
23 11

Article 24.7.2
Journal of Integer Sequences, Vol. 27 (2024),2

3

6

1

47

Finite Sums Involving Fibonacci

and Lucas Numbers

Fatima Zohra Bensaci
LA3C, Faculty of Mathematics

USTHB, Algiers
Algeria

fbensaci@usthb.dz

Rachid Boumahdi
National Higher School of Mathematics

Sidi Abdallah, Algiers
Algeria

r boumehdi@esi.dz

Laala Khaldi
LIM Laboratory

Department of Mathematics
University of Bouira

10000 Bouira
Algeria

l.khaldi@univ-bouira.dz

Abstract

In this paper, we introduce several identities related to Fibonacci and Lucas num-

bers, extending the results established by Byrd in 1975. Moreover, we derive some

identities involving Fibonacci, Lucas, Bernoulli, Euler, Genocchi, and Stirling num-

bers. Our main tools are linear operators and their properties.
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1 Introduction and preliminaries

Fascination with special numbers and polynomials, such as Bernoulli, Euler, and Genocchi
numbers and polynomials, has persisted since the post-Renaissance period due to their wide-
ranging applications in various fields of mathematics, computer algorithms, engineering,
and beyond. The exploration of these numbers and polynomials has evolved over time,
progressing from elementary number theory techniques to more advanced approaches such
as real analysis, complex analysis, and operator theory. Notable references on the subject
can be found in [1, 5, 12, 13], illustrating the ongoing development of explicit formulas,
identities, and properties associated with these special numbers. The Bernoulli numbers Bn,
Euler numbers En (see A122045 in the On-Line Encyclopedia of Integer Sequences (OEIS)
[16]), and Genocchi numbers Gn (A036968) can be defined by the exponential generating
functions:

t

et − 1
=

∞
∑

n=0

Bn

tn

n!
, (1)

2

et + e−t
=

∞
∑

n=0

En

tn

n!
, (2)

2t

et + 1
=

∞
∑

n=0

Gn

tn

n!
. (3)

It is straightforward to show that G0 = 0 and Gn = 2(1− 2n)Bn = nEn−1 for n ≥ 1. Thus,
the properties of the Genocchi numbers can be deduced from those of the Euler numbers. It
is also an old result of Genocchi [7] that the Gn’s are all integers.

The Pell and Lucas polynomial sequences are, respectively, defined by the following
recurrence relations:

Pn(t) = 2tPn−1(t) + Pn−2(t),

Wn(t) = 2tWn−1(t) +Wn−2(t);

however, they have distinct initial conditions:

P0(t) = 0 and P1(t) = 1,

W0(t) = 2 and W1(t) = 2t.

From these polynomials we can extract the following numbers: For t = 1

2
, Pn(

1

2
) is the nth

Fibonacci number: Fn = Fn−1 + Fn−2 with F0 = 0, F1 = 1 and n ≥ 2. For t = 1

2
, Wn(

1

2
) is

the nth Lucas number: Ln = Ln−1 + Ln−2 with L0 = 2, L1 = 1 and n ≥ 2. The recurrent
linear sequences (Fn)n≥0 and (Ln)n≥0 share the same characteristic polynomial, x2 − x− 1.
The roots of this polynomial are: α = (1 +

√
5)/2 (the golden ratio) and β = (1 −

√
5)/2

(the silver ratio).
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The Fibonacci numbers Fn (A000045) and Lucas numbers Ln (A000032) can also be
defined by the exponential generating function [11, p. 232]:

∞
∑

n=0

Fn

tn

n!
=

eαt − eβt√
5

, (4)

∞
∑

n=0

Ln

tn

n!
= eαt + eβt. (5)

In 1975, Byrd [2, 3] proved that the following two identity hold for every nonnegative integer
n:

n
∑

k=0

(√
5
)k
(

n

k

)

Fn−k+1

n− k + 1
Bk = βn, (6)

and
n
∑

k=0

(√
5

2

)k
(

n

k

)

EkLn−k = 21−n. (7)

Recall that the set End(C[x]) of linear endomorphisms of C[x] is both a vector space over
C for the addition and multiplication of an endomorphism by a complex scalar and a non-
commutative ring for the addition and composition of endomorphisms. It is clear that
defining a linear operator of C[x] is equivalent to giving the images under this operator of
the vectors of any basis of C[x]. Note also that for every scalar α ∈ C and u, v ∈ End(C[x]),
we have α(u ◦ v) = (αu) ◦ v = u ◦ (αv), which endows End(C[x]) with a structure of algebra
over C. Among the known linear operators, we cite the translation operator τr defined for
every complex number r 6= 0 in the canonical basis by [9, 10, 12, 13, 14, 15]:

τr(x
n) = (x+ r)n, n ∈ N,

the derivation operator denoted D = d/dx defined by:

D(x0) = 0 and D(xn) = nxn−1, for all n ≥ 1.

