13 20 22
10 12 19 21 3
11 18 25 2 9













Now consider the case n = 2(2m + 1). A magic square of order n can be constructed
by the Strachey method. In this case, we begin by partitioning an n × n square into four
(2m + 1) × (2m + 1) subsquares A,B,C and D as shown below. Then apply the following
rule.

S(i) Let A be the De la Loubère square of order 2m + 1 and let B = A + (2m + 1)2J2m+1,
C = A+ 2(2m+ 1)2J2m+1 and D = A+ 3(2m+ 1)2J2m+1.
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S(ii) Divide A as shown below where A1, A3 are m×m subsquares which are at the upper
left and the bottom left corners of A respectively, A4 is the first cell of the middle row
of A while A2 is the 1 × m rectangle in the middle row, next to A4. Divide D in a
similar manner and obtain D1, D2, D3 and D4.

S(iii) Interchange Ai with Di for i = 1, 2, 3.

S(iv) Interchange the last m− 1 columns of C with those of B.

A C

D B

A =

A1

A4 A2

A3

For n = 10, the Strachey method yields the following magic square of order 10.

































92 99 1 8 15 67 74 51 58 40
98 80 7 14 16 73 55 57 64 41
4 81 88 20 22 54 56 63 70 47
85 87 19 21 3 60 62 69 71 28
86 93 25 2 9 61 68 75 52 34
17 24 76 83 90 42 49 26 33 65
23 5 82 89 91 48 30 32 39 66
79 6 13 95 97 29 31 38 45 72
10 12 94 96 78 35 37 44 46 53
11 18 100 77 84 36 43 50 27 59

































.

3 Beyond Strachey

If every entry of an n-th order magic square is reduced by 1, the resulting square is called a
reduced magic square.

Definition 1. Suppose B1 and B2 are reduced magic squares of order 2m+1. Let B denote
the 2(2m+ 1)× 2(2m+ 1) magic square defined by

B =

[

B1 B2

B1 B2

]

.
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Example 1. Let B1 be the reduced magic square of the De la Loubère magic square of order
5, and let B2 be the square obtained from B1 by taking a 90-degree clockwise rotation. Then

B =

































16 23 0 7 14 10 9 3 22 16
22 4 6 13 15 17 11 5 4 23
3 5 12 19 21 24 18 12 6 0
9 11 18 20 2 1 20 19 13 7
10 17 24 1 8 8 2 21 15 14
16 23 0 7 14 10 9 3 22 16
22 4 6 13 15 17 11 5 4 23
3 5 12 19 21 24 18 12 6 0
9 11 18 20 2 1 20 19 13 7
10 17 24 1 8 8 2 21 15 14

































.

Definition 2. Let A denote the 2(2m+ 1)× 2(2m+ 1) square defined by

A =

[

A0 A2

A3 A1

]

where

(i) A0 is a (2m+1)× (2m+1) matrix whose entries consist of only 0 and 3 such that each
row has only (m+ 1) 0’s while each diagonal has only (m+ 1) 3’s,

(ii) A1 is a (2m+1)× (2m+1) matrix whose entries consist of only 1 and 2 such that each
row and each diagonal has only (m+ 2) 1’s, and

(iii) A2 = 3J2m+1 − A1 and A3 = 3J2m+1 − A0.

It is easy to construct the matrices A0 and A1. Figure 1 depicts 3 examples of the
matrix A0 with m = 2 while Figure 2 depicts 3 examples of the matrix A1. More general
constructions of A0 and A1 will be discussed in Section 5.













3 3 0 0 0
3 3 0 0 0
0 3 3 0 0
3 3 0 0 0
3 3 0 0 0

























0 3 0 0 3
0 3 0 0 3
0 0 3 3 0
0 3 0 0 3
0 3 0 0 3

























0 0 0 3 3
0 0 0 3 3
0 0 3 3 0
0 0 0 3 3
0 0 0 3 3













(i) (ii) (iii)

Figure 1: A0 with m = 2.
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











1 1 1 1 2
1 1 1 1 2
1 1 1 1 2
1 1 1 1 2
1 1 1 1 2

























1 1 1 2 1
1 1 1 2 1
2 1 1 1 1
1 1 1 2 1
1 1 1 2 1

























2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1
2 1 1 1 1













(i) (ii) (iii)

Figure 2: A1 with m = 2.

