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Hùng Viê.t Chu
Department of Mathematics

Texas A&M University
College Station, TX 77843

USA
hungchu1@tamu.edu

Abstract

For a fixed ℓ ∈ N, a nonempty set A ⊂ N is ℓ-strong Schreier if minA ≥ ℓ|A|−ℓ+1.
We define a set of positive integers to be sparse if either the set has at most two numbers
or the differences between consecutive numbers in increasing order are non-decreasing.
We establish a connection between sparse Schreier-type sets and (restricted) partition
numbers. One of our results states that if Gn,ℓ consists of partitions of n that contain
no parts in {2, . . . , ℓ}, and we set

An,ℓ := {A ⊂ {1, . . . , n} : n ∈ A,A is sparse and ℓ-strong Schreier},

then
|An,ℓ| = |Gn−1,ℓ|, for all n, ℓ ∈ N.

The special case Gn−1,1 consists of all partitions of n − 1. Besides partitions, we also
investigate integer compositions.
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1 Introduction

Let N denote the set of positive integers {1, 2, 3, . . .}. A set A ⊂ N is said to be Schreier
if either A is empty or minA ≥ |A|. Schreier sets are an important concept with many
applications in Banach space theory [1, 10, 11]. These sets have also been studied as purely
combinatorial objects in Ramsey theory [8]. In 2012, Bird [4] had a surprising observation
that for every n ∈ N, we have that

#{A ⊂ {1, . . . , n} : A is Schreier and n ∈ A} = Fn, (1)

where (Fn)n≥1 is the Fibonacci sequence with F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for
n ≥ 3. Subsequent work has modified the Schreier condition or added extra conditions on
the set A to discover many unexpected results. For example, counting Schreier sets that are
an arithmetic progression gives the number of edges of the (modified) Turán graphs [2, 5].
Meanwhile, the general linear relation qminA ≥ p|A| gives a higher-order linear recurrence
of depth p + q, where positive and negative terms alternate [2, 7]. Then several authors
[6] generalized (1) to Schreier multisets and the s-step Fibonacci sequences and moreover,
considered the nonlinear Schreier condition k

√
minA ≥ |A| for k ≥ 2. Recently, the first

named author et al. [3] counted unions of Schreier sets and was able to describe linear
recurrences using coefficients from a family of characteristic polynomials.

In this note, we introduce (strongly) sparse Schreier-type sets and connect them to integer
partitions.

Definition 1. We call a set A = {a1, . . . , an} ⊂ N (a1 < · · · < an) sparse if either |A| ≤ 2
or

|A| ≥ 3 and ai − ai−1 ≥ ai−1 − ai−2, for 3 ≤ i ≤ n.

Furthermore, the set A is strongly sparse if either |A| ≤ 2 or

|A| ≥ 3 and ai − ai−1 > ai−1 − ai−2, for 3 ≤ i ≤ n.

With an abuse of notation, we may write a1 < a2 < · · · < ak to mean the set {a1, a2, . . . , ak}
with the additional information about the ordering of elements in the set. For

F = a1 < · · · < an ⊂ N with n ≥ 2,

we let
D(F ) = {a2 − a1, . . . , an − an−1},

which is a multiset. Our main results are motivated by the following proposition.

Proposition 2. Let m,n ∈ N. Define

Fn,m = {F ⊂ {1, . . . , n} : F is Schreier and sparse, n ∈ F,minF = m}.
Then for m ≤ n− 1,

|Fn,m+1| = p(n− 1,m),

where p(u, k) is the number of partitions of u into exactly k parts.
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Proof. Let P (n− 1,m) consist of all partitions of n− 1 into exactly m parts. If m = n− 1,
then |Fn,m+1| = p(n− 1,m) = 1. Assume n > m+1. Define a function R on F ∈ Fn,m+1 as

R(F ) = {m+ 1, . . . ,m+ 1
︸ ︷︷ ︸

m+1−|F |

} ∪ F.