Recall also that τr can be expressed as follows [12, p. 209]:

τr = erD =
∞
∑

k=0

rk
Dk

k!
, (8)

and ∆r is the difference operator defined by ∆r = τr − 1, for r 6= 0.
The umbral calculus provides solid tools for establishing new identities, generalizing old

ones and finding well-known ones. These tools by the mean of linear operators not only
simplify the proofs of certain formulas, particularly explicit formulas for Euler and Bernoulli
polynomials and numbers, but also facilitate the exploration of new explicit formulas and the
study of properties verified by other remarkable sequences of polynomials and numbers. In
this paper, we utilize these operators and their properties to obtain new identities concerning
Bernoulli, Euler, Fibonacci, Lucas, and Genocchi numbers. Interesting results on this subject
can be found in [6, 17].
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2 Identities concerning Fibonacci and Lucas numbers

In this section, we extend the identities (6) and (7) using elementary properties of Bernoulli,
Euler, Fibonacci, and Lucas numbers, as well as operators. We show also some relationships
between Genocchi numbers and Lucas numbers.

Theorem 1. For all integers n,m such that m ≥ n ≥ 0 and every real x, we have

(x+ β)m =
m
∑

n=0

n
∑

k=0

(√
5
)k
(

n

k

)(

m

n

)

Bk

Fn−k+1

n− k + 1
xm−n. (9)

Proof. We have

τβ = eβD

=
eβD

e
√
5D − 1

(

e
√
5D − 1

)

=

( √
5D

e
√
5D − 1

)

(

eαD − eβD√
5D

)

(since α− β =
√
5)

=

(

∞
∑

n=0

(√
5
)n

Bn

Dn

n!

)(

∞
∑

n=1

Fn

Dn−1

n!

)

(according to (1) and (4)). (10)

Note that the classical product of two formal series
∑∞

n=0
un

tn

n!
and

∑∞
n=0

vn
tn

n!
, is defined by

(

∞
∑

n=0

unt
n

)(

∞
∑

n=0

vnt
n

)

=
∞
∑

n=0

cn
tn

n!
, (11)

where cn =
∑n

k=0

(

n

k

)

ukvn−k. Note that also

Dn(xm) =

{

n!
(

m

n

)

xm−n, if m ≥ n ≥ 0;

0, otherwise.
(12)

Now, by successively applying relations (11), (12), and evaluating the image of xm under τβ
and Dn, we obtain both sides of Equality (9). This completes the proof of Theorem 1.

We can deduce several identities involving Fibonacci and Bernoulli numbers as special
cases of Theorem 1. The following corollaries present these results.

By taking x = −β in Identity (9), we obtain the following corollary:

Corollary 2. For all integers n,m such that m ≥ n ≥ 0, we have

m
∑

n=0

n
∑

k=0

(√
5
)k
(

n

k

)(

m

n

)

Bk

Fn−k+1

n− k + 1
β−n = 0.
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By taking x = −1/2 in Identity (9), we obtain the following corollary:

Corollary 3. For all integers n,m such that m ≥ n ≥ 0, we have

m
∑

n=0

n
∑

k=0

(−2)n
(√

5
)k
(

n

k

)(

m

n

)

Bk

Fn−k+1

n− k + 1
=
(√

5
)m

.

By taking x = 0 and m = n in (9), we derive a formula due to Byrd that expresses the
silver ratio β and its powers in terms of Bernoulli and Fibonacci numbers. More precisely,
we obtain:

n
∑

k=0

(

n

k

)

(√
5
)k Fn−k+1

n− k + 1
Bk = βn, for all n ≥ 0.