Example 2. Suppose A0 is the matrix in Figure 1 (iii) and A1 is the matrix in Figure 2
(iii). Then

A =

































0 0 0 3 3 1 2 2 2 2
0 0 0 3 3 1 2 2 2 2
0 0 3 3 0 1 2 2 2 2
0 0 0 3 3 1 2 2 2 2
0 0 0 3 3 1 2 2 2 2
3 3 3 0 0 2 1 1 1 1
3 3 3 0 0 2 1 1 1 1
3 3 0 0 3 2 1 1 1 1
3 3 3 0 0 2 1 1 1 1
3 3 3 0 0 2 1 1 1 1

































.

With the matrices A and B as given in the above definitions, we obtain a reduced magic
square of order 2(2m+ 1) as follows.

Definition 3. Suppose A and B are as defined in the Definitions 2 and 1 respectively. Let
[A;B] denote the 2(2m+1)× 2(2m+1) matrix obtained by superimposing A and B so that
the entries of A are the radix digits while those of B are the unit digits.

Example 3. Suppose A and B are the 10× 10 matrices in Examples 2 and 1 respectively.
Then

[A;B] =

































016 023 0 0 3 7 314 110 2 9 2 3 222 216
022 0 4 0 6 313 315 117 211 2 5 2 4 223
0 3 0 5 312 319 021 124 218 212 2 6 2 0
0 9 011 018 320 3 2 1 1 220 219 213 2 7
010 017 024 3 1 3 8 1 8 2 2 221 215 214
316 323 3 0 0 7 014 210 1 9 1 3 122 116
322 3 4 3 6 013 015 217 111 1 5 1 4 123
3 3 3 5 012 019 321 224 118 112 1 6 1 0
3 9 311 318 020 0 2 2 1 120 119 113 1 7
310 317 324 0 1 0 8 2 8 1 2 121 115 114

































.

Here, the boldface integers are the radix digits. By taking the entries to be integers
represented in base 52, we have the following reduced magic square of order 10.
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































16 23 0 82 89 35 59 53 72 66
22 4 6 88 90 42 61 55 54 73
3 5 87 94 21 49 68 62 56 50
9 11 18 95 77 26 70 69 63 57
10 17 24 76 83 33 52 71 65 64
91 98 75 7 14 60 34 28 47 41
97 79 81 13 15 67 36 30 29 48
78 80 12 19 96 74 43 37 31 25
84 86 93 20 2 51 45 44 38 32
85 92 99 1 8 58 27 46 40 39

































.

Theorem 1. Suppose A and B are as defined in the Definitions 2 and 1 respectively. Then

[A;B] yields a reduced magic square of order 2(2m + 1) when its entries are considered as

integers represented in base (2m+ 1)2.

Proof. Clearly B is a magic square with magic sum 4m(m+ 1)(2m+ 1).
Clearly the column sum of A is 3(2m+ 1).
Note that the row sum of A0 and likewise of A1 is 3m. This implies that the row sum of

A3 and likewise of A2 is 3(m+ 1). Hence the row sum of A is 3(2m+ 1).
Clearly the diagonal sum of A0 is 3(m + 1) and that of A1 is 3m. This implies that the

diagonal sum of A3 is 3m (since the diagonal has only m 3’s), and that the diagonal sum of
A2 is 3(m+1) (since the diagonal has (m− 1) 1’s and (m+2) 2’s). Hence the diagonal sum
of A is 3(2m+ 1).

Since A and B are both magic square, it follows that [A;B] is also a magic square.
Moreover, since the entries of A and B are the radix and unit digits of [A;B] respectively,
the magic sum of [A;B] is the magic sum of A multiply with (2m+ 1)2 plus the magic sum
of B yielding (2m+ 1)(4(2m+ 1)2 − 1).

It remains to show that the entries in [A;B] consists of distinct ordered pairs of entries
(x, y) where x ∈ A and y ∈ B.

Since the entries in A0 ∪ A3 consist of only integers from {0, 3} and that the entries of
A1 ∪A2 consist of only integers from {1, 2}, (x1, y1) 6= (x2, y2) for any integers x1 ∈ A0 ∪A3,
x2 ∈ A1 ∪ A2 where y1 ∈ B1 and y2 ∈ B2.

Moreover (x1, y) 6= (x2, y) for any integers x1 ∈ A0 and x2 ∈ A3 where y ∈ B1 because
x1 + x2 = 3 by Definition 2(iii).

