
23 11

Article 24.8.3
Journal of Integer Sequences, Vol. 27 (2024),2

3

6

1

47

Conditions of Positivity on a

Shadow Markoff Tree

Nathan Bonin
Laboratoire de Mathématiques de Reims
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Abstract

I study an analog of the Markoff equation introduced in a previous paper with

Valentin Ovsienko and formulate a conjecture about the necessary and sufficient con-

ditions for the positivity of solutions to this equation. This conjecture is based on

computer experiments and a theorem that gives a partial answer.

1 Introduction

The classical Markoff equation [8] is the Diophantine equation

a2 ` b2 ` c2 “ 3abc. (1)

Markoff numbers are elements of the triples pa, b, cq of positive integer solutions to (1). They
were introduced by Andrey Markoff in 1879 and raised much interest in many branches of
mathematics, such as number theory, topology, combinatorics, and mathematical physics;
see, e.g., [2, 13, 12, 15].

It is an easy part of the Markoff theorem, that all positive integer solutions to (1) can
be obtained from the “initial” triple p1, 1, 1q via a process called mutation, combined with

mailto:nathan.bonin1@etudiant.univ-reims.fr


permutations of a, b, c (see, e.g., [1]). Given a triple pa, b, cq, the mutation with respect to a

is another triple of solutions pa1, b, cq with

a1 “
b2 ` c2

a
. (2)

An equivalent expression is a1 “ 3bc´a. The positive triples of solutions to (1) are organized
in the form of a tree called the Markoff tree. Note that the term “mutation” is due to the
relation to cluster algebra; see [5, 12]. Note also that mutations are involutions, i.e., double
mutation at a is identity: a2 “ a.

The following analog of the Markoff equation was introduced by Bonin and Ovsienko [3]:

A2 ` B2 ` C2 “ p3 ´ σεqABC (3)

where A,B and C are called dual numbers, i.e.,

A “ a ` αε, B “ b ` βε, C “ c ` γε. (4)

Dual numbers are elements of a commutative algebra of the form A “ a`αε where a, α P R

and ε is a formal parameter such that ε2 “ 0. Following the terminology of [10], Eqn. (3)
was called the “shadow Markoff equation” by Bonin and Ovsienko [3].

The notion of “shadow” sequences of integers appeared in [10] (also see [4, 7, 14]), and
was tested on the sequence of Markoff numbers. Every Markoff number a is accompanied
by another integer, α, called the shadow of a. This process implies the choice of initial
conditions. For a definition, see [10].

It was proved in [3] that (3) is the unique ε-deformed Markov equation of the form

A2 ` B2 ` C2 “ 3ABC ` P pA,B,Cqε,

where P is an arbitrary polynomial in A,B,C, that is stable under the mutations of dual
numbers given by the same formula µA : pA,B,Cq ÞÑ pA1, B, Cq, where

A1 “
B2 ` C2

A
. (5)

More explicitly, the mutation reads

a1 “
b2 ` c2

a
, α1 “

´a1α ` 2b β ` 2c γ

a
. (6)

If pA,B,Cq is a solution to (3), then pA1, B, Cq is also a solution.
Note that the integrality of the solutions after mutations is guaranteed by the Laurent

phenomenon of [6] (also see [11]). More general mutation rules in the situation with nilpotent
parameters can be found in [11].
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It follows from the Markoff theorem (for details, see [3, Prop. 2(i)]) that every triple (4)
of integer solutions to (3), i.e., such that a, b, c, α, β, γ P Z, can be obtained by a sequence of
mutations (5) and permutations from the “initial triple” of the form

pA,B,Cq “ p1 ` αε, 1 ` βε, 1 ` γεq, (7)

where pα, β, γq are integers. Note that the constant σ P R in (3) is equal to the sum of the
nilpotent parts of the initial values of A,B,C:

σ “ α ` β ` γ.

This follows directly from (3) and (7); also see Bonin and Ovsienko [3, p. 1487].
Every initial triple (7) corresponds to a point pα : β : γq in the rational projective

plane QP2. This correspondence is natural since the mutations (6) are linear on the nilpotent
part of solutions. For more details, see Section 3.

Along the Markoff tree, a, b, c remain positive while α, β, γ may become negative. The
problem of characterization of positive integer solutions to (3) was formulated in [3]. The
problem is to describe all the solutions to (3) with

a, b, c, α, β, γ P N. (8)

It can be reformulated in terms of the initial triples (7) such that under every series of
mutations along the Markoff tree the triples pα, β, γq remain positive. In this paper, I study
this problem and formulate a conjecture that gives a complete answer to it.