Note that R gives multisets. Since n > m + 1, each set F in Fn,m+1 contains at least two
numbers. Therefore, the map D can takeR(F ) as an input. Define S : Fn,m+1 → P (n−1,m)
as S(F ) = D(R(F ))+1. Here elements of the set D(R(F ))+1 represent parts of a partition.
We show that S is well-defined and bijective.

Let F ∈ Fn,m+1. Since minF = m+1 and maxF = n, the sum ofm numbers in D(R(F ))
is n −m − 1. Therefore, the sum of m parts given by S(F ) is (n −m − 1) +m = n − 1,
thus S(F ) ∈ P (n− 1,m), which shows that S is well-defined. Injectivity is obvious.

To see surjectivity, choose an arbitrary partition {n1 ≤ · · · ≤ nm} of n− 1 with

n1 ≤ · · · ≤ nm.

Let t be the smallest (if any) such that nt ≥ 2. It is not hard to see that S(F ) = {n1, . . . , nm},
where

F =

{

m+ 1,m+ 1 + (nt − 1), . . . ,m+ 1 +
m∑

i=t

(ni − 1)

}

∈ Fn,m+1.

This completes the proof.

Corollary 3. For n ≥ 1, let

Fn = {F ⊂ {1, . . . , n} : F is Schreier and sparse, n ∈ F}. (2)

It holds that |Fn| = p(n − 1), where p(u) is the partition number of u. Here p(0) = 1 by
convention.

Corollary 3 shows a nice relation between Schreier-type sets and partition numbers, in-
spiring us to look at restricted partitions, where certain rules are applied to the parts in each
partition. In particular, we are concerned with the following sequences A000009, A000041,
A000070, A002865, A008483, A008484, A025147, A025148, A025149, A025150, A025151,
A027336, A036469, A038348, A185325 in the On-Line Encyclopedia of Integer Sequences
(OEIS) [12].

Definition 4. For ℓ ∈ N≥0, a finite set A ⊂ N is said to be ℓ-strong Schreier if either A = ∅
or

minA ≥ ℓ|A| − ℓ+ 1.

Remark 5. This definition is natural in the sense that all finite subsets of N are 0-strong
Schreier. If ℓ ≥ k, an ℓ-strong Schreier set is k-strong Schreier, and when ℓ = 1, the 1-strong
Schreier property is the same as the Schreier property. All sets of size 1 (singleton) are
ℓ-strong Schreier for all ℓ.
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For n ≥ 1 and ℓ ≥ 0, we define the objects to be studied

• An,ℓ := {A ⊂ {1, . . . , n} : n ∈ A,A is sparse and ℓ-strong Schreier},

• As
n,ℓ := {A ⊂ {1, . . . , n} : n ∈ A,A is strongly sparse and ℓ-strong Schreier},

• En,ℓ: the set of partitions of n into parts which are at least ℓ, and

• Ed
n,ℓ: the set of partitions of n into distinct parts, each of which is at least ℓ.

By convention, we have |E0,ℓ| = |Ed
0,ℓ| = 1. For reference, we include tables for initial values

of |An,ℓ|, |As
n,ℓ|, |En,ℓ|, and |Ed

n,ℓ| in Section 4.

Theorem 6. The following identities hold

|An,ℓ| =
n−1∑

i=0

|Ei,ℓ+1|, for all n ≥ 1 and ℓ ≥ 0, and (3)

|As
n,ℓ| =

n−1∑

i=0

|Ed
i,ℓ+1|, for all n ≥ 1 and ℓ ≥ 0. (4)

Thanks to Theorem 6, we obtain the next theorem, whose short proof utilizes generating
functions. For ℓ ≥ 0, define

• Gn,ℓ to consist of partitions of n, which have no parts in {2, . . . , ℓ}, and

• Hn,ℓ to consist of partitions of n, which has no parts in {2, . . . , ℓ} and no even parts
greater than 2ℓ.

Here when ℓ ≤ 1, we let {2, . . . , ℓ} = ∅. By convention, |G0,ℓ| = |H0,ℓ| = 1. Section 4 contains
instances of |Gn,ℓ| and |Hn,ℓ|.