The following corollary is a straightforward consequence of Theorem 1.

Corollary 4. For all nonnegative integers m,n, s with m−n ≥ s, and every real x, we have

(x+ β)m−s =
1

(m)s

m
∑

n=0

n
∑

k=0

(√
5
)k
(

n

k

)(

m

n

)

Bk

Fn−k+1

n− k + 1
(m− n+ 1)sx

m−n−s,

where for z ∈ R and n ∈ N, (z)n denotes the falling factorial defined as: (z)0 = 1 and
(z)n = z(z − 1)(z − 2) · · · (z − n+ 1) for n ≥ 1.

Proof. If we differentiate both sides of Relation (9) s times, then we obtain the result.

Now, we give a double sum involving Euler and Lucas numbers.

Theorem 5. For all integers m and n with m ≥ n ≥ 0 and every real x, we have

(

x+
1

2

)m

=
1

2

m
∑

n=0

n
∑

k=0

(√
5

2

)k
(

n

k

)(

m

n

)

xm−nEkLn−k. (13)

Proof. Identity (13) can be proved using a similar procedure to that followed in the proof of
Theorem 1. Putting r = 1

2
into Formula (8), we get

τ 1

2

= e
1

2
D

=
1

2

2

e
√

5

2
D + e−

√

5

2
D
× (eσD + eβD)

=
1

2

(

∞
∑

n=0

(√
5

2

)n

En

Dn

n!

)(

∞
∑

n=0

Ln

Dn

n!

)

(according to (2) and (5)). (14)

According to the classical product of two formal series in (11) and calculating the image of
xm under τ 1

2

and Dn, we get both sides of Equality (13).
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Several identities involving the Lucas and Euler numbers can be deduced as special cases
of Identity (13); these are presented in the following corollaries.

By setting x = −1/2 in (13), then we get the following corollary:

Corollary 6. For all integers m and n with m ≥ n ≥ 0, we have

m
∑

n=0

n
∑

k=0

(−1)n
(
√
5)k

2k+m−n

(

n

k

)(

m

n

)

EkLn−k = 0.

If we set x = 1

2
in (13), then we get the following conclusion:

Corollary 7. For all integers m and n with m ≥ n ≥ 0, we have

m
∑

n=0

n
∑

k=0

(
√
5)k

2k+m−n

(

n

k

)(

m

n

)

EkLn−k = 2.

By taking x =
√
5/2 in (13), we derive a formula for the golden ratio α and its powers

as a finite double sum involving Lucas and Euler numbers. More precisely, we obtain the
following corollary:

Corollary 8. For all integers m and n with m ≥ n ≥ 0, we have

m
∑

n=0

n
∑

k=0

(√
5

2

)k+m−n
(

n

k

)(

m

n

)

EkLn−k = 2αm.

By taking x = −
√
5/2 in (13), we derive a formula which express the silver ratio β and

its powers as a finite double sum in terms of Lucas and Euler numbers. More precisely, we
obtain the following corollary:

Corollary 9. For all integers m and n with m ≥ n ≥ 0, we have

m
∑

n=0

n
∑

k=0

(−1)m−n

(√
5

2

)k+m−n
(

n

k

)(

m

n

)

EkLn−k = 2βm.

The following result is due to Byrd [3]:

Corollary 10. When x = 0 and m = n, Identity (13) reduces to

n
∑

k=0

(

n

k

)

(√
5

2

)k

EkLn−k = 21−n , for all n ≥ 0.

In the following, we present new identities linking Genocchi numbers to Lucas numbers.
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Theorem 11. For all integers m and n with m ≥ n ≥ 0, and every real x, we have

(x+ β)m =
1

2
√
5

m
∑

n=0

n
∑

k=0

(√
5
)k
(

n

k

)(

m

n

)

Gk

Ln−k+1

n− k + 1
xm−n. (15)

Proof. Putting r = β in Formula (8), we get

τβ = eβD

=
eβD

e
√
5D + 1

(

e
√
5D + 1

)

=
1

2
√
5

(

2(
√
5D)

e
√
5D + 1

)

(

eαD + eβD

D

)

=
1

2
√
5

(

∞
∑

n=0

(√
5
)n

Gn

Dn

n!

)(

∞
∑

n=1

Ln

Dn−1

n!

