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Abstract

We present a differential-calculus-based method which allows one to derive more
identities from a given Fibonacci-Lucas identity containing a finite number of terms
and having at least one free index. The method has two independent components.
The first component allows new identities to be obtained directly from an existing
identity while the second yields a generalization of the existing identity. The strength
of the first component is that no additional information is required about the given
original identity. We illustrate the method by providing new generalizations of some
well-known identities such as d’Ocagne’s identity, Candido’s identity, the Gelin-Cesaro
identity, and Catalan’s identity. The method readily extends to a generalized Fibonacci
sequence.

1 Introduction

Let F; and L; be the jth Fibonacci and Lucas numbers, defined for all integers by

ol — i o

‘Fj: O./—B’ Lj:a]—i_ﬁja (1)

where o = (1++/5)/2, the golden ratio, and 8 = (1 —+/5)/2 = —1/a. Of course, a+ 3 = 1,
aff = —1and a—f = /5. Let (G}) ez be the gibonacci sequence having the same recurrence

relation as the Fibonacci sequence but starting with arbitrary initial values; that is, let

Gj=G.1+ G, (1>2),
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with Go and G; arbitrary numbers (usually integers) not both zero; and
G-j=G-2) = G-

If, inspired by (1), we introduce infinitely differentiable, complex-valued Fibonacci and Lucas
functions, f(z) and [(x), defined by

fz) = l(z)=a"+ 4% zelk (2)

then, clearly,
f(x)‘x:jez = Fj, l<x>|m:jez = Lj;
and we will show that (see §4.2 and §5)

d L, d
R <%f(:c) xzj@) = 7 Ina, R <%l(a:)

x d _ Wﬁj 3 d — J.
3 (@f(-f) oc:jEZ) =~ ° (@l(ﬂf) x:jez> =, (4)

where, here and throughout this paper, (X ) or RX denotes the real part of X and J(X) or
X stands for the imaginary part of X. Many authors have studied various Fibonacci and
Lucas functions in the past; we mention Halsey [5], Parker [20], Spickerman [22], Horadam
and Shannon [11], and Han et al. [6]. The main difference between the approach in this paper
and that in previous work by other authors is that the latter focused on seeking real-valued
Fibonacci and Lucas functions. It is, precisely, the complex-valued nature of the Fibonacci
and Lucas functions defined in (2) and their derivatives that motivated the method developed
in this paper.

Our goal is to present a two-component method, based on (2)—(4) and their extensions,
which allows the discovery of more identities from any known Fibonacci-Lucas identity or
any gibonacci identity consisting of a finite number of terms and having at least one free
index; that is an index that is not being summed over.

To illustrate what we mean, consider the identity

= F;V/5 Ina, (3)
r=j€EZ

and

4An+1 4n + 1
T <—1>H( j )F 95 (F s — Fho). (5)

J=0

derived, among other similar results, by Hoggatt and Bicknell [7]. This identity has a free
index, k. Working only with the knowledge of (5), our method (first component) allows us
to derive the following presumably new identity:

an+1
- (4An +1 .
Z (_1)J 1( j )F}3+ij+k =25 (F23n+k+1L2n+k+1 - F23n+kL2n+k) ; (6)

=0



which, in turn, implies the identity

An+1

o (4dn+1 n
> 0 () B =2 P 7
j=0

We are not done yet, as (7) implies

dn+1
- (4An +1 n
Z (—1) 1< j )F4j+2k = 25" Lo(an+k+1); (8)
=0
which finally implies
4n+1
o (An+1 n
Z (—1) 1( i )L4j+2lc = 5" Byunthin)- 9)
=0

Thus, the four identities (6), (7), (8) and (9) all follow from a knowledge of (5).
Our method (second component) provides the following generalization of (5) to (iden-
tity (131)):

P dn+1
Z (_1)J_1( j )Fﬁ;—ij—&-r = 25" (F23n+k+1G2n+r+1 - F23n+kG2n+r) :
=0

A further generalization is derived in Proposition 32 on page 39.

As another example, consider the following well-known identity (see, for example, Hoggatt
and Ruggles [8, Theorem 4])
1 1

1
=tan ! — — tan~! .
For Foy, Fopto

tan

(10)

Our method (first component) shows that (10) implies the following apparently new identity:

Lowyr  Low  Lopys
Py 1 Iyl Py +1

and the method (second component) yields a generalization:

Gokrrts + Gopgrin B Gri1 _ Gri2 B G,
Fopy1 (Fgppy +1) Foa+1 F+1 Fp,+1

Yet another example, our method (first component) shows that the following identity of
Howard [12, Corollary 3.5]:

FsGk—i-r + (_]-)r_lFs—er = Fer+57 (1]-)
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having three free indices r, s, and k, implies the following identities:

LsGkJrr + <_1)T71L377"Gk = Fr<Gk+s+1 + GkJrsfl)a (12>
Fs (Gk+r+1 + Gk:-i—r—l) + (_1)TLs—er = Ler-i-sa (13)
Ls (Gk+r+1 + Gk+r—1) + (_1)T5Fs—er - L'r (Gk+s+1 + Gk—l—s—l) . (14)

The method (second component) provides the following generalization of (11):
HsGk-l-r + (_1)T_1Hs—er - Fr (GOHk+S—1 + GlHk—i-s) 3 (15)

where here, and throughout this paper, (H;);ez is a gibonacci sequence with seeds Hy and H;.
Another generalization of (11) is given in Proposition 36 on page 41.

In Section 5 we will apply the method (second component) to provide a generalization of
Candido’s identity

2
2(F + Fyp + Fro) = (B4 Flg + )
to the following (identity (139)):

2 (Her + Hr+1Gz+1 + Hr+2Gi+2>
= (Gi + Giy + Gryy) (H G+ Hy 1 Grgy + Hyy2Ghya)

with a further generalization given in Proposition 38 on page 41; a particular case of which
is

6 (Fpl Foly + For Fra o Fyr + FroFro o Fo o Fiyo)

= (FuFs + Fip1 Fopr + FrpoFopo) (B F, + Frp Fyyy + FroFo)
+ (FuFr 4 Frpa Frpn + FopoFrgo) (FF, + Fopr Fin + FoyoFryo)
+ (FuFy + Frp1 Frn + FrepaFigo) (B Fs + Frp Fopr + FrioFogo)

The method (second component) extends the d’Ocagne identity
Frp1Fy — FoFpy = (1) Fiy,
to the gibonacci sequence as
Gr1Gr — GGy = (1) (G1G—y — GoGr—r11) ;

and extends the well-known formula for the sum of the squares of two consecutive Fibonacci
numbers, namely,
Fk2+1+FkQ:F2k3+1’

to the gibonacci sequence as

G2+ G2 = GoGap + G1Gop 1.
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We will also establish the following generalization of Catalan’s identity (identity (147)):

Fk+er—r+s + Fk—er+r+s = 2Fka+s + (_1)k+r+1F2 (Gs—i—l + Gs—l) )

and the Gelin-Cesaro identity

Hyr20Gri1Grp1 Gy + G Hi - 1Gr1 Grogo
+ Gr2Gr1Hir11Gryo + GroGr1 Gy Higrgo
= 4Hy,,G} — 2ecGo (H, 12 + H,) + 2e¢Gy (Hpyy + Hoy)

where eq = G — G? + GoG;.
The method (second component) extends the fundamental identity of Fibonacci and

Lucas numbers,
5FF — L2 = (—1)"14,

to the gibonacci sequence as
5Gi - (Gk+1 + Gk,1)2 = (—1)k460;
and offers an extension of the triple-angle formula of Lucas
F3k:F1§+1+F1§_FI§—1»

to
G%ng,Q —|— 2GOG1G3k,1 —|— G%ng = G2+1 —|— Gz — Gi—l'

Using the method, the golden ratio power reduction formula
ok = akF), + Fr_q,
will be shown to imply

GO (Hk—i-r + Hk+r—2) + Gl (Hk—l—r-i—l + Hk-i—r—l)
=G, (Hy + Hi2) + Gryq (Hpgr + Hi—1)

which subsumes several Fibonacci-Lucas identities.
Consider a generalized Fibonacci sequence (W;) = (W;(W,, Wy; P)) defined, for all inte-
gers and arbitrary real numbers Wy, Wy, and P # 0, by the recurrence relation

Wij=PW; 1+ W;5, j=2 (16)
with W,j = —j+2 — PW,jJrl.
Two important cases of (WW;) are the special Lucas sequences of the first kind, (U;(P)) =
(W;(0,1; P)), and the second kind, (V;(P)) = (W;(2, P; P)); so that

U=0,U =1, Uj=PUj_+U;y j>2, (17)
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and
Vo=2,Vi=P, V;=PVi1+Vj,, j>2 (18)

with U,j = U,jJrQ — PU,jJrl and V,]’ = V,jJrQ — PV,];H.

We will show that the new method also applies to the generalized Fibonacci sequence.
For example, the method (first component) shows that the identity [9, Equation (3.14),
Q=-1

UWigr + Ui Wy = Wiy

implies

VWi + Vi Wy = Wit + Wigr1. (19)

The new method presented in this paper complements some previous research (for example
the work of Long [16], Dresel [4], and Melham [18]).