Conjecture 1. Every triple pA,B,Cq of positive integer solutions to (3) can be obtained

from the initial triple (7) where pα, β, γq are positive integers such that pα : β : γq P QP2 are

the rational points that belong to the quadrilateral with vertices

"

p0 : 0 : 1q; p
1

2
: 0 : 1q ” p1 : 0 : 2q; p1 : 1 : 1q; p0 : 2 : 1q

*

depicted in the following figure

0.5 1 1.5 2

0.5
1

1.5
2

2.5
3

β

α

via mutations (5) and permutations along the Markoff tree.

In Section 3, I will prove the following.
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Theorem 1. Every triple leading to a positive integer tree of solutions to (3) can be obtained

from some initial triple (7) with the point pα : β : γq P QP2 that belongs to some convex

polygon by a series of mutations and permutations along the Markoff tree.

The main ingredient of the proof of this statement is the fact that α1 in (6) depends
linearly on pα, β, γq.

I will also provide “numeric computer-assisted computations” that give evidence that the
above conjecture is indeed true. That is, the convex polygon is precisely the quadrilateral
from Conjecture 1.

2 The classic Markoff tree

The solutions of the classical Markoff equation can be visualized in the form of a tree. Every
Markoff triple pa, b, cq labels three regions in the plane:

a b
‚

ttt
tt ❏❏❏

❏❏

c

and the mutation of a triple pa, b, cq corresponds to the following branchings:

❄❄
❄

b
a ‚
⑧⑧
⑧

‚
⑧⑧⑧

❄❄
❄a

1

c

The classical Markoff tree, depicted below, is the standard infinite binary tree cutting
the plane into regions labeled by all Markoff numbers.

1 ‚

♦♦♦
1

‚

♦♦♦
❚❚❚❚❚

1 2
‚

❣❣❣❣
❣❣❣❣

❣❣❣❣
❣❣❣❣

❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲❲

‚

♦♦♦
♦♦♦

♦♦
❖❖❖

❖❖❖
❖❖ 5 ‚

♦♦♦
♦♦♦

♦♦
❖❖❖

❖❖❖
❖❖

‚

⑧⑧
⑧⑧ ❄❄

❄❄
13 ‚

⑧⑧
⑧⑧ ❄❄

❄❄
‚

⑧⑧
⑧⑧ ❄❄

❄❄
29 ‚

⑧⑧
⑧⑧ ❄❄

❄❄

‚

✎✎
✎✎ ✴✴

✴✴
34 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
194 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
433 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
169 ‚

✎✎
✎✎ ✴✴

✴✴

89 1325 7561 2897 6466 37666 14701 985

. . . . . . . . .

The initial triple p1, 1, 1q is the root of the tree, and it is followed by p1, 1, 2q and p1, 2, 5q.
After that, any mutation is allowed. The left branch consists of the Fibonacci numbers with
odd indices F2k`1, while the right branch is that of the odd Pell numbers P2k`1.
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3 Proof of the main theorem

In this section, I prove the main result, Theorem 1, which can be reformulated as follows.

Theorem 2. There exists a convex polygon P in QP2 such that every solution to the shadow

Markoff equation (3) obtained from an initial triple (7) is positive if and only if the point

pα : β : γq belongs to P .

Proof. Consider two initial triples, T 0

1
and T 0

2
as in (7), and assume that both T 0

1
and T 0

2

produce positive integer solutions to (3). Take pλ, µq “ pp

q
, r
s
q to be positive rational numbers

such that λ ` µ “ 1, and consider the linear combination

T 0 “ λT 0

1
` µT 0

2
.

It is of the form

T 0 “
´

1 `
`p

q
α1 `

r

s
α2

˘

ε, 1 `
`p

q
β1 `

r

s
β2

˘

ε, 1 `
`p

q
γ1 `

r

s
γ2

˘

ε
¯

.

The nilpotent part of T 0 corresponds to the following point in QP2:

ppsα ` rqα2 : psβ1 ` rqβ2 : psγ1 ` rqγ2q.

To prove Theorem 1, one needs to show that the initial triple

T̃ 0 :“
`

1 ` ppsα1 ` rqαq ǫ, 1 ` ppsβ1 ` rqβ2q ǫ, 1 ` ppsγ1 ` rqγ2q ǫ
˘

,

which can be viewed as the barycenter of T 0

1
and T 0

2
, corresponds to positive integer solutions

of (3) after mutations along the Markoff tree.
The statement then follows from the linearity of the nilpotent part of the mutation (6).