Theorem 7. For all n, ℓ ∈ N, we have

|An,ℓ| = |Gn−1,ℓ| and (5)

|As
n,ℓ| = |Hn−1,ℓ|. (6)

Remark 8. Note that (|Gn,1)
∞
n=0 is the sequence of partition numbers. In this case, (5) is

the same as Corollary 3. The sequence (|Hn,1|)∞n=0 counts partitions of n that contain no
even parts except 2. Using generating functions, it is not hard to verify that (|Hn,1|)∞n=0 is
also equal to the number of partitions of n that contain at most one even part. This is the
sequence A038348. The two sequences (|Hn,2|)∞n=0 and (|Hn,3|)∞n=0 are new and not available
in the OEIS at the time of this writing.
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A surprising feature of the identities in Theorems 6 and 7 is that while the left side
involves the ℓ-strong Schreier property, the right side cleanly counts partitions excluding
certain parts. A natural approach to prove Theorems 6 and 7 is to “divide and conquer”.
Specifically for (3), we may divide An,ℓ into n collections of sets based on their minimum
and hope that the cardinality of each collection is equal to a corresponding summand on the
right side. This approach works in the simplest case when ℓ = 0, but the naive division fails
in general.

Similarly, we may attempt to prove (5) by grouping An,ℓ into sets having the same
minimum, while dividing Gn−1,ℓ into groups of partitions having the same number of parts.
This idea works when ℓ = 1 as we have seen in the proof of Proposition 2. However, the idea
again fails for ℓ ≥ 2.

The above discussion suggests that to establish Theorems 6 and 7, we need a more clever
way to divide and conquer, which we shall show in the next section.

We end this note with a result about compositions of positive integers. A composition
of n is a way to write n as a sum of positive integers, and two sums whose terms are
ordered differently constitute two different compositions. The definition of compositions
is thus different from that of partitions, whose order of terms does not matter. We shall
connect ℓ-strong Schreier sets to compositions by removing the sparse condition on sets in
the definition of An,ℓ. For m,n ∈ N and ℓ ≥ 0, define

Bn,ℓ = {B ⊂ {1, . . . , n} : n ∈ B,B is ℓ-strong Schreier} and

Bn,ℓ,m = {B ⊂ {1, . . . , n} : n ∈ B, |B| = m,B is ℓ-strong Schreier}.

Theorem 9. For m,n ∈ N and ℓ ≥ 0,

|Bn,ℓ,m| = c(n+ ℓ, ℓ+ 1,m),

where c(u, v, s) is the number of compositions of u into exactly s parts, each of which is at
least v. As a result,

|Bn,ℓ| = c(n+ ℓ, ℓ+ 1),

where c(u, v) counts compositions of u into parts that are at least v.

2 The ℓ-strong Schreier sets and partitions

We set up some notation to state a key lemma for the proof of Theorem 6. Choose n ≥ 1
and ℓ ≥ 0. Let En,ℓ,k consist of partitions in En,ℓ with exactly k parts. For k ≥ 2 and q ≥ 0,
let En,ℓ,k,q be the collection of all partitions in En,ℓ,k, where the difference between the largest
and the second largest parts is q.

Define the collection Fn,ℓ to consist of sets of positive integers A = {a1, . . . , ap, n + 1}
such that

i) p ≥ 2, a1 < · · · < ap < n+ 1,

5



ii) A is sparse and ℓ-strong Schreier, and

iii) n+ 1 + ap−1 = 2ap.

Note that Fn,ℓ = ∅ for all n ≤ 2ℓ + 1. The first n for which Fn,ℓ is nonempty is 2ℓ + 2; in
fact, F2ℓ+2,ℓ = {{2ℓ+ 1, 2ℓ+ 2, 2ℓ+ 3}}.

Let Fn,ℓ,k be the collection of sets in Fn,ℓ with exactly k elements. Finally, for k, q ≥ 1,
let Fn,ℓ,k,q consist of sets in Fn,ℓ,k with the smallest element equal to q.