The rest of the paper is arranged as follows. In Section 2 we describe the method (first
component) and give examples. We cast about for identities to apply the method (first
component) in Section 3. Further justification of the method (first component) is addressed
in Section 4. A description of the method (second component), with examples including
various extensions and generalizations of some known identities, is presented in Section 5.
Finally, an extension of the method to the general second order (Horadam) sequence is
offered in Section 6.

2 The method, first component

Delaying further justification to Section 4, we present the method (first component) and give
examples.

Here then is how to obtain more identities from any given Fibonacci-Lucas identity having
a free index:

1. Let k be a free index in the known identity. Replace each Fibonacci number, say Fj ...,
with a certain differentiable function of k, namely, f(h(k,...)), with & now considered
a variable; and replace each Lucas number, say Ly,.), with a certain differentiable
function [(h(k,...)). The subscript h will be considered a function of several variables;
that is variable k£ and other parameters (if any) indicated by ellipsis: “...”. The explicit
form of f(h(k,...)) or [(h(k,...)) will not enter into consideration.

2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2 and make the following replacements:

f(h(k,...)) = Fa,..), (20)
I(h(k,...)) = Ln,..)- (21)



4. Take the real part of the whole expression/equation obtained in step 3, using also the
following prescription:

of L.
R (hlk, ) = NG Ina, (22)
éfﬁ%(h(k ) = Fug, V5 Ina. (23)

Remark 1. Formally, the method (first component) of obtaining new identities from a known
Fibonacci-Lucas identity proceeds in two quick steps:

(i) Treat the subscripts of Fibonacci and Lucas numbers as variables and differentiate
through the given identity, with respect to the free index of interest, using the rules of
differential calculus.

(ii) Make the following replacements:

0 Ligen.
(9th e V- akh(k )5 (24)
0

akLh(lc ) = Fug,.. )\/_ ( ), (25)
Ina — 1, (26)
i = 0; (27)

where 1 = v/—1 is the imaginary unit.

For example, given the double-angle identity

FQk = Lk:Fk7
we have, by step (i),
d d d d
—F: L, F Ly—Fy, + F,—Ly;
el = dk(kk) LT kTt LTl
so that, by step (ii), using (24) and (25), we get
Ly, d

L

and hence,
2Lgy = L} + 5F¢. (28)

2.1 Examples

We illustrate the method (first component) with some examples from familiar identities.
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2.2 Example from a connecting formula between Fibonacci and
Lucas numbers

In this example we show that
Ly =Fyp1+ Fr1 = 5Fp = Lig1 + Lp—1.
Following step 1 we write
k) = f(k+1) + f(k — 1)
and (step 2) differentiate with respect to k, obtaining

d d d
L) = 2o (k1) + = f(k = 1).

Steps 3 and 4 now give

d d d

and by (22) and (23),
L Ly
FiV5Ilna = a4 2L In o

V5 V5

that is
S5Fy = Lgy1 + Lg—1.

2.2.1 Example from the double-angle identity of Fibonacci and Lucas numbers
In this example we demonstrate that:
Fy, = LiF, = 2Ly, = L} +5F}. (29)
For the identity Fs, = LiF}, step 1 is
f(2k) = U(k) f(k);

where k is now considered a variable.
Following step 2, we differentiate with respect to k£ to obtain

df B df dl
20 (2K) = 1() 5 () + () - (k)
Steps 3 and 4 give i o .



Thus, using (22) and (23), we have

L Ly
2% ma=Li—Ena+ FWsF Ina;

V5 V5
which, dropping In @ and multiplying through by /5, is
2Lgy = L} + 5.
The interested reader may wish to verify the converse of (29), that is

2Lo, = L +5F} = Fy, = LiFy.

2.2.2 Example from the multiplication formula of Fibonacci and Lucas numbers

Here we show that the multiplication formula

Fk‘-‘,—m + (_1)ka‘—m = Ly, I},

implies
and

Lism — (=)™ Ly_y, = 5F,,, Fy.
We write

fk+m) + (=1)"f(k —m) = I(m)f(k);

so that, treating k as the free index of interest gives

of mOf 9]
S+ )+ (1) S (= m) = Uom) = (F).

Thus, by steps 3 and 4, we have

50/
"ok

af

S m) + (<L) R (k= m) = LRt (k)

and hence, using (22) and (23), we obtain

Litm In
V5
from which we get (30).
Taking m as the index of interest and differentiating (32) with respect to m yields

Ji 0O y D
(k) = (<12 (= )+ (< 1) i = m) = f(k) 5 —1(m),

m m

Ly L
at (=) e = L,~Ena:

V5 V5



so that of of 9

and hence

Lk-l—m Lk—m
Ina — (—=1)™ Ina = F,F,W5na;

from which (31) follows.

The reader may verify that the remaining multiplication formula can be discovered by
differentiating (30) with respect to m.

2.2.3 Example from an inverse tangent Fibonacci number identity
Consider the following identity:

F: L
1 f2m_tan! o —tan ' —"— m even, (33)

tan
Fortom—1 Loptm—1 Loktam—1

which can be derived using the inverse tangent addition formula and basic Fibonacci-Lucas
identities.
We now demonstrate that (33) implies

1 FomLokyom—1 _ LonFopim—1 L Fopizm— 1 even (34)
B iom + o Ly L5 Laign + 13

We treat k as the free index of interest. Step 1 gives the Fibonacci-Lucas function form
of (33) as

- f(2m) -1 [(m) -1 [(m)
t ! =1 — =1 ;
M@k tom—1) " 1@k tm—1) 0 12k +3m—1)
so that step 2 yields
2f(2m) af
—2k+2m—1
FOkt2m - 12+ feme ok kT 2m =)
21(m) ol
l(2k+m—1)2+l(m)28k( +m—1)
21(m) ol
- —2k+3m—1
[k +3m — D2+ ()2 ok 2k T 3m =1,
which, by step 3, results in
FQm af
—2k+2m—1
F22k+2m—1 + F22m ak( e )
Ly, [ Ly, [
a—(2k+m—1)— a—(2]{;—1—3m—1),

T L3yt L2, Ok L3y + L2 Ok
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whence taking the real part and replacing the derivatives using (22) and (23) gives (34).
By treating m as the free index, the interested reader can verify, using our method,
that (33) also implies
2 Forq For 4 Fokram—1Lm + Fopyom—1

- = - + m even.
2 2 2 2 2 2 ’
5 F2k:+2m—1 + FQm L2k+m—1 + Lm L2k:+3m—1 + Lm

2.3 Extension to a generalized Fibonacci sequence

We now describe how the method (first component) for obtaining new identities from existing
ones works for the generalized Fibonacci sequence (W;(Wy, Wy; P)) whose terms are given
in (16). The scheme is the following.

1. Let k be a free index in the known identity. Replace each generalized Fibonacci number,
say Wh,.), with a certain differentiable function of k, namely, w(h(k, ...)), with k& now
considered a variable.

2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2 and make the following replacement:

w(h(k,...)) = Wh,..)- (35)
4. Take the real part of the equation/expression obtained in step 3, using also the following
prescription:
0 1% o)+ Whk—1,..
R (h(k,.)) — ) o o (36)

where 0 = (P +9)/2 and 0 = vV P? + 4.

Note that, on account of (70) and (72), for the special Lucas sequences, (35) and (36) reduce
to

u(h(k,...)) = Un,.), (37)
2 (b, ) Vi) 1 (38)
Ok ’ 3
and
v(h(k,...)) = Vi), (39)

of which the Fibonacci and Lucas relations (20)—(23) are particular cases.
For the gibonacci sequence, (35) and (36) reduce to

g(h(k,...)) = G, (41)

Cirer o 4 G
299 ks, ) = Gt + Gn

2 L)
2% 7 Ina. (42)
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2.4 More examples
We give further examples involving the gibonacci sequence and the generalized Fibonacci
sequence.
2.4.1 Examples from an identity of Howard
Consider the following identity, derived by Howard [12, Corollary 3.5]:
FGrir+ (—1)"'F, Gy, = F,Grys,
Identity (11) has three free indices r, s, and k.

We write
F($)glk +71) + (=1 f(s = r)g(k) = f(r)g(k + s). (43)
Treating s as the index of interest and differentiating (43) with respect to s gives
d AN dg
Uk ) 5 F(5) + (<1 g(R) S (s = 1) = Fr) 20k + 5); (14)

so that, using (20) and (41) we get

of

CrarR 1 (3) + (1) R (s =) = Rk 1 5).