Indeed, if pa ` αǫ, b ` βǫ, c ` γǫq and pa ` α1ǫ, b ` β1ε, c ` γ1ǫq stay at the same place in the
Markoff trees of T 0

1
and T 0

2
, respectively, then at the same place in the Markoff tree of T̃ 0

one gets the triple
`

a ` ppsα ` rqα1q ε, b ` ppsβ ` rqβ1q ε, c ` ppsγ ` rqγ1q ε
˘

.

Hence the result follows.

Theorem 1 is proved.

4 Four shadow Markoff trees

Replacing the initial Markoff triple p1, 1, 1q by an initial triple (7), one obtains a node with
the root labeled as follows:

1 α 1 β
‚

ttt
tt ❏❏❏

❏❏

1 γ
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Then, following the mutations along the Markoff tree, one obtains a tree of solutions to (3)
where σ “ α ` β ` γ. In this section, I present the trees corresponding to four vertices of
the quadrilateral from Conjecture 1.

4.1 The tree of the vertex p0 : 0 : 1q

Taking the initial triple p1, 1, 1 ` εq, one obtains the following tree.

1 0 ‚
♦♦♦

1 0
‚

♦♦♦
❚❚❚❚❚

1 1 2 2
‚

❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣❣
❣

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲

‚

♦♦♦
♦♦♦

♦♦
❖❖❖

❖❖❖
❖❖ 5 10 ‚

♦♦♦
♦♦♦

♦♦
❖❖❖

❖❖❖
❖❖

‚
⑧⑧
⑧ ❄❄

❄ 13 38 ‚
⑧⑧
⑧ ❄❄

❄ ‚
⑧⑧
⑧ ❄❄

❄ 29 79 ‚
⑧⑧
⑧ ❄❄

❄

‚

✎✎
✎✎ ✴✴

✴✴
34 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
194 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
433 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
169 ‚

✎✎
✎✎ ✴✴

✴✴130 894 1908 580
89 1325 7561 2897 6466 37666 14701 985

420 8503 54450 18222 39366 256050 85610 4077

. . . . . . . . .

Markoff’s tree / Shadow

Numeric computations confirm that the first hundred terms of the shadow part of this
tree are positive numbers. The “shadow part” of the (left) Fibonacci branch branch starts
with 0, 2, 10, 38, 130, 420, 1308, 3970, . . . and turns out to coincide with A281199 of the OEIS;
see [9]. No other branch of this tree has appeared in the OEIS so far.

4.2 The tree of the vertex p1 : 0 : 2q

The second vertex of the quadrilateral corresponds to the following tree:

1 1 ‚
♦♦♦

1 0
‚

♦♦♦
❚❚❚❚❚

1 2 2 2
‚

❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣❣
❣

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲

‚

♦♦♦
♦♦♦

♦♦
❖❖❖

❖❖❖
❖❖ 5 12 ‚

♦♦♦
♦♦♦

♦♦
❖❖❖

❖❖❖
❖❖

‚
⑧⑧
⑧ ❄❄

❄ 13 49 ‚
⑧⑧
⑧ ❄❄

❄ ‚
⑧⑧
⑧ ❄❄

❄ 29 70 ‚
⑧⑧
⑧ ❄❄

❄

‚

✎✎
✎✎ ✴✴

✴✴
34 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
194 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
433 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
169 ‚

✎✎
✎✎ ✴✴

✴✴174 1006 3276 408
89 1325 7561 2897 6466 37666 14701 985

575 10456 60174 19115 33878 197406 56281 2378

. . . . . . . . .
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Once again, numeric computations confirm the positivity of the shadow part.
Surprisingly, the shadow of the (right) branch of odd Pell numbers starting with

0, 2, 12, 70, 408, 2378, 13860, 80782, . . .

is nothing else but the sequence of even Pell numbers P2n; see A001542 of [9]. No other
branch of this tree has been recognized so far.

4.3 The case of the vertex p1 : 1 : 1q: double Markoff tree

It turns out that when the initial conditions for pα, β, γq are p1, 1, 1q, as the same as in the
classical Markoff tree, the shadow part doubles the classical one.

Lemma 3. The shadow part of the tree with the root

1 1 1 1
‚

ttt
tt ❏❏❏

❏❏

1 1

coincides with the classical Markoff tree.

Proof. Given a triple pA,B,Cq “ pa ` αǫ, b ` βǫ, c ` γǫq, then after the mutation at A, the
shadow part begins,

α1 “
2bβ ` 2cγ ´ a1α

a
;

see [10, 3]. Therefore, when α “ a, β “ b, γ “ c, one has

α1 “
2b2 ` 2c2

a
´ a1 “

b2 ` c2

a
,

thanks to (2). Hence the lemma follows.