)

(according to (3) and (5)). (16)

Using Relation (11) and calculating the image of xm under τβ and Dn, we get both sides of
Equality (15).

In the following corollaries, we consider some special cases of Identity (15).
Taking x = −β in (15), we obtain the following corollary:

Corollary 12. For all integers m and n with m ≥ n ≥ 0, we have

m
∑

n=0

n
∑

k=0

(√
5
)k
(

n

k

)(

m

n

)

Gk

Ln−k+1

n− k + 1
βm−n = 0.

Taking x = −1

2
in (15), we get the following corollary:

Corollary 13. For all integers m and n with m ≥ n ≥ 0, we have

m
∑

n=0

n
∑

k=0

2n
(√

5
)k−n

(

n

k

)(

m

n

)

Gk

Ln−k+1

n− k + 1
= 2

(√
5
)1−m

.

Taking x = 0 and m = n in (15), we obtain the following identity:

Corollary 14. For n ≥ 0, we have

n
∑

k=0

(√
5
)k−1

(

n

k

)

Gk

Ln−k+1

n− k + 1
= 2βn.
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3 Generalization of three identities

In this section, we generalize identities (9), (13), and (15). The next theorem extends the
result of Theorem 1.

Theorem 15. For all nonnegative integers n,m and q ≥ 1 with m ≥ n, and every real x,
we have the formula:

(x+ qβ)m

=
m
∑

n=0

∑

j1+j2+···+jq+ℓ1+ℓ2+···+ℓq=n

(√
5
)ℓ1+ℓ2+···+ℓq

(

n

j1, j2, . . . , jq

)(

m

n

)

×Bℓ1Bℓ2 · · ·Bℓq

Fj1+1

j1 + 1

Fj2+1

j2 + 1
· · ·

Fjq+1

jq + 1
xm−n, (17)

where
(

n

j1,j2,...,jq

)

= n!
j1!j2!···jq ! is the multinomial coefficient.

Proof. Upon exponentiating both sides of (10) q times, and using the fact that for every
nonzero complex number r and every integer q ≥ 1 we have τ qr = τqr, we obtain

τ qβ = τqβ

=
∞
∑

n=0

∑

j1+j2+···+jq+ℓ1+ℓ2+···+ℓq=n

(√
5
)ℓ1+ℓ2+···+ℓq

(

n

j1, j2, . . . , jq

)(

m

n

)

× Bℓ1Bℓ2 · · ·Bℓq

Fj1+1

j1 + 1

Fj2+1

j2 + 1
· · ·

Fjq+1

jq + 1
Dm−n. (18)

Calculating the image of xm under τqβ and Dm−n in (18), we get both sides of Equality
(17).

Remark 16. If we take x = 0, m = n, and q = 1 in Relation (17), then we obtain Identity
(6).

Corollary 17. In particular, taking q = 2 and x =
√
5 in Relation (17), we get

m
∑

n=0

∑

j1+j2+ℓ1+ℓ2=n

(√
5
)ℓ1+ℓ2+m−n

(

n

j1, j2

)(

m

n

)

Bℓ1Bℓ2

Fj1+1

j1 + 1

Fj2+1

j2 + 1
= 1

for m ≥ n ≥ 2.

The following theorem generalizes Identity (13).
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Theorem 18. For all nonnegative integers n,m and q ≥ 1 with m ≥ n, and every real x,
we have

2q
(

x+
q

2

)m

=
m
∑

n=0

∑

j1+j2+···+jq+ℓ1+ℓ2+···+ℓq=n

(√
5

2

)ℓ1+ℓ2+···+ℓq (
n

j1, j2, . . . , jq

)(

m

n

)

× Eℓ1Eℓ2 · · ·EℓqLj1Lj2 · · ·Ljqx
m−n. (19)

Proof. The proof of Relation (19) can be obtained by exponentiating both sides of Relation
(14) q times.

Remark 19. If we take x = 0, m = n, and q = 1 in Relation (14), then we obtain Identity
(7).

The following theorem generalizes Relation (15).