We now use (22) to replace the derivatives on the left hand side and (42) to replace the
derivative on the right hand side, obtaining

LsGk-I—r + (_1)T_1Ls—er - Fr(Gk+s+1 + Gk+s—1)-

On the other hand, treating r as the index of interest and differentiating (43) with respect
to r yields

FYIL(k + 1) + (<1 i f (s — r)g(h) — (-1 g(k) T2 (5 — 7)
) / (45)
= gk + 5) 10

so that, taking the real part,

of

ag r—1
ERZI(k+7) = (1) GRS

d
(5 = 1) = G R f(r)-
Use of (42) and (22) finally gives (identity 13):
Fs (Gk+r+1 + GkJrrfl) + <_1)TL377“G1<: - LerJrs-

The interested reader is invited to discover, by differentiating with respect to s, that (13)
implies
Ls (Gk+r+1 + Gk+r—1) + (_1)T5Fs—er = Lr (Gk+s+1 + sz—i—s—l) )

and that differentiating (11) with respect to k does not produce a new result.
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2.4.2 Example from a general recurrence relation
Consider the following identity of Horadam [9, Equation (3.14), @ = —1]:
UWipr + Ui Wy = Wiy
We write
u(rw(k +1) +u(r — Dw(k) = w(k +7);
and differentiate with respect to r, obtaining

d d ow
%u(r) ~w(k+1)+ Eu(r —1)-w(k) = W(k +7);

so that, taking the real part, we find

d d ow
%%U(’f’) . Wk—H + %5’&(7" — 1) . Wk = %W(k’ + ’l”),

and hence, upon using (38) and (36) to replace the derivatives, we derive identity (19):

VWi + Vi i W = Wit + Wigr1.
In particular,
ViUkt1 + ViU = Vigr,
ViVier + ViV = (P? + 4) U,
2.4.3 Example from a multiplication formula
Here we will demonstrate that the identity [9, Equation (3.16), Q) = —1]:
Wiir + (=1)" Wiy = V. Wy,
implies the identity
Wit + Wisro1) — (=1 (Wi—pp1 + Wi—ro1) = U W3 6°.

We write
w(k+7r)+ (=1)wk —7r) =v(r)wk)

and differentiate through with respect to r to obtain

ow . . Ow B d
EU{: +7)+ (=1)"miw(k —r) — (—1) E(k —r)= w(k‘)%v(r),
so that 5 9 p
%E(k +7r)— (—1)7”%5(1{: —r)= w(k;)%%v(r).



Using (36) and (40), we get

Wiars1 + Wigra (Wh—ps1 + Wir1)

—(=1)" — .
5 ( ) (5 WkUr57
and hence (46).
Identities
Vier — (=1)"Viy = ULU,.6°
and

Uk:—i—r - (_1)rUk—r =U Vi

are special cases of (46).

3 Applications

In this section, we pick various known results from the literature and apply the method (first
component) to discover new identities.

3.1 New identities from an identity of Long
Long [17, Equation (44)] showed that, for a non-negative integer n and integers k and r,
= n . .
Z ( ,)FH%J- = L}F g, if k is even. (47)
— \j
j
Based on the knowledge of (47) alone, we will derive the results stated in the proposition.

Proposition 2. If n is a non-negative integer, k is an even integer and r is an integer, then

" . n n— n
2 Z J (]) Lr+2kj = 571Lk 1Fr+nka +nLy Ly ik, (48)
j=0
" . n n— n
2> J (J) Fryory = nLy Ly F + nLEFr . (49)
j=0

Identity (47) contains two free indices r and k. Treating r as the index of interest
immediately gives the Lucas version of (47), namely,

Z (n) Lyior; = Ly Lyypg, if k is even;
J

j=0

coming from
"L\ Of L s Of
> <j)?RE(T + 2kj) = I(k) %87“ (r +nk)

J

14



and prescription (22).
To derive (48), write (47) as

n

(’;)f<r+2kj> — U(R)" f(r -+ nk):

j=0

treat k as the index of interest and differentiate with respect to k (step 2) to obtain
j:ZOQJ ( ) oy (r+2kj) = nl(k)" " f(r+ nk)%l(k') + nl(k) %(r + nk),
and, taking the real part,

G, 9]
22 ( > —(r +2kj) =nL}~ 1Fr+nk§)?akl(k) + L"iﬁag(r-i-nk)- (50)

Thus (48) follows from step 4 of Section 2, after using (22) and (23) to replace the derivatives
n (50).
To derive (49) treat r as the free index of interest in (48) and write

"~ (n\ dl . ) ol
QZj(j)E(r+2k]):5nLk 1a—£(r+nk)f(k)+nL i5, —(r +nk).
=0

3.2 New identities arising from an identity of Hoggatt and Bick-
nell

Based on Hoggatt and Bicknell’s result [7, Identity 2:

4An+1
dn +1 "
Z (_1) ( ] )F]4+k =25 (F24n+k+1 F24n+k) )
7=0

we wish to derive the four identities (6), (7), (8) and (9) stated in the Introduction section.
Write (5) as

> (=1 (471; 1> fG+E)=25"(f2n+k+1)* — f2n+ k)*);

§=0
and differentiate through, with respect to k, to obtain

4dn+1

> 1 (M ast 4 ek +

j=0
of

_ n 3
=25 (4f(2n +ht+1) o

(51)

of

(2n+k+1)—4f(2n + k)3%(2n + k)) :

15



and taking the real part:

An+1

(4An+1 3 WOf .
> (") arsarSh + )
) o o
—2 (4F23n+k+1§)?%(2n FhF1) = 4R R (2 + k:)) |

Thus,

4dn+1
= j J+ \/5
n [Qn k+1 L2n k
=25 (F23n+k+1% - §n+k7;)

and hence (6). Identities (7), (8) and (9) are derived in the same manner; (7) is obtained
from (6), etc.

Y

3.3 New identities from an inverse tangent identity

Proposition 3. If k is an integer, then

Logyr Lo Log1o
2 - 2 T T2 ; (52)
F2k+1 + 1 FQ]C + 1 F2k+2 + 1

Lopy1 (Fo+1)(Fop+1)  (Fo,+1)  (F&+1)

= — . 53
Loy Lo 42 (Fypey +1) Lojio iy (53)
Recall identity (10):
1 1
tan ™! =tan ! — —tan ’ .
Fopa ok Fopyo
To derive (52), write (10) as
1 1 1
tan ! —— =tan ' —— —tan | ——— 54
oYk M Fek) M ekt (54)
and differentiate with respect to k to obtain
1 df
—(2k+1
oyt aR R
d 1 d
= s 2 —f(2k +2),

f(2k)2+1 ax k) = f(2k+2)2+1 dk

16



so that, by (20),

1 d,
2 R /
Fyepp +1 dE

1 df 1 df
(92 - -
Fk+1§de< k) = Fk+2+1%dk

(2k+1)

(2k +2),

and hence (52), upon using (22). Identity (53) is a rearrangement of (52).
Simple telescoping of (52) and (53) produces the results stated in the next proposition.

Proposition 4. If n is an integer, then

n

Lowin 3 Lomin)
— Py, +1 2 Fg(n+1)+1
zn: L2k+1 (F% +1) ( oht2 T ) F2(n+1) t1 2
“— Lok Lok+o (F2.,+1) Lapi2 3
with the limiting case:
S _3
Pt F,+1 2

3.4 New identities from an identity of Jennings

Jennings [13, Theorem 2| showed, among results of a similar nature, that

FkZ(_l)(kH)( +J)( 2 )L = Flont1)k-
§=0

Writing

= e (M ey £(2n+ DE)
2 (3 Yoo = H55

and differentiating with respect to k gives

n

1\ (kD) (nt)) ~ n+] )2 k+1 ) (n+7) n+j 2'71ﬂ
> (0* (" it J+Z 02 ("t G

_ f(2n+ O8) df

2n + 1df
pe k'

T dk((Qn + k) —

and taking the real part,

- Do (TN 21 dl
_ 1))t (7 12519 %
JZ; ) iy ) R k)

2 1
n+ ﬂ%df

F2n+1)k df
R (204 k) - L %),

F2 dk

17



which, by (22) and (23) gives

n

Ney - +] 2i—1 2n+1 L(2n+1)k F(2n+1)k: Lk
1)+ (+i)o (” . )L i1p /5 = — =k
Y oy ) o V6 B

j=0
and hence the result stated in the next proposition.

Proposition 5. For non-negative integers k and n, we have

Flg Z k-l—l (n+7) ; ( 2] )Lk] = 1—0 ((271 + 1)F2I<:L(2n+1)k — F(2n+1)kL2> .

We also have the following divisibility property.

Proposition 6. If n and k are non-negative integers, then

10F} divides (2n + 1) For Liant1yk — Flons1ynLi.

3.5 New identities from Candido’s identity
Setting * = G, y = Gj41 in the algebraic identity
2+t + (+y)) = (P + 2+ ()%,
gives the following generalization of Candido’s identity:
2(Gh4 Gl + Glyn) = (G4 GLL+GRp)
Writing
2g(k)* + gk + 1) + gk +2)") = (9(k)* + g(k +1)* + g(k +2)°)",

and differentiating with respect to k gives
2 (g(k)?’Z—Z(k) gl 1P S0k 1) gl 4252 (4 2))
= (9(k)* + g(k +1)* + g(k + 2)°) - (55)
@(k)j-i(k) gk + 1)§k(1¢ 1)+ gk + 2)%@ + 2))

so that applying the prescription (41) and (42) yields

2 (GG + Gror) + Gia (Grpa + Gi) + Giio(Grys + Giyr))
= (G} + Giyq + Gi ) (Gi(Grgr + G+
Gri1(Grio + Gi) + Grio(Gras + Gri1))

which can be arranged as stated in the next proposition.
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Proposition 7. For every integer k, we have

Gi (Gr+1(Grgo + Gi) + Gipa(Grys + Gry1) — Gi(Gryr + Gi—1))
+ Giyy (Gr(Gryr + Gro1) + Gria(Gris + Gir1) — Giga (Grya + Gi))
+ Giiy (Gr(Gryr + Gir) + Gipa (Grpa + Gr) — Grya(Grys + Gipa))
=0.