(x1, y) 6= (x2, y) for any integers x1 ∈ A1 and x2 ∈ A2 where y ∈ B2 because x1 + x2 = 3
by Definition 2(iii).

This completes the proof.

4 Ref-symmetric magic squares

Recall that, if N is a matrix, then π(N) (respectively ρ(N)) denote the matrix obtained by
taking a central vertical (respectively horizontal) reflection on N .
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Definition 4. Let M be a reduced ro-symmetric magic squares of order 2m+ 1. Write

M =





M1

M2

M3





where M1 and M3 are m× (2m + 1) matrices and M2 is a 1× (2m + 1) matrix. Let B1 be
obtained from M by replacing M3 by π(M3). Also, let B

∗

1 be obtained from B1 by replacing
M2 by π(M2). Now, let B denote the 2(2m+ 1)× 2(2m+ 1) matrix defined by

B =

[

B1 π(B1)
B∗

1 π(B∗

1)

]

.

Example 4. Let M be the reduced magic square of the De la Loubère magic square of order
5. Then

B =

































16 23 0 7 14 14 7 0 23 16
22 4 6 13 15 15 13 6 4 22
3 5 12 19 21 21 19 12 5 3
2 20 18 11 9 9 11 18 20 2
8 1 24 17 10 10 17 24 1 8
16 23 0 7 14 14 7 0 23 16
22 4 6 13 15 15 13 6 4 22
21 19 12 5 3 3 5 12 19 21
2 20 18 11 9 9 11 18 20 2
8 1 24 17 10 10 17 24 1 8

































.

It is routine to verify that B is a magic square. Moreover, it has the ref-symmetrical
property (horizontally).

Definition 5. Let A∗ denote the 2(2m+ 1)× 2(2m+ 1) square defined by

A∗ =

[

A0 A2

A3 A1

]

where A0, A1, A2, A3 as defined in Definition 2 with the following additional conditions.

(i) ρ(A0) = A0 and ρ(A1) = A1, and

(ii) the (m+ 1)-th row of A0 (and of A1) is symmetrical about the central cell.

Figure 3 depicts an example each for the squares A0 and A1.
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











3 0 0 0 3
3 3 0 0 0
3 0 0 0 3
3 3 0 0 0
3 0 0 0 3

























1 2 1 1 1
2 1 1 1 1
1 1 2 1 1
2 1 1 1 1
1 2 1 1 1













A0 A1

Figure 3: A0 and A1 with m = 2.

Example 5. Suppose A0 and A1 are the matrices in Figure 3. Then

A∗ =

































3 0 0 0 3 2 1 2 2 2
3 3 0 0 0 1 2 2 2 2
3 0 0 0 3 2 2 1 2 2
3 3 0 0 0 1 2 2 2 2
3 0 0 0 3 2 1 2 2 2
0 3 3 3 0 1 2 1 1 1
0 0 3 3 3 2 1 1 1 1
0 3 3 3 0 1 1 2 1 1
0 0 3 3 3 2 1 1 1 1
0 3 3 3 0 1 2 1 1 1

































.

Definition 6. Suppose A∗ and B are as defined in the Definitions 5 and 4 respectively. Let
[A∗;B] denote the 2(2m + 1) × 2(2m + 1) matrix obtained by superimposing A∗ and B so
that the entries of A are the radix digits while those of B are the unit digits.

Example 6. Suppose A∗ and B are the 10× 10 matrices in Examples 5 and 4 respectively.
Then [A∗;B] is a 10 × 10 matrix which yields a reduced magic square of order 10 when its
entries are considered as integers represented in base 52. Moreover it is a ref-symmetrical
magic square (with respect to the central horizontal line) which is as depicted below.

































91 23 0 7 89 64 32 50 73 66
97 79 6 13 15 40 63 56 54 72
78 5 12 19 96 71 69 37 55 53
77 95 18 11 9 34 61 68 70 52
83 1 24 17 85 60 42 74 51 58
16 98 75 82 14 39 57 25 48 41
22 4 81 88 90 65 38 31 29 47
21 94 87 80 3 28 30 62 44 46
2 20 93 86 84 59 36 43 45 27
8 76 99 92 10 35 67 49 26 33

































.
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Theorem 2. Suppose A∗ and B are as defined in the Definitions 5 and 4 respectively. Then

[A∗;B] yields a reduced ref-symmetric magic square of order 2(2m+ 1) when its entries are

considered as integers represented in base (2m+ 1)2.