Remark 10. By the definition of En,ℓ+1, for ℓ + 1 ≤ n ≤ 2ℓ + 1, we have |En,ℓ+1| = 1, as the
only permissible partition of n is itself. When n = 2ℓ+2, we have two partitions in E2ℓ+2,ℓ+1,
which are 2ℓ+2 and (ℓ+1)+ (ℓ+1). This, along with the discussion after the definition of
Fn,ℓ, makes us suspect that |Fn,ℓ| + 1 = |En,ℓ+1| for n ≥ ℓ + 1. Our first goal in this section
is to establish this identity (see Corollary 13).

Lemma 11. For n ≥ ℓ+ 1, k ≥ 2, and q ≥ 1, we have

|Fn,ℓ,k+1,ℓk+q| = |En,ℓ+1,k,q−1|. (7)

Proof. Given a nonempty set A of natural numbers, we let

R(A) = (A\{maxA}) ∪ {maxA+ q − 1}.

We define a bijective map S : Fn,ℓ,k+1,ℓk+q → En,ℓ+1,k,q−1 as

S(F ) = R(D(F ) + ℓ).

We show that S is well-defined and bijective.

a) Let F ∈ Fn,ℓ,k+1,ℓk+q. The sum of k elements in D(F ) is n+1−(ℓk+q). Hence, the sum
of k elements in S(F ) is n. By Condition iii) in the definition of Fn,ℓ, we know that
the difference of the two largest elements in S(F ) is q − 1. Hence, S(F ) ∈ En,ℓ+1,k,q−1.

b) To show that S is injective, it suffices to verify that given F1 6= F2 ∈ Fn,ℓ,k+1,ℓk+q, we
have D(F1) 6= D(F2). For i ∈ {1, 2}, write Fi = {fi,1, . . . , fi,k+1}. Let t ≥ 2 be the
smallest such that f1,t 6= f2,t. Since Fi is sparse,

D(Fi) = fi,2 − fi,1 ≤ · · · ≤ fi,t − fi,t−1 ≤ · · · , for i = 1, 2.

It follows that t is the smallest such that f1,t − f1,t−1 6= f2,t − f2,t−1. The above
arrangement of numbers in D(Fi) in increasing order guarantees that D(F1) 6= D(F2).

c) Let ℓ + 1 ≤ n1 ≤ · · · ≤ nk be such that
∑k

i=1 ni = n and nk − nk−1 = q − 1. Define
mi = ni − ℓ for i ≤ k − 1 and mk = nk − ℓ− (q − 1). Consider the set

F =

{

ℓk + q, ℓk + q +m1, . . . , ℓk + q +
k∑

i=1

mi

}

.

6



Observe that

ℓk + q +
k∑

i=1

mi = ℓk + q +
k−1∑

i=1

mi +mk

= ℓk + q +
k−1∑

i=1

ni − ℓ(k − 1) + nk − ℓ− (q − 1)

= n+ 1.

Hence, F ∈ Fn,ℓ,k+1,ℓk+q. It is easy to see that S(F ) = n1 ≤ · · · ≤ nk.

We have completed the proof.

Corollary 12. For n ≥ ℓ+ 1 and k ≥ 2, we have |En,ℓ+1,k| = |Fn,ℓ,k+1|.
Proof. Simply observe that

|En,ℓ+1,k| =
∞∑

q=1

|En,ℓ+1,k,q−1| and |Fn,ℓ,k+1| =
∞∑

q=1

|Fn,ℓ,k+1,ℓk+q|,

and use Lemma 11.

Corollary 13. For n ≥ ℓ+ 1, we have |En,ℓ+1| = |Fn,ℓ|+ 1.

Proof. By Corollary 12,

|En,ℓ+1| =
∞∑

k=1

|En,ℓ+1,k| = |En,ℓ+1,1|+
∞∑

k=2

|En,ℓ+1,k| = |En,ℓ+1,1|+
∞∑

k=2

|Fn,ℓ,k+1|

= |En,ℓ+1,1|+
∞∑

k=3

|Fn,ℓ,k| = 1 + |Fn,ℓ|,

because sets in Fn,ℓ have at least three elements. Note also that |En,ℓ+1,1| = 1, because
n ≥ ℓ+ 1.