In particular,
Fp Fopys + Fiyy Foryo = F o Faga, (56)
LiFopys + Ly Foryo = Li o Fopp1. (57)
Subtraction of (56) from (57) gives
Fo1Fyp1 Fopis + FipFoFopo = Fropr FrysFopa,
while their addition yields
(Fiin + Fi) Fargs + (FE o + F) Farra = (B3 + F7) Farga

Before closing this section, we bring forth a Candido-type identity of Melham and discover
new identities from it. Melham [19, Theorem 1] has shown that

2n—1 2
6 (Z Giﬂ) = F22n (Gi+n—2 + 4Gi+n—1 + 4Gi+n + Gi+n+1) ; (58)
j=0

from which, writing f(2n) for Fy,, g(k +n — 2) for Gji,—_2, etc. , and differentiating with
respect to k, we have

2n—1 2n—1
(12 > glk+ j>2> > 2g(k + j)%(/ﬂ +4)
j=0 J=0
= f(2n)? (4g(k +n— 2)3%(1@ +n—2) +16g(k +n — 1)3%@; +n—1)

Ok

Taking the real part according to the prescription of steps 2, 3, and 4 of Section 2.3, us-
ing (20), (41) and (42) to replace the Fibonacci and gibonacci functions and derivatives, we
obtain the result stated in the next proposition.

0 9]
+16g(k + n)3a—Z(k +n)+4g(k+n+ 1)3—g(k +n+ 1)) .

Proposition 8. If n is a non-negative integer and k is an integer, then

2n—1 2n—1
6 G GranlGiprsr + Groni)
=0 =0

= F;, Gy o(Grpnat + Grins) + 4G} 1, 1 (Grpn + Grans)
4G} 1 (Grgngt + Grina1) + Giini1 (Granga + Gran)) -

19



In particular,

2n—1 2n—1

6 Z E]2+k Z F2j+2k — F22n (F]3+n—2F2(k+n*2) + 4F]§+n—1F2(k+n71) (59)
Jj=0 j=0

+4Fk2+nF2(k+n) + F/?+n+1F2(k+n+1)>
and

2n—1 2n—1

6 Z L?+k Z Fojiop = Fy, (Li+n—2F2(k+n—2) + 4Li+n71F2(k+n_1) 60)
j=0 j=0

+4Lz+nFZ(k+n) + Li+n+1F2(k+n+1)) .

Subtraction of (59) from (60) gives

2n—1 2n—1

6 Z Fiiki1Fjir— Z Fajtok
=0 =0
= F22n (Fk+n—1Fk+n—3F2(k+n72) + 4Fk+an+n—2F2(k+n71)
+4F e int1 Frtn—1Fotn) + Fronto2FrsnFoeint1)) -
3.6 New identities from the Gelin-Cesaro identity

The Gelin-Cesaro identity
FyoFy 1 Fy1Fyn = F — 1

has the following generalization (Horadam and Shannon [10, Identity (2.5), @ = —1]):
WieaWiea Wit Wiers = Wil + (= 1)y Wi — hiy:

where vy = ey (P? — 1), hyy = ew P, and eyy = PW W, + W — WE.
For the sequence of Lucas numbers, we have v, = 0 and e;, =5 = hy, so that

Ly—oLy 1Lgy1Ly2 = Lj, — 25;
while for the gibonacci sequence, 76 = 0, hg = eg = GoG1 + G2 — G? and
Gr—2Gi-1Gr1Gryo = Gi - 620-

Writing
w(k —2)w(k — Dw(k + Dw(k +2) = w(k)* + (1) yw(k)? — by,

and differentiating with respect to k and making use of (35) and (36) from Section 2.3 yields
the result stated in the next proposition.
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Proposition 9. For every integer k,
(Wit + Wiea)Wieea Wi i Wiepo + Wimo (Wi + Wi—o) Wit Wi
+ Wi—oaWiea (Wi + W) Wipo + WimaWiea Wit Wiz + W)
= 2W(Wipr + Wiet) W + (1) ).
In particular,
(Gro1+ Gr—3)Gr1Gri1Gri2 + Gia(Gr + Gi—2)Gri1Gryo
+ Gr—2Gr—1 (G + Git2)Grgo + Gi2Gr1Gri1 (Grss + Gig)
= 4G} (Grs1 + Gr);
with the special cases
Frei1FypoFo—g + Fyo1 Fy_oFopys = 2F Ly, = 2F Fyy,

and
Lyi1LyoFop—3 + Ly—1Ly—oFopy3 = 2L} Fy, = 2L} Foy;

where, to arrive at (62) and (63), we used
Fyp1 + Fer = Li, L1 + Li—1 = 5Fy,

and [23, Identity (16a)]
LonFy 4 Lo Fyy = 2Fp0 .

Substituting k£ + 2 for & and arranging (62) and (63) as

Faoq " Fokpr 28 o Fopqa

FpFryr FrysFrya Fl,—1
and )

Fopia Foprr 205 9 F o4

LiLiwr  LygsLpya L, —25°
and the use of the telescoping summation formula

n m

S ED et (D™ frgm) = D0 CD A (CDTDY (D fegm

m
k=1 k=1 k=1
yields the summation identities stated in the next proposition.

Proposition 10. If n is a non-negative integer, then

)

i <_1)k_1Fk?+2F2k+4 _ § + (_1)71—1 ( F2n+3 o F2n+5 + F2n+7

=1 Fk;4+2 —1 6 2 Fn+1Fn+2 Fn+2Fn+3 Fn+3Fn+4
i (D" LR o Pt _ 5 n (=t ( Fonys  Fongs . Fonyr
=1 Li.ﬁ.Q — 25 14 2 Ln+1Ln+2 Ln+2Ln+3 Ln+3Ln+4
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with

i (=D F o Foks 5

~ R, 6’
—~ (DML o Foea B
= Ly,—25 14

Arranging (61) as

WiatWis Wit Wica Wina # W5 Wies + Wi
Wi-s Wi Wi Wi+
C2W(Wy + W) WE A+ (= 1) yw)
B Wi oW Wi Wit

and summing produces the next result.

Proposition 11. Ifn and k are integers then,

“ (1) R2W ke (W + W/j+k—1)(2Wj2+k + (=1 )

Wiik—2Witk-1Wiiks1Witkto
Whsk + Witr—2 n Wi + Wi_o
Wn+k—1 Wk—l
Wiikes + Wogerr . Wi + Wi
+ ;
Wotk+2 Wieto

= (-1

+ (=)

provided none of the denominators vanishes.

3.7 New identities from a reciprocal series of Fibonacci numbers
with subscripts k2

In this section we apply our method (first component) to discover new results associated
with the following identity of Rabinowitz [21, Equation (4)]:

Z": 1 14+ Uiy N 1= (=D)" Uy
5 Ura

U Ui, Upon
Writing
~ 1  1+uk-1) N 1—(=1)F  w(k2" -1
u(k279) u(k) u(2k) u(k2m)

J=0
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and differentiating with respect to k gives

n

-2 du 1 du (1+ulk—1))du
2wt = st Y e ™
(=)*mi 2(1 — (=1)%) du
ow(2k) u(2k)? %( k)
2" Ou,, . "uw(k2 —1)0u,
u(k27) Rk =D+ u(k;Q”) ar, k2"

Taking the real part while using (37)-(40), we have the next result.

Proposition 12. Ifn and k are positive integers, then

X”: 2Viai  (—1)F2+V, N 2(1 = (=)")Vay  27*

=, @ U3, Ul
Z”%__1m+m 21— (~1!)Vae.

Note that in arriving at the final form of the first expression in Proposition 12, we used
U’r“/; - V;"Us = (_1)S2Ur—s~

In particular, we have
Z 27 Vgg 252 ontl

and

with the special cases

2‘7 L2j 2n+1
5 = 11— 2
]:0 FZJ 2n
and
2 Lo 20
=0 F22j+1 F22n+1

4 Justification of the method

In this section we provide the rationale behind the method that was described in Section 2.