Proof. The magicness of A∗ follows from that of A (which has already been shown in the
proof of Theorem 1).

The fact that A2 = 3J2m+1 −A1 and A3 = 3J2m+1 −A0 together with the condition that
ρ(A0) = A0 and ρ(A1) = A1 imply that

ρ(A∗) + A∗ = 3J2(2m+1). (1)

Clearly the rows of B are magic. We assert that the columns of B are also magic.
Since M is ro-symmetrical, we have

M1 + π(M3) = ((2m+ 1)2 − 1)Jm,2m+1 (2)

and
M2 + π(M2) = ((2m+ 1)2 − 1)J1,2m+1 (3)

where Jk,l is the k × l matrix whose entries are equal to 1. This proves the assertion.
(2) and (3) imply that

B1 + ρ(B∗

1) = ((2m+ 1)2 − 1)J2m+1 (4)

and this implies that

π(B1) + ρ(π(B∗

1)) = ((2m+ 1)2 − 1)J2m+1 (5)

(4) and (5) imply that

B + ρ(B) = ((2m+ 1)2 − 1)J2(2m+1). (6)

To show that both the diagonals are magic, assume that M = (ai,j) so that {ai,i | i =
1, 2, . . . , 2m+1} and {ai,2m+2−i | i = 1, 2, . . . , 2m+1} are the main diagonal and anti-diagonal
of M respectively.

Note that B1 and B∗

1 have the same sets of main diagonal and anti-diagonal. The same
goes for those of π(B1) and π(B∗

1).
Now the main diagonal of B1 consists of the entries

{ai,i | i = 1, 2, . . . ,m+ 1} ∪ {ai,2m+2−i | i = m+ 2,m+ 3, . . . , 2m+ 1}

while the main diagonal of π(B∗

1) consists of the entries

{ai,2m+2−i | i = 1 . . . ,m} ∪ {ai,i | i = m+ 1,m+ 2, . . . , 2m+ 1}.

The union of these sets turns out to be the set of entries in the diagonal and anti-diagonal
of M .
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Likewise, the anti-diagonal of B consists of the anti-diagonals of π(B1) and B∗

1 whose
entries are

{ai,i | i = 1, 2, . . . ,m+ 1} ∪ {ai,2m+2−i | i = m+ 2,m+ 3, . . . , 2m+ 1}

and
{ai,2m+2−i | i = 1 . . . ,m} ∪ {ai,i | i = m+ 1,m+ 2, . . . , 2m+ 1}

respectively so their union is the set of entries in the diagonal and anti-diagonal of M .
This completes the proof that B is a magic square.
By following the same argument as in the proof of Theorem 1, we see that the entries in

[A∗;B] consist of distinct ordered pairs of entries (x, y) where x ∈ A∗ and y ∈ B.
Since A∗ and B are magic squares with magic sums 3(2m+1) and (2m+1)((2m+1)2−1)

respectively, we conclude (as in the proof of Theorem 1) that [A∗;B] yields a reduced magic
square of order 2(2m+1). Moreover, by Equations (1) and (6), the resulting reduced magic
square is ref-symmetrical.

5 Some remarks

Some remarks are in order.

1. By taking the (m + 1)-th row of A0 to be (0, 3, . . . , 3, 0 . . . , 0), and all other rows to
be (3, . . . , 3, 0, . . . 0) where the numbers of 3 and 0 are m and m+ 1 respectively, and
each row in A1 to be (1, . . . , 1, 2, . . . , 2) (where the numbers of 1 and 2 are m+ 2 and
m − 1 respectively), B1 = B2 to be the reduced De la Loubère magic square of order
2m+ 1, the magic square [A;B] is the reduced Strachey square of order 2(2m+ 1).

2. By cyclically permuting the columns of A1 as constructed in Remark 1, we obtain new
matrices which satisfy condition (ii) of Definition 2.

3. By taking the reflection along the central vertical line of the matrix A0 in Remark 1,
we obtain a different matrix satisfying the condition (i) of Definition 2.

4. How many matrices A0 and A1 are there that satisfy the conditions of Definition 2 (or
Definition 5) for a given natural number m?
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