Proof of Theorem 6, Identity (3). Pick n ≥ 1 and ℓ ≥ 0. We first consider the case n ≥ ℓ+1.
To evaluate |An+1,ℓ| − |An,ℓ|, we define an injective map f : An,ℓ → An+1,ℓ as

f(A) := (A\{n}) ∪ {n+ 1}.
It is easy to see that f(An,ℓ) = {{n+ 1}} ∪ Cn ∪ Dn, where

Cn := {{m,n+ 1} : ℓ+ 1 ≤ m ≤ n− 1}, and

Dn := {{a1, . . . , ap, n+ 1} : p ≥ 2, a1 < · · · < ap < n is ℓ-strong Schreier, sparse}.
Hence,

|An+1,ℓ| − |An,ℓ| = |An+1,ℓ| − |f(An,ℓ)| = |An+1,ℓ\({{n+ 1}} ∪ Cn ∪ Dn)|.
By the definition of An+1,ℓ, Cn, and Dn, we know that An+1,ℓ\({{n + 1}} ∪ Cn ∪ Dn) is the
collection consisting of {n, n+ 1} and sets of the form {a1, . . . , ap, n+ 1} such that
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i) p ≥ 2, a1 < · · · < ap < n+ 1,

ii) {a1, . . . , ap, n+ 1} is sparse and ℓ-strong Schreier, and

iii) if ap < n, then {a1, . . . , ap, n} is not sparse.

Claim 14. Let A = {a1, . . . , ap, n + 1} satisfy Conditions i) and ii). Then A satisfies
Condition iii) if and only if n+ 1 + ap−1 = 2ap.

Proof. Suppose that n+1+ ap−1 = 2ap; equivalently, n− ap = ap − ap−1 − 1. It follows that
if ap < n, then {a1, . . . , ap, n} is not sparse.

Conversely, assume that Condition iii) holds. Since A is sparse, we know that

(n+ 1)− ap ≥ ap − ap−1.

Suppose, for a contradiction, that (n+ 1)− ap > ap − ap−1; equivalently,

n ≥ ap + (ap − ap−1) > ap.

According to Condition iii), {a1, . . . , ap, n} is not sparse, which, along with the fact that A
is sparse, implies

n− ap < ap − ap−1;

hence, ap − ap−1 lies strictly between two consecutive integers n − ap and n + 1 − ap, a
contradiction. Therefore, n+ 1 + ap−1 = 2ap.

Claim 14 states that we can replace Condition iii) by the condition n+ ap−1 = 2ap. Consid-
ering the definition of Fn,ℓ, we have shown that

An+1,ℓ\({{n+ 1}} ∪ Cn ∪ Dn) = Fn,ℓ ∪ {{n, n+ 1}}.

Therefore, |An+1,ℓ| − |An,ℓ| = |Fn,ℓ|+ 1. Corollary 13 then gives

|An+1,ℓ| − |An,ℓ| = |En,ℓ+1|, for all n ≥ ℓ+ 1.

We consider 1 ≤ n ≤ ℓ. When n ≤ ℓ, |En,ℓ+1| = 0. On the other hand, An,ℓ = {{n}} for
all n ≤ ℓ+ 1. Indeed, if there exists A ∈ An,ℓ with |A| ≥ 2, then

minA ≥ ℓ|A| − ℓ+ 1 ≥ ℓ+ 1,

so maxA ≥ minA+ 1 = ℓ+ 2. However, n ≤ ℓ+ 1; hence, no such set A exists. Therefore,
similar to |En,ℓ+1|, |An+1,ℓ| − |An,ℓ| = 0 for all n ≤ ℓ. This completes our proof that

|An+1,ℓ| − |An,ℓ| = |En,ℓ+1|, for all n ≥ 1,

which implies (3).
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The proof of Identity (4) is similar to the proof of Identity (3) with obvious modifications.
Specifically, we change the third condition on sets in the family Fn,ℓ to

n+ ap−1 = 2ap.