Although this vertex does not give an interesting tree, this is the only case for which
positivity is proved.

4.4 The tree of the vertex p0 : 2 : 1q

1 0 ‚
♦♦♦

1 2
‚

♦♦♦
❚❚❚❚❚

1 1 2 6
‚

❣❣❣❣❣
❣❣❣❣❣

❣❣❣❣❣
❣

❲❲❲❲❲
❲❲❲❲❲

❲❲❲❲❲
❲

‚

♦♦♦
♦♦♦

♦♦
❖❖❖

❖❖❖
❖❖ 5 16 ‚

♦♦♦
♦♦♦

♦♦
❖❖❖

❖❖❖
❖❖

‚
⑧⑧
⑧ ❄❄

❄ 13 42 ‚
⑧⑧
⑧ ❄❄

❄ ‚
⑧⑧
⑧ ❄❄

❄ 29 155 ‚
⑧⑧
⑧ ❄❄

❄

‚

✎✎
✎✎ ✴✴

✴✴
34 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
194 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
433 ‚

✎✎
✎✎ ✴✴

✴✴
‚

✎✎
✎✎ ✴✴

✴✴
169 ‚

✎✎
✎✎ ✴✴

✴✴110 1058 3276 1262
89 1325 7561 2897 6466 37666 14701 985

288 7247 58124 22230 63256 448676 173670 9445

. . . . . . . . .
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The positivity of the shadow part is also confirmed numerically.
This time, one can see the left branch starting with 2, 6, 16, 42, 110, 288, 754, 1974, . . .

corresponds to A025169 consisting of the numbers 2F2n`2. No other branch of this tree is
recognized so far.

5 Code and numeric evidence for the conjecture

In this section, I will explain how the domain of possible solutions has been reduced and
demonstrate that deviating from the point p1, 1, 1q in “wrong” directions leads to negative
numbers in the shadow Markoff tree. Similar computations are also working for the other
vertices of the quadrilateral of Conjecture 1.

I can restrict the possibilities for the position of the convex set because of an observation.

The condition α ě 0 can be written
´αa1 ` 2bβ ` 2cγ

a
ě 0. Following the left branch of the

Markoff tree, where one element of the triple does not move (let us say c ` εγ “ 1 ` ε), one
can transform the condition to be

2bβ ` 2

a1a
ď α.

This means pα, βq has to stay left of a certain linear function, cutting the plan in half.
Tracing those functions while browsing the left branch of the tree gives lots of conditions,
and the following graph.

´1.5́ 1́ 0.5 0.5 1 1.5 2 2.5 3 3.5

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

α
β

In black, you can notice the first restricting lines. The red line is the limit that appears
when drawing hundreds of those. The solutions had to be left of all these lines, and it was
then necessary to refine the domain.

Let us show with computations that deviating from the point p1, 1, 1q in “wrong” direc-
tions leads to negative numbers in the shadow Markoff tree.

8
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0.5 1 1.5 2

0.5
1

1.5
2

2.5
3

β

α

I present a function path(alpha,beta,gamma,C), where (alpha,beta,gamma) is the shadow
part of the root of the tree, and C is a list composed of l (for left) and r (for right). It gives
the list of triples encountered in the tree when following this path after the 2 mandatory
beginning mutations (to the right, then to the left). The language used is sage.

def path(alpha ,beta ,gamma ,C):#C is the path to take , in a list.

(a,b,c)=(1,1,1)

C=’r’+’l’+C #l for left , r for right.

L=[[a,alpha ,b,beta ,c,gamma]]#list of dual numbers in the tree

for i in C:

if i==’l’:#mutation on the second element of the triple:beta

(a,b,c,alpha ,beta ,gamma)=(a,c, (a^2+c^2)/b , alpha , gamma , (-

((a^2+c^2)/b)*beta +2*a*

alpha+2*c*gamma)/b )

L.append([a,alpha ,b,beta ,c,gamma])

if i==’r’:#mutation on the first element of the triple: alpha

(a,b,c,alpha ,beta ,gamma)=(c,b, (b^2+c^2)/a , gamma , beta , (-((

b^2+c^2)/a)*alpha +2*b*

beta+2*c*gamma)/a )

L.append([a,alpha ,b,beta ,c,gamma])

return(L)

The answer is in the form of a list, where each element of the list is presented as

[a,alpha,b,beta,c,gamma].

5.1 Top side

pathp1, 0.9, 1,1 rlrlrlr1q gives a negative number in the last triple. Here γ « ´6.98e33. This
shows that it is not possible to go to the top of the (1,1,1) point.