To facilitate the discussion, we need the closed formula for the generalized Fibonacci se-
quence (W;).
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4.1 Closed formula for the generalized Fibonacci sequence

Standard methods for solving difference equations give the closed (Binet) formula of the
generalized Fibonacci sequence (W;) defined by the recurrence relation (16), in the non-
degenerate case, P2 +4 > 0, as

Ao’ — B! Ao? — Br/

W, = 64
J o—T 5 ) < )
where
A:W1—W()’T, B:W1—W00', (65)
with
P++vVP?2+4 P—+P?+4
o= ——"—", T = — ; (66)
2 2
so that
c+7=P, o—7=vVP2+4=4, andor=—1. (67)
In particular,
oi — 7 o
Uj: s ‘/j:O']—FT]. (68)
o—T
Using the Binet formulas, it is readily established that
U= (-1Y"U; Vo= (=1)V; (69)
It is also straightforward to establish the following:
Ujp1 +Uj1 =V}, (70)
Uj+1—Uj_1 :PUj, (71)
Vg1 + Vi = Uj0°, (72)
and
Viss = Vit = PV, (73)
As for the gibonacci sequence, we have
V5
Lemma 13. For an integer j,
Ao’ + Br? = Wj+1 + VVj—l, (75>

where A and B are as defined in (65).
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Proof. Let

R; = Ao’ + B7. (76)
Then,
oR; = Ao?t — priTt
TR; = — Aot 4 Bt
Thus,
Rj-(0—71)= (A’ = BT/t + (Ao’ — BT/
that is
R;j0 = W16 + W;_40,
or
Rj=Wji1+ W;_1. (77)
Identity (75) now follows by equating (76) and (77). O

Identity (75) is at the heart of the justification of the calculus-based method of obtaining
Fibonacci identities.

4.2 Justification of the method

We first state a required lemma.

Lemma 14. If A is a non-zero real number and x is real, then

d {mm, ifA>0;

dr A (im(2m+ 1) +1n(=N)), ifA<0,
where m is an integer.

d
Thus, if A is a negative number, then d—/\”C is complex multi-valued with the principal
x

value being

d T T (;
%)\ = N (im +1n(=N)). (78)
Proof. If X is a negative number, then
A =exp(zln ) =exp (z (In(—1) +In(=N))), (79)

where In(—1), the complex logarithm of —1, is evaluated as
In(—1) =In(exp(im(2m + 1)) = in(2m + 1), m € Z;
so that (79) can now be written as
A = (=\)"exp (ir(2m + 1)x),

from which the second result in (14) now follows by differentiation. O]
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Consider a generalized Fibonacci function w(z) defined by

B Ac* — B1% B Ac®* — BT®

w(z) o—T ) ’

r € R,

where A and B are as defined in (65) and o and 7 are as given in (66).

(80)

Corresponding to (1), (68) and (74), we have the following special cases of (80):

Oéx_ﬂx

flz) = 7 I(z) =a" + 5%,
ot — 1" x x
u(z) = p— v(x) =047,
and
o(z) = Aga® — Bgf* _ Aga® — Bgfp*®
a—pf Vi
where
Aqg =G — Gy, Bg=G— Gha.
Clearly,
w(j) =W, JjeL
that is

u(j>:Uj7 U(j):‘/}, g(j):ij f(j):Fjv l(j):Lju

Theorem 15. The following identity holds:

d

where, as usual, |(X) denotes the real part of X.

Ino,

J

_ Wi+ W,
r=j€EL

Proof. We have

d 1 d , d ,
%M(I):S<A—O‘ —B—T).

From (66), it is clear that ¢ > 0 and 7 < 0 for all real numbers P.

Lemma 14, we find

d

d—w(m) = —(Ac"Inoc — Br"In(—7) — Brmi(2m + 1))
T

(S e I e

26

((Ac” + B7*)Ino — Bt*In(—o7) — Br*mi(2m + 1)) .

jez.

Thus, employing

(Ac®Ino + Bt*Ino — Br¥Ino — Br%In (—7) — Br*mi(2m + 1))



Since o7 = —1, we obtain

%w(;ﬁ) = ((Ao” + Br) g — Brimi(2m +1)). (86)

Evaluating (86) at © = j € Z, we have

d
—w(x) =
dx r=j€EZL

(Wjg1 + W) Ino — Br/mi(2m + 1)) , by (75), (87)

S| =

from which, on taking the real part, (85) follows, since m, 7, §, B, W44, and W,_; are real
quantities and o is a positive number. O

Of course the derivatives given in (3) are particular cases of (85) with § = /5, Fjy; +
F;_y = Lj, and Lj4y + Ly = 5F;. Similarly, (36), (38), (40) and (42) are all consequences
of (85).

Thus, given a (generalized) Fibonacci identity having a free index, on account of (80),
(84) and (85), we can replace (generalized) Fibonacci numbers with (generalized) Fibonacci
functions, perform differentiation and evaluate at integer values to obtain a new (generalized)
Fibonacci identity.

5 The method, second component

The imaginary part of (87) establishes a connection between powers of o and 7 and the
(generalized) Fibonacci numbers; through which new (generalized) Fibonacci identities can
be obtained. We have

[ d
Q3 <%w(az)

where m is some integer and

B .
= ——WTJW(QTTL +1),
r=j€EZL 0

BW:B:W1—WQO';

the principal value being

B .
& iw(m) = _Wrir, (88)
dr z=jer 0

Specializing to the special Lucas sequences, we have

By=1, By=P—-20=7—0=—0;

7T7'j
r=j€Z 0

so that




and

[ d
& <£U(a:)

=77,
T=jEL
For the gibonacci sequence, we have

Be = G — Gooy

o _ GG g
dx r=j€Z

V5
For the Fibonacci and Lucas numbers, we have
BF = 1, BL == —\/S;

so that, in view of (88), the method described in Section 2 can now be applied to a Fibonacci-
Lucas identity with the prescription in step 3 and step 4 of Section 2 replaced with the
following;:

so that

3. Simplify the equation obtained in step 2 and make the following replacements:

f(h(k,...)) = Fuk,.), (89)
U(h(k,...)) = Ln,..)- (90)

4. Take the imaginary part of the whole expression/equation obtained in step 3, using
also the following prescription:

of 7 Bhtks-)

Sl ) = ===, (91)
S0 (h(k,..) =m0 (92)

Remark 16. Formally, the method (second component) of establishing a connection between
the powers of § and Fibonacci and Lucas numbers in a given Fibonacci-Lucas identity
proceeds in two quick steps:

(i) Treat the subscripts of Fibonacci and Lucas numbers as variables and differentiate
through the given identity, with respect to the free index of interest, using the rules of
differential calculus.

(ii) Make the following replacements:

a —Wﬁh(k"")
) 0
o Lnte.) = G %h(k:, ), (94)
Ina — 0, (95)
i—1; (96)
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where 1 = v/—1 is the imaginary unit.

For example, given the double-angle formula:

Fo, = Ly Fy,
we have, by step (i),
d d d d
%F% = (LiFy) = Lk%Fk + Fk%LM

so that, by step (ii), using (93) and (94), we get

—Fﬁ% d —Wﬂk )
- —(2k) = Ly - + Fy - 8%
and hence,
28% = L, — Fi.\/5.
For the special Lucas sequences, (89)—(92) read
U(h(k, c. )) = Uh(k:,...)a
v(h(k,...)) = Vi,
ou arhk--)
g -
v
oV _ h(k,...).
\sak(h(k,...)) T ;
while for the gibonacci sequence, we have
g(h(k,...)) = G,
8g (G()Oé — G1>7Tﬁh(k"") BG h
S (h(k,...) = = ———qphlk-),
S (h(k,...) N s

5.1 Examples

(101)

(102)

We now give some examples to illustrate the use of (89)—(92) and (101) and (102) in obtaining

new identities from known Fibonacci-Lucas identities.

Note that in the definitions in (1), F; and L; do not change when a and § are inter-
changed. Thus, a and [ can be interchanged in a Fibonacci-Lucas identity involving Fi-
bonacci numbers, Lucas numbers, a and § and no other irrational numbers. More generally,

we have the observation stated in Proposition 17.

Proposition 17. A (generalized) Fibonacci identity involving (generalized) Fibonacci num-
bers as well as o and T and no other irrational numbers remains valid under the exchange

of o and .
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Proof. From (64) and (65), we have

Wy —=Wor . Wy —Wyo .
Wi(o, 1) = ! o i _ 21 07 5.
o—T o—T
It is straightforward to verify that W;(o,7) = W;(7,0); and hence, the proposition. O

The generalizations obtained in this section rest on Proposition 17.
5.1.1 Generalizations of the fundamental identity of Fibonacci and Lucas num-
bers
Differentiating the Fibonacci-Lucas function form
5f(k)* = 1(k)* = (=1)"'4,

of the fundamental identity
5FF — L = (—-1)"14,

and applying the prescription of (89)—(92) yields

5Fkﬁk+r +Lkﬂk+r\/g: (_1>k25r\/g, (103)
where r is an arbitrary integer; and also, by Proposition 17,
5F,af T — Ly tV/5 = (—1)F 12075, (104)

Combining (103) and (104) according to the Binet form (74) leads to the result stated in
Proposition 18.