The change leads to the definition of F s
n,ℓ and F s

n,ℓ,k,q, which are the counterparts of Fn,ℓ and
Fn,ℓ,k,q, respectively. The counterpart of (7) is

|F s
n,ℓ,k+1,ℓk+q| = |Ed

n,ℓ,k,q|.
Note that the index q−1 is changed to q. For conciseness, we leave the details for interested
readers.

Proof of Theorem 7. Fix ℓ ≥ 1. We prove (5). The generating function for the sequence
(|En,ℓ+1|)∞n=0 is Ψ(x) =

∏∞
i=ℓ+1(1 − xi)−1. Meanwhile, for n ≥ 2, if we add the part 1 to a

partition in Gn−1,ℓ, we have a partition in Gn,ℓ. This map is clearly injective. Hence, for each
n ≥ 2, |Gn,ℓ|−|Gn−1,ℓ| counts the number of partitions of n that contain no parts in {1, . . . , ℓ},
the generating function for which is again Ψ(x). Therefore, |Gn,ℓ| − |Gn−1,ℓ| = |En,ℓ+1| for
all n ≥ 2. When n = 1, we also have |G1,ℓ| − |G0,ℓ| = |E1,ℓ+1| = 0, because ℓ ≥ 1. Hence,
|Gn,ℓ| − |Gn−1,ℓ| = |En,ℓ+1| for n ∈ N. By (3), |An,ℓ| = |Gn−1,ℓ|, as desired.

Next, we prove (6). The generating function for (|Ed
n,ℓ+1|)∞n=0 is

Ψ(x) =
∞∏

i=ℓ+1

(1 + xi) =
∞∏

i=ℓ+1

1− x2i

1− xi
=

2ℓ∏

i=ℓ+1

1

1− xi

∞∏

j=ℓ

1

1− x2j+1
.

We establish the generating function for the sequence (|Hn,ℓ| − |Hn−1,ℓ|)n≥1. As above,
|Hn,ℓ|−|Hn−1,ℓ| counts the number of partitions of n that neither contain a part in {1, . . . , ℓ}
nor contain an even part greater than 2ℓ, the generating function for which is

Θ(x) =
ℓ∏

i=1

(1 + xℓ+i + x2(ℓ+i) + · · · )
∞∏

j=ℓ

(1 + x2j+1 + x2(2j+1) + · · · )

=
2ℓ∏

i=ℓ+1

1

1− xi

∞∏

j=ℓ

1

1− x2j+1
= Ψ(x).

Therefore, |Hn,ℓ| − |Hn−1,ℓ| = |Ed
n,ℓ+1| for n ≥ 2. When n = 1, |H1,ℓ| − |H0,ℓ| = |Ed

1,ℓ+1| = 0,

because ℓ ≥ 1. We have shown |Hn,ℓ| − |Hn−1,ℓ| = |Ed
n,ℓ+1| for n ∈ N. Use (4) to obtain

|Hn−1,ℓ| = |As
n,ℓ|, as desired.

3 The ℓ-strong Schreier sets and compositions

Our proof of Theorem 9 invokes two well-known results: the star-and-bar problem and the
hockey-stick identity. We refer the readers to [9, Lemma 2.1] for the former and to [13, Thm.
1.2.3 item (5)] for the latter.
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Proof of Theorem 9. Observe that Bn,ℓ,1 = {n} and c(n+ ℓ, ℓ+ 1, 1) = 1, so

|Bn,ℓ,1| = c(n+ ℓ, ℓ+ 1, 1).

Assume that m ≥ 2. According to the star-and-bar problem,

c(n+ ℓ, ℓ+ 1,m) =

(
n+ ℓ− (ℓ+ 1)m+ (m− 1)

m− 1

)

=

(
n+ ℓ− ℓm− 1

m− 1

)

.

On the other hand, for B ∈ Bn,ℓ,m, the ℓ-strong Schreier property implies that

minB ≥ ℓm− ℓ+ 1.

A set in Bn,ℓ,m is formed by first choosing its minimum i ≥ ℓm− ℓ+ 1 then choosing m− 2
number(s) strictly between i and n; hence,

|Bn,ℓ,m| =
n−1∑

i=ℓm−ℓ+1

(
n− i− 1

m− 2

)

=
n+ℓ−ℓm−2∑

i=0

(
i

m− 2

)

.