One can access the last triple directly using

path(1,0.9,1,’rlrlrlr ’)[9]

or only the value of the negative γ with

path(1,0.9,1,’rlrlrlr ’)[9][5]

9



5.2 Bottom side

pathp1, 1.1, 1,1 llllrrrrrrrrr1q (4 times “l” and 9 times “r”) gives a negative number in the
last triple γ « ´1.38e23. This shows that it is not possible to go to under the (1,1,1) point.

It is possible to access the last triple directly using

path(1,1.1,1,’llllrrrrrrrrr ’)[15]

or only the value of the negative γ with

path(1,1.1,1,’llllrrrrrrrrr ’)[15][5]

5.3 Up side

pathp1.1, 1, 1,1 llllrr1q gives a negative number in the last triple γ « ´77761.8. This shows
that it is not possible to go to the right of the (1,1,1) point.

You can access the last triple directly using

path(1.1,1,1,’llllrr ’)[8]

or only the value of the negative γ with

path(1.1,1,1,’llllrr ’)[8][5]

I also wrote a function that constructs a full tree of height n. The function is

shadow(alpha,beta,gamma,n),

where (alpha,beta,gamma) is the root of the tree, and n is the height of the shadow tree
to build. It displays the shadow tree in the form of a list, beginning after the 2 mandatory
mutations. The tree is defined as a list of 3 elements: [[a,alpha,b,beta,c,gamma],left son,
right son]. The left and right sons are also trees of the same form, or are empty lists: [ ].

[[1, 0, 1, 0, 1, 1],

[1, 1, 1, 0, 2, 2],

[1, 1, 2, 2, 5, 10],

[1, 1, 5, 10 , 13 , 38],

[1, 1, 13 , 38 , 34 , 130],

[1, 1, 34 , 130 , 89, 420]]

For example shadow(0,0,1,3) gives

[[1, 1, 2, 2, 5, 10],

[[1, 1, 5, 10 , 13 , 38],

[[1, 1, 13 , 38, 34 , 130], [], []],

[[13, 38 , 5, 10 , 194 , 894], [], []]],

[[5, 10 , 2, 2, 29 , 79],

[[5, 10 , 29 , 79 , 433 , 1908], [], []],

[[29, 79 , 2, 2, 169 , 580], [], []]]]

10



I use multiple steps to generate the tree. First I generate a binary tree of height n, then
I fill it using the relations for pa1, α1q, beginning after the 2 mandatory mutations.

def binary(alpha ,beta ,gamma ,n):#gives a binary tree of hight n

if n==0:

return([])

if n>0:

return([[1,alpha ,2,beta ,5,gamma],binary(alpha ,beta ,gamma ,n-1),

binary(alpha ,beta ,gamma ,n-1)]

)

def genere(arbre):#Put the shadow Markoff numbers in the tree

if not(arbre[1]==[]):#order: a, alpha , b, beta , c, gamma

arbre[1][0][0]=arbre[0][0]

arbre[1][0][1]=arbre[0][1]

arbre[1][0][2]=arbre[0][4]

arbre[1][0][3]=arbre[0][5]

arbre[1][0][4]=(arbre[0][0]^2+arbre[0][4]^2)/(arbre[0][2])

arbre[1][0][5]=(-arbre[1][0][4]*arbre[0][3]+2*arbre[0][0]*arbre[0]

[1]+2*arbre[0][4]*arbre[0][5]

)/(arbre[0][2])

genere(arbre[1])

if not(arbre[2]==[]):

arbre[2][0][0]=arbre[0][4]

arbre[2][0][1]=arbre[0][5]

arbre[2][0][2]=arbre[0][2]

arbre[2][0][3]=arbre[0][3]

arbre[2][0][4]=(arbre[0][2]^2+arbre[0][4]^2)/(arbre[0][0])

arbre[2][0][5]=(-arbre[2][0][4]*arbre[0][1]+2*arbre[0][2]*arbre[0]

[3]+2*arbre[0][4]*arbre[0][5]

)/(arbre[0][0])

genere(arbre[2])

def shadow(alpha ,beta ,gamma ,n):

(a,b,c)=(1,1,1)

(a,b,c,alpha ,beta ,gamma)=(c,b, (b^2+c^2)/a , gamma , beta , (-((b^2+c^2)

/a)*alpha +2*b*beta+2*c*gamma)/a

)

(a,b,c,alpha ,beta ,gamma)=(a,c, (a^2+c^2)/b , alpha , gamma , (-((a^2+c^2

)/b)*beta +2*a*alpha+2*c*gamma)/b

)

A=binary(alpha ,beta ,gamma ,n)

genere(A)

return(A)

11
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