Proposition 18. If k and r are integers, then
5FGrrr — Li (Gryrir + Gryro1) = (=) 12(Grp1 + Gro1)
Writing the function form of the identity of Proposition 18 as
5f(k —=r)g(k) = Uk =7) (g(k+1) + g(k = 1))
= (=290 + 1) +g(r = 1)),

and differentiating with respect to r, using again the prescription (89)-(92) and (101)
and (102), we find

551@—er + ﬁk_T\/g (Gre1 + Gr_1)

(105)
= (=1)F7"2V5 (Gry1 + Gror) + (=1)F72V5 (Gof ™ — G1B7)
and, on account of Proposition 17, also
50" "G, — aF V5B (Gt + G
Q E—Q ( k+1 k 1) (106)

= (—1)k_r+12\/5 (G7»+1 + Gr—l) + (_1)k—r+12\/g (G()O./T_l - Glof) .
Combining (105) and (106) gives the next result.
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Proposition 19. If k, r, and s are integers, then

5Gka+S—T - (Gk+1 + Gk 1) (Hk+s r+1 Hk+s—r—l)
- (_1>k—r+12 (Gr-i-l + Gr l) ( s+1 + Hs l) (1O7>
+ ( )k "2 (GO ( r+s + HrJrs 2) + Gl ( r+s+1 + HrJrs 1))

Setting » = 0 in (107) gives

5GrHpys — (Gryr + Gro1) (Hpgsr1 + Hiys1)
= (- )k '2(Gy (Hsy1 + Hy—1) — Go (Hsy2 + Hy)),

which upon using s = 0 and (H;) = (G;) gives
5G2 — (Ghp1 + Gro1)” = (—=1)F4eg,
where, as usual, eq = G% — G? + GG .
5.1.2 Generalizations of the formula for the sum of squares of two consecutive
Fibonacci numbers
Differentiating the Fibonacci function form
Fll+1)" + f(k)* = f(2k+ 1),

of the identity
Fe o+ B} = Fya,

we have if if of
P+ )2 (k1) + FR) () = -2k + 1),
and taking the imaginary part, by (89),
daf ~df ~Af
Fk;—i-l\f%(k’ +1) + B dk(k) dk(zk +1),
and by (91),
Bk—FIFkJ’_I + 5ka _ 62k+1‘
Thus
5r+k+1Fk+1 + ﬂrJrka — 52k+r+1
or
BS—HFI@—H + 55Fk — ﬁk-l—s-&-l’ (108)
where s is an arbitrary integer, and also
M EF i + o F), = of Tt (109)

Combining (108) and (109) according to the Binet formula, we have the next result, equiv-
alent to Vajda [23, Identity (8)].
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Proposition 20. If k and s are integers, then

Fr1Gopr + FGy = Grgspa.

Writing k& — 1 for k& and setting s = 0 in (110) gives the well-known result:

F.Gy + F._1Gy = Gy,.
Differentiating the Fibonacci function form of (110), that is
f(k+1)g(s +1) + f(k)g(s) = g(k +s+1),
with respect to k and using (91) and (102) gives
—BkHGsH - ﬁst = ﬁk+s+1 (Goa — Gy),

or

5k+1Gs+1 + 5st — GOBkJrs + G15k+s+1

and also
OékJrleJrl + akGS _ GoakJrs + G106k+s+1.

Combining (112) and (113) produces the next result.

Proposition 21. If k and s are integers, then
Hy1Gopr + HyGy = GoHpys + GrHpq1.

In particular,

Gii1 + Gy = GoGop + G1Gopi1.

5.1.3 Generalizations of the d’Ocagne identity

Differentiating with respect to k, the Fibonacci function form

fr+0fk) = fr)f(k+1) = (=1)"f(k —7),

of the d’Ocagne identity
F’r—l—le - FrFk+1 = (_1)TF/<I—T’

gives, upon taking the imaginary part while using (89) and (91),
BkFr+1 - ﬁkJrlFT = (_1>Tﬁk77ﬂ7

and also
OékFT+1 o Oék—HFr — (_1)7‘0/4?—7"

and hence, the result stated in the next proposition.
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Proposition 22. If r and k are integers, then
Fr1Gy — FLGry1 = (—1)"Ggy. (114)
Differentiating the Fibonacci function form of (114):
fr+1D)g(k) = f(r)g(k +1) = (=1)"g(k = 1),

with respect to r, we find

Q(k)%(r +1) —g(k+ 1)%(7’)
= (—1)"mg(k —r)i— (—1)7"%(/@ —r);

and consequent upon use of (91), (101) and (102),

BTG — BTGy,
= (=1)"B°GrrV5 + (1) (G771 + G gF)
and also
a5 Ghyy — "G,
= (—1)"'* G VB + (=1)" (GoaF T + Graf T
and hence, the identity stated in the next proposition.

Proposition 23. Ifr, s, and k are integers, then

Hr+sGk+1 - Hr—l—s—l—le - (_]->T_1 (Hs+1 + Hs—l) Gk:—'r + (_]-)T (GOHk+s—r—1 + GlHk+S—T) .

(115)
Writing 7 — s for r in (115) and setting s = 0 gives
H,G11 — Ho1G = (—1)7' (2H, — Hy) Gy + (=1)" (GoHyp—r—1 + G1Hy—,) ;
and, in particular,
GGy — GG = (—1)" (GoGr—rp1 — G1Gi—r) -

5.1.4 Generalizations of Fibonacci power formulas
The well-known identity

Gr + Gy =2(Gi+Gry), (116)

has the gibonacci function form
gk +1)° +g(k —2)* =2 (g(k)* + g(k — 1)*) ,
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which, upon differentiation, gives

dg dg dg dg
E+1)=(k+1 —2)=—=(k—2) =2g(k)= 29(k —1)=(k—1
Uk + 1) 1) + gl — 2) 52 (k= 2) = 29(k) () + 29k = 1) 52 (k 1),

and by (101) and (102):

B Grgr + B2 Grea = 2 (B"G + B 7' Grmr) 5
and multiplying through by 3°7*, s an arbitrary integer:

B Grpr + °72Crg = 2 (B°Gr + B°7 ' Grn) 5 (117)
and also

OéS+1Gk+1 + 045_2Gk_2 =2 (oszk + as—le_l) . (118)

Combining (117) and (118) according to the Binet formula yields the following generalization
of (116).

Proposition 24. If s and k are integers, then
GrirHop1 + GroH,_ g = 2GLH, + 2Gy 1 H, .

Long’s identities [16, (31)—(35)] are all special cases of the above proposition.
The reader is invited to apply the method (second component) to verify that the identity

Gi,1=3G} +6G;_, —3G}_, — Gi_3, [2, Equation (3)],
has the following generalization.
Proposition 25. If k, r, and s are integers, then
GriHrj1 Loy = 3G H g + 6Gy1Hy 1 Is— — 3Gy_oH, ols 9 — Gi_3H, 313,

where (G;), (H;), and (I;) are gibonacci sequences.

5.1.5 Generalizations of a triple-angle identity of Lucas

Differentiating the Fibonacci function form
f3k) = f(k+1)° + f(k)® = f(k—1)°,
of the identity (see Vorob’ev [24, p. 16]):
Fy, = Fy + F¢ — By, (119)
gives, after using (89) and (91),
g = BB+ Y — B
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that is
62kz+5 — Fl?+158+1 + F;?Bs o kaQ_lﬁs—l7 (120)

where s is an arbitrary integer; and also

ot = 2ot FRaf — FE o (121)
Combining (120) and (121), we have the first generalization of (119).
Proposition 26. If k and s are integers, then

Gaorrs = Fp1Go + FRGy — Gy

The reader is invited to check that application of the method (second component) two
more times with respect to k gives the full generalization of (119), stated in Proposition 27.

Proposition 27. If k, r, and s are integers, then

GoHolpyris—2 + (GoHy + G1Ho) Iiyris—1 + GrH Djgrgs
= Gs+1HT+1]k+1 + GerIk - Gs—lHr—ljk’—la

where (G;), (H;), and (1) are gibonacci sequences with initial terms Gy, G1; Hy, Hy and
Io, 1.

In particular,
G%Gsk—Q + 2GOG1G3k—1 + G%ng = Gi—i—l —+ Gz — Gi—l?
with the special cases:

F3k:Fl§+1+Fl§_Fl§717
5Ly, = L2+1 + le - Lz—r

Identities (42)—(45) of Long [16] are special cases of the identity stated in Proposition 27.

5.1.6 Identities from the golden ratio power reduction formula
Differentiating the Fibonacci function form
o =af(k)+ f(k-1),
of the golden ratio power reduction formula
o =aF, + F,_1;
we obtain
oFlna = agf(k) + 2f(k; —1),
ok ok
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which, upon use of (22), gives
O./k\/g = OéLk + Lk—l,

and hence

B = o L 4+ " Ly, (122)
where r is an arbitrary integer. Also,

_ﬁkﬂ"\/g _ Br+1Lk + BrLk—l, (123>

Combining (122) and (123) gives the next result.
Proposition 28. If k and r are integers, then
Grgri1 + Gryro1 = LpGryy + L1 G,

Differentiating the function form of the identity stated in Proposition 28 with respect
to k, making use of (92) and (102) while taking the imaginary part gives

Ba Ba

JEBT TEE = G 4+ 5G
that is
(GOOZ — Gl) ﬁk-ﬂ”—l—l + (G()Oz o Gl) 519—&-7"—1 _ BkGr-&-l\/g_l_ 5k_1GT\/5’
and hence
G06k+7' 4 G16k+r+l + Goﬁk"i’T*Q + Glﬁk+7lil = —/BkGr+1\/_ - 6k71Gr\/g. (124)
Also,
Goakz-i-r + Glak-i-?“-i-l + Goak+r_2 + Glalﬁ_r—l = OszH_l\/g + CYk_lGr\/g- (125)

Combining (124) and (125) using the Binet formula and the lemma gives the result stated
in the next proposition.