Theorem 20. For all nonnegative integers n,m and q ≥ 1 with m ≥ n, and every real x,
we have

(

2
√
5
)q

(x+ qβ)m

=
m
∑

n=0

∑

j1+j2+···+jq+ℓ1+ℓ2+···+ℓq=n

(√
5
)ℓ1+ℓ2+···+ℓq

(

n

j1, j2, . . . , jq

)(

m

n

)

×Gℓ1Gℓ2 · · ·Gℓq

Ln−j1+1

n− j1 + 1

Ln−j2+1

n− j2 + 1
· · ·

Ln−jq+1

n− jq + 1
xm−n. (20)

Proof. The proof of Relation (20) is obtained by exponentiating both sides of Relation (16)
q times.

4 Additional identities

In this section, we give some identities involving the Genocchi, Fibonacci, and Stirling num-
bers. The Stirling numbers of the first kind s(n, k) (A048994) and the second kind S(n, k)
(A008277), respectively, can be defined by their exponential generating functions [4]:

logk(1 + x)

k!
=

∞
∑

n=0

s(n, k)
xn

n!
and

(ex − 1)k

k!
=

∞
∑

n=0

S(n, k)
xn

n!
. (21)

A well-known explicit formula for the Stirling numbers of the second kind S(n, k) is given
by [4]

S(n, k) =
1

k!

k
∑

j=0

(−1)k−j

(

k

j

)

jn.
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Recall that the Genocchi polynomials Gn(x) (n ∈ N) can be defined by the exponential
generating function:

∞
∑

n=0

Gn(x)
tn

n!
=

2text

et + 1
,

and when x = 0 we have Gn(0) = Gn. The following lemma will be used later.

Lemma 21. For every nonzero complex r and every positive integer k, we have

∆k
r(x

n) =
k
∑

j=0

(−1)k−j

(

k

j

)

(x+ rj)n, for all n ≥ 0.

Proof. It suffices to observe that

∆k
r = (τr − 1)k =

k
∑

j=0

(−1)k−j

(

k

j

)

τrj.

Theorem 22. For n ≥ 1, we have

Gn

n
=

n−1
∑

j=0

(−1)jj!

2j
S(n− 1, j). (22)

Proof. We consider the operator

ΩG =
2D

eD + 1
.

Now ΩG can be expressed as follows:

ΩG =
2D

eD + 1
=

1

1 + 1

2
∆

◦D.

Then we deduce that

ΩG =

(

∞
∑

j=0

(−1)j

2j
∆j

)

◦D.

Thus, we have for n ≥ 0

Gn(x) = ΩG(x
n) = n

∞
∑

j=0

(−1)j

2j
∆j(xn−1)

= n
n−1
∑

j=0

(−1)j

2j
∆j(xn−1).

Putting x = 0 in the last equality, we obtain the desired result.
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Note that Identity (22) was proven by Guo and Qi [8] using the formula of higher order
derivatives.

Theorem 23. For all nonnegative integers m,n, and every real x, we have

x
(√

5
)n

n−1
∏

i=1

(x− αi− (n− i)β)

=
m
∑

n=0

m
∑

k=n

k
∑

j=0

n−1
∏

i=0

(−1)k−j Fn

k!
(

α
√
5
)n s(n, k)

(

k

j

)

× (x+ αj)(x− αij − (n− 1− i)β). (23)

Proof. We consider the finite difference operator

ΛF =
eαD − eβD√

5
.

The canonical basis associated with the operator τα − τβ is the sequence of polynomials
(

U
τα,τβ
n (x)

)

n≥0
such that

U
τα,τβ
0 (x) = 1 and U

τα,τβ
n (x) =

x
(√

5
)n

n−1
∏

i=1

(x− αi− (n− i)β) for all n ≥ 1.

We have

ΛF =
eαD − eβD√

5
=

∞
∑

n=0

Fn

Dn

n!
. (24)

Formula (24) can be written as follows:

ΛF =
τα − τβ√

5
=

∞
∑

n=0

Fn

αn

lnn(1 + ∆α)

n!
.

Then, using the first identity in (21) and Lemma 21, we get

ΛF =
∞
∑

n=0

∞
∑

k=n

Fn

αn
s(n, k)

∆k
α

k!

=
∞
∑

n=0

∞
∑

k=n

k
∑

j=0

(−1)k−jFn

αn
s(n, k)

(

k

j

)

ταj
k!

.

Finally, calculating the image of U
τα,τβ
n (x) under the operators ταj and ΛF , we obtain (23).
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