We, therefore, have |Bn,ℓ,m| 6= 0 if and only if n − i − 1 ≥ m − 2 for some i ≥ ℓm − ℓ + 1.
In other words, we have |Bn,ℓ,m| 6= 0 if and only if n + ℓ ≥ (ℓ + 1)m. Similarly, we have
c(n + ℓ, ℓ + 1,m) 6= 0 if and only if n + ℓ ≥ (ℓ + 1)m. Therefore, it suffices to prove that
|Bn,ℓ,m| = c(n + ℓ, ℓ + 1,m) when n + ℓ ≥ (ℓ + 1)m. In this case, applying the hockey-stick
identity, we obtain

|Bn,ℓ,m| =
n+ℓ−ℓm−2∑

i=0

(
i

m− 2

)

=

(
n+ ℓ− ℓm− 1

m− 1

)

= c(n+ ℓ, ℓ+ 1,m).

This completes our proof.

4 Tables

Below are tables for initial values of |An,ℓ|, |As
n,ℓ|, |En,ℓ|, |Ed

n,ℓ|, |Gn,ℓ|, and |Hn,ℓ|.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|An,0| 1 2 4 7 12 19 30 45 67 97 139 195 272 373 508 684
|An,1| 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176
|An,2| 1 1 1 2 3 4 6 8 11 15 20 26 35 45 58 75
|An,3| 1 1 1 1 2 3 4 5 7 9 12 15 20 25 32 40

Table 1. Initial values of (|An,ℓ|)∞n=1 for 0 ≤ ℓ ≤ 3.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|As

n,0| 1 2 3 5 7 10 14 19 25 33 43 55 70 88 110 137 169
|As

n,1| 1 1 2 3 4 6 8 11 14 19 24 31 39 49 61 76 93
|As

n,2| 1 1 1 2 3 4 5 7 9 12 15 19 24 30 37 46 56
|As

n,3| 1 1 1 1 2 3 4 5 6 8 10 13 16 20 24 30 36

Table 2. Initial values of (|As
n,ℓ|)∞n=1 for 0 ≤ ℓ ≤ 3.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|En,1| 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231
|En,2| 1 0 1 1 2 2 4 4 7 8 12 14 21 24 34 41 55
|En,3| 1 0 0 1 1 1 2 2 3 4 5 6 9 10 13 17 21
|En,4| 1 0 0 0 1 1 1 1 2 2 3 3 5 5 7 8 11

Table 3. Initial values of (|En,ℓ|)∞n=0 for small 1 ≤ ℓ ≤ 4.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|Ed

n,1| 1 1 1 2 2 3 4 5 6 8 10 12 15 18 22 27 32
|Ed

n,2| 1 0 1 1 1 2 2 3 3 5 5 7 8 10 12 15 17
|Ed

n,3| 1 0 0 1 1 1 1 2 2 3 3 4 5 6 7 9 10
|Ed

n,4| 1 0 0 0 1 1 1 1 1 2 2 3 3 4 4 6 6

Table 4. Initial values of (|Ed
n,ℓ|)∞n=0 for small 1 ≤ ℓ ≤ 4.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|Gn,1| 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135 176 231
|Gn,2| 1 1 1 2 3 4 6 8 11 15 20 26 35 45 58 75 96
|Gn,3| 1 1 1 1 2 3 4 5 7 9 12 15 20 25 32 40 51

Table 5. Initial values of (|Gn,ℓ|)∞n=0 for small 1 ≤ ℓ ≤ 3.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|Hn,1| 1 1 2 3 4 6 8 11 14 19 24 31 39 49 61 76 93
|Hn,2| 1 1 1 2 3 4 5 7 9 12 15 19 24 30 37 46 56
|Hn,3| 1 1 1 1 2 3 4 5 6 8 10 13 16 20 24 30 36

Table 6. Initial values of (|Hn,ℓ|)∞n=0 for small 1 ≤ ℓ ≤ 3.
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