Proposition 29. If k and r are integers, then
Go (Hyqr + Hyjp—2) + Gi (Hysp1 + Hrywor) = Gy (Hi + Hy—2) + Grgn (Hiy1 + Hi—1)
In particular,
Hygri1 + Hyppoy = Fr (Hy + Hy—g) + Frgy (Hpqy + Hy—1)

and
SHytr = Ly (Hy + Hy—9) + Loy (Hpy + Hy—1)

with the special cases
Lr+k =Ly + Fr+1Lk7
Fr+k =F.Fp 1+ FT+1F]€7
5Fr+k =L, Ly + Lr+1Lk7
Lr+k =L, Fp_+ Lr+1Fk~
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5.1.7 Sum of products of the terms of two gibonacci sequences

Simple telescoping of the identity
Glr = Giprs1Givn — GinGipn-t,
gives

n
2
d G2y = GGt — GiGra,
j=1

whose gibonacci function form is

Z g(i+ k) =gln+k)gn+k+1)—glk)gk+1).

Differentiating:
zf: GGk =g+t k1) +gtn+k+ D+ k)
e R T g Ok g Ok
dg dg
—g(k)a—k(kﬂLl)—g(k‘Fl)%(k),

and, upon use of (101) and (102), we have
23" BG4k = B G+ I G — 8Giys — PG
j=1
which, multiplying through by 3°7*, s an arbitrary integer, gives
2 i B Gy = B Grsg + B Gk — B°Grpr — B G,
j=1

and hence also

n
j 1 1
2 E 04J+5Gj+k ="t Gk + an+SGn+k+1 — a’Gry1 — "Gy
j=1

(126)

(127)

Combining (126) and (127) according to the Binet formula yields the result stated in the

next proposition.

Proposition 30. If k, s, and n are integers, then

Z GirkHjrs = GuypHpysi1 + Gy Hoys — G Hy — GrHg .
7=1
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Using generating function techniques, Berzsenyi [1] found alternative expressions for the

special case
2n+s

Z GjGj+2k+s, s=1or0.

=0
Long’s identities [16, (4)—(7)] are alternative expressions for special cases of the above propo-
sition. Kronenburg [15, Identity (11.1)] also derived (128).

5.1.8 Generalizations of Hoggatt and Bicknell’s identity (5)

Taking the imaginary part of (51) on page 15, using (89), we have

An+1
o (4n+1 ~Of
> v (M) St + )
7=0
0 0
= 25" (Fn+k+1\sa£(2n+ k+1)— Fn+k\sa£(2n+ k;)) ;
which, applying (91), gives

An+1

S (-1 ( j )ﬂ?’;kﬁ”’f:% (S 40— 3 3o H)
=0

and hence

An+1

- 4n—|—1 it n n-r n—+r
> 0 (M) B =2 (B s (129)

j=0

where r is an arbitrary integer.
Interchanging o and § in (129), we also have

4An+1 4n + 1
Z (_1) ( j )FjBJrk JHr — 9mn (F n+k+1a2n+r+l Fn+ka2n+r> _ (130)
§=0

Combining (129) and (130) according to the Binet formula, we have the result stated in the
next proposition.

Proposition 31. If n is a non-negative integer and k is an integer, then

4An+1
o (4An+1 n
S (1 < j )fzakGW:% (F2roisConirss — Fy iGonsr) . (131)
=0
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Observe that (5) and (6) are particular cases of (131).

By applying the method (second component) three more times, with k as the index of
interest, the reader is invited to establish the further generalization presented in the next
proposition.

Proposition 32. If n is a non-negative integer and r, k, and s are integers, then

An+1

o (An+1
> (=) 1( . )Ej+ij+rHj+s[j+t
J=0 J

n .
=25 (E2n+k‘+1G2n+7‘+1H2n+s+1]2n+t+l - E2n+kG2n+7‘H2n+s]2n+t) )

where (E)jez, (G)jez, (H)jez, and (I);ez are gibonacci sequences with seeds Ey, Ey; Go, G1;
Ho, Hl and [0, [1.

5.1.9 Generalizations of an identity of Melham

In this section, we present a generalization of Melham’s identity, (58) on page 19, that is

2n—1 2
6 (Z Gzﬂ‘) = Fy (Ghyno + 4Gy, +4G1, + Gringn) s
=0

whose Fibonacci-gibonacci function derivative is
2n—1 2n—1 ag
<6 > gk +J>2> > gl 5) (ki + )
j=0 j=0

0 )
= £(2n)? (g(k tn-— 2)38—Z<k +n—2) +4g(k+n— 1)38—Z(/<; +n—1)

Jdg dg
324 324
+4g(k +n) Ek/}(k—l—n)+g(k;—|—n—|—1) k(k’+n—|—1)).

Taking the imaginary part and applying (101) and (102) leads to
2n—1 2n—1
6> Gy D B Ghsy
=0 =0
= By (B Gy H AN TG H ARG, + BTG )

which multiplying through by 877%, r an arbitrary integer, gives

2n—1 2n—1
6 G, Y G,
=0 =0 (132)

=F}, (5T+”_2Gi+n_2 + 45”*”‘102+n_1 + 4/Br+nGi+n + 5r+n+1Gi+n+1) ’
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and also

2n—1 2n—1

6y G2y oG,

2% ’““ZO o (133)
J= J=

=Fy (&G 4TI G AT G 4+ TG L)
Combining (132) and (133) according to the Binet formula yields the next result.

Proposition 33. If k and r are integers, then

2n—1 2n—1
2
6 Gi Y HeiGry
Jj=0 Jj=0

=Fy (HiinoGypr o+ AH, oy 1 Gy + AH, G+ Heon 1 Gl y) -

Repeated application of the method (second component) two more times to the identity
stated in Proposition 33 with k£ as the index of interest establishes the next result.

Proposition 34. If k, r, s, and t are integers, then
2n—1 2n—1 2n—1 2n—1
2 Z Grotjdivj Z Hyjlsy;+2 Z Loyjdisg Z GrrjHy
J=0 J=0 J=0 j=0

2n—1 2n—1

+2) Grpjlar; Y Hysjdiyg

J=0 Jj=0
2
= FQn (Gk+nf2Hr+anIs+n72 Jt+nf2 +4 GkJrnleH»nflIernfl JtJrnfl
+4 Gk+nHr+n[s+th+n + Gk+n+1Hr+n+lIs+n+l Jt+n+1) ;

where (G;), (H;), (I;), and (J;) are gibonacci sequences.

5.1.10 Generalizations of an identity of Howard

Taking the imaginary part of (44) on page 12 gives

Gmgdii f(s) + (—1)7"@,;3%(3 )= Fr%%(lﬂ 4 5); (134)
which, on using (91) and (102), yields
BGrir + (1) 713577 GY, = BHTTIGOE, 4 BHEGLF, (135)
and hence, also
@ Grgr + (=)L G = "TIGF, + oF TG, (136)

Combining (135) and (136) provides the following generalization of Howard’s identity (11).
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Proposition 35. Ifr, s, and k are integers, then
HsGk+r + (_1)T_1H5—7‘Gk - F’r (GOHk-‘,-s—l + GlHk—i-s) .

By taking the imaginary part of (45) on page 12, the reader is invited to establish the
result stated in Proposition 36.

Proposition 36. If k, r, s, and t are integers, then

Fs (GOHk+T+t—1 + GlHk—H"—l-t) - <_1)TFs—TGk (Ht+1 + Ht—l) + <_1)TGkHs—r+t - Gk—i—er—l-t-

5.1.11 Generalizations of Candido’s identity

Taking the imaginary part of (55) on page 18 according to the prescription of (101) and (102),
we have

2(B* G+ B Gl + B GlLo)
= (GE + G+ Ghy) (B*Gr + B Grar + B2 Ghn) 5
which, upon multiplication by 8"* gives

2(B"Gy+ BTG+ BTGL,)

T T T (137>
= (Gr+ G +Grps) (BGr+ B Cryr + BCha) 5
which, on account of Proposition 17, also implies
2) OJTG?’ +ar+1G3 —|—Oér+2G3
( k k+1 k+2) (138)

- (Gz + G%+1 + Gi+2) (OCTGk + Oér+1Gk+1 + C(T+2Gk+2) .
Combining according to the Binet formula gives the following generalization of Candido’s
identity:.
Proposition 37. If r and k are integers, then
2 (H,G} + Hr1 Gy + Hio Gy )

139
= (Gi+ G +Gryo) (H G+ Hyo1Grst + Hi2Glyo) - (139)

By differentiating the gibonacci function form of (139) three more times with respect to
k, the reader is invited to demonstrate the further generalization of the Candido identity
stated in Proposition 38.

Proposition 38. If k, r, s, and t are integers, then

6 (GLH, M;N; + Gi1Hr i M1 Nioy + GrpoHy o Mg 9Ny io)

= (GpMs + GrpiMs1 + GrioMoyo) (H Ny + Hy 1 Neyr + Hyp o Nijo)
+ (GrH, + G He + GrgoHrgo) (MoNy + Mg i Niyy + M oNyyo)
+ (GpNt + Gr41 N1 + GroNigo) (Ho Mg + Ho y\ Mgy + Ho oM 1o)

where (M;);, and (N;),, are gibonacci sequences with seeds Mo and M and No and Ni.
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In particular, we have

6 (FrF FoFy + FrorFrpi Fopi Fiy 4 Frgo oo Foyo Fyio)

= (FpFo 4+ Fro1 Fopy 4+ FroFopo) (B F + Frop Fopy + FroFgo)
+ (FuFr 4+ B Frp + FroFrgo) (B F 4 Fop Fig + FopoFryo)
+ (FeFy + Frp Figr + FrgpoFigo) (FLFs + Frp Fooy + FrgoFogo)

5.2 Generalizations of a Lucas number identity

Differentiating the Lucas function:
1(2r) +2(=1)" = I(r)?,

of the well-known identity
Ly, +2(—1)" = L2,
gives
d

d T —
%1(27’) + (=1)"im = l(?“)@l(r);

which, employing (90) and (92), yields
B+ (=1)" = 'Ly,
or multiplying through by 57",
B 4 (<185 = B°L,,

and also
as+r + (_1)ras—r — OésLT,

(140)

(141)

Combining (140) and (141) according to the Binet formula gives the following multiplication

formula (also Vajda [23, Formula (10a)]).

Proposition 39. If r and s are integers, then
Gsir + (-1)"Gs_. = L,G,.

Differentiating the function

9(s+r)+(=1)"g(s —r) = 1(r)g(s),

with respect to r gives

dg
or
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and taking the imaginary part, making use of (92), (101) and (102), we find

GO (Bk—l—r-i-s—l _ (_1)r6k+s—r—1) + Gl (ﬁk—&—s—l—&-r _ (_1)r6k+s—1—r)
- (_1)T6st—r\/5 - /BT+kGS\/gv
and also
GO (ak+r+571 _ (_1)rak+sfrfl) + Gl (ak+sfl+r _ (_1)7"Oék+sflfr)

= (1) *G_ V5 + oGV,
and hence the next result.

Proposition 40. Ifr, k, and s are integers, then

Gs (Hr+k+1 + Hr-l—k—l) + (_1)T_IGS—T (Hk+1 + Hk—l)
= GOFT (Hk+s + HkJrsz) + GlFr (Hk+s+1 + HkJrsfl) .

Note that we used
Gsir — (—1)"Gs_p = F, (Gs11 + Gs—1), [23, Formula (10b)].

Note also that (H;) = (L,) in the proposition gives the Howard identity (11) while (H;) = (F})
produces (12).

Remark 41. Tt should be noted that in order that the results obtained by applying the method
(second component) be valid, it is necessary that the (generalized) Fibonacci function identity
obtained from the original (generalized) Fibonacci number identity holds for all real z; not
just integers. Also, the derivative of (—1)* is an imaginary number for real . In order not
to lose this value, therefore, (—1)% must not be set equal to unity in the original Fibonacci
identity when converting to the Fibonacci function form. The method (second component)
involves taking the imaginary part. This point is taken into consideration in the examples
presented in § 5.2.1 to 5.2.3.

5.2.1 A generalization of the Gelin-Cesaro identity

Since
Gr1Grpr = G2 — (—1DFeq, [23, Identity 28],

where e = G§ — G7 + G1Gy, and
Gr—2Gry2 = (Gr — Gi—1) (G + Gipa)
= Gi + (GrGri1 — Gr1Gy) — Gr1Graq
=G+ G — GG
= Gi +Gi — (G}, — (—1)eq)
= G} + (—1)req;

43



we have the following generalization of the Gelin-Cesaro identity:
Gr9Gr1Gr1Grin = G — (—1)*eZ,

where we have retained (—1)2* to allow a direct conversion to the gibonacci function form
which is required to hold for all real numbers £, namely,

g(k = 2)g(k — 1)g(k + 1g(k + 2) = g(k)* — (—1)*. (142)

Differentiating (142) gives

L g(k — 2)g(k — Vg(k -+ gl +2)
+ gk —2)2g(k — gk + 1g(k +2)
+ gk —2)g(k — 1) o(k+ Dok +2)
+ gk~ 2)g(k — gk -+ 1) g(k +2)

= 4g(k)* - g() — 2i(~1)*rek;

so that taking the imaginary part, we have
BB ?G1Gr1 Grga + G2 Ba B Gri1 Gz
+ Gr—2G1Ba B Grya + Gi2Gi1 Gy Ba S5
= 4G} BgB* + 2(—1)*eZV/5;
and substituting (G7 — Goar) for Bg from (102) and multiplying through by 5" yields

BTG Gt Grrg + G o8 Gy 1 Grys
+ G oG 1 B Ghig + G oGl 1 G B2 (143)
= 4GB 42 (611G — B7Gh) e V5,

which also implies

A2 Gy G Gryg + G0 T G Grys
+ G 2Gr 1" Gy g 4+ GG 1 Gl M2 (144)
= AG M =2 (" Gy — " Gh) ecVb.

Note that we used
I 1  GoB -Gy
B_G N G1 - G(]Oé N €aq .
Combining (143) and (144), we arrive at the generalization of the Gelin-Cesaro identity
stated in Proposition 42.
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Proposition 42. If k and r are integers, then

Hytr—20Gr1Gri1Grgo + Gr—oHir -1 G 1 Grgo
+ Gr—2Gr1 Hjgr 41 Grpo + Gr2Gr1 Gl Hyy g0
=4H,,, G} — 2eqGo (Hyyo + H,) + 266Gy (Hypyy + H,_1).

5.2.2 Generalizations of Catalan’s identity

Upon differentiating the Fibonacci function form

flk =) f(k+r) = f(&)* + (1M1 f(r)?,

of Catalan’s identity
FyrFrgr = F + (1) HE2,

with respect to k and applying the prescription (89) and (91), we obtain

a0 + B BEH0 = 9F B8 4 (—1)F4 g P2V, (145)
and hence also

Frpr a7 4 a4 = 9Bk — (L1 o B2, (146)

Combining (145) and (146) according to the Binet formula gives the following generalization
of Catalan’s identity.

Proposition 43. If k, r, and s are integers, then

Fk+er—r+s + Fk—er—‘r’r—f—s = 2Fka+s + (_1)k+r+1Fr2 (Gs-‘rl + Gs—l) . (147)

Writing

Fk:—s—i-er:—r + Fk—s—er—H“ = 2Fk—sGk‘ + (_1)k_8+r+1F2 (Gs—i—l + Gs—l) ) (148)

r

and setting k = s gives the multiplication formula
Gs—i—r - <_1)TGS—T = Fr (Gs+1 + Gs—l) ) (149)

derived also by Vajda [23, Formula (10b)].
Applying the method (second component) to (149) with r as the index of interest gives
the next result.

Proposition 44. Ifr, s, and t are integers, then

Lr (GOHs-i-t—l + Gle-i-t) - (_1)er—r (Ht-I-l + Ht—1> = Hr+t (GS-H + Gs—l) :
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In particular, setting t = s, (H;) = (G;), and using [23, Formula (10a)]:
Gner + <_1)manm = LmGna
we have
GoGas—1 + G1Gas = Gs(Gsi1 + Gs-1).
Differentiating the Fibonacci function form of (148), namely,
flk=s+r)glk—7r)+ f(k—s—r)gk+7)
=2/ (k — s)g(k) + (=1)* " (r)* (g(s + 1) + g(s = 1)),

with respect to s, taking the imaginary part and making use of (89), (91), (101) and (102)
yields the identity stated in Proposition (45).

Proposition 45. If k, r, s, and t are integers, then
Gk—i—s—er—f—r-‘rt + Gk+s+er—r+t
- 2Gk+sHk+t
+ (=D F2 (Go (Hers + Hopro) + Gy (Hopron + Hopr1))
— (=DM F? (Gop1 + Goor) (Hugr + Hia)

T

In particular,
Gk,erJﬂ« - Gz = (—1)k+TFr2€Gn
5.2.3 Generalization of an identity obtained from an inverse tangent relation

The method (second component) cannot be applied to (10) because (54) on page 16 is valid
only for integers k. In order to redeem the situation, we proceed as follows:

1 Fopqo — Fop

tan ' —— — tan ! = tan
Foy Fopyo FopFopio + 1
— tan~! Fopa
B + CDFF T
where we refrained from setting (—1)?**! = —1 to ensure that the Fibonacci function form
1 B 1 B f2E+1)

tan ' —— —tan ' ————— =tan"! 150
orer) M kv T F@k 12 (C)R L (150)

holds for all real numbers k.
Differentiating (150) with respect to k and taking the imaginary part, we find

1 _df 1 df
S (2k) — ————S—(2k + 2
i ae k) FZ o, +1° P
1 df s
- S (2k+1) - ,
Fj o, +1 2k ) Foprr (F2p +1)
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which, upon use of (89) and (91), gives

6% /62]€+2 B2k+1 \/5
J— _"_ ,
that is
o2 o’ a2k+7"+2\/5 ot (151)
FR 41 FR,+1  Fa (Fg +1) Fag +1
where r is an arbitrary integer and also
r+2 r 2k+r+2 5 r41
g g BB B (152

F2+1 FZo,+1  Fup (F%,, +1) F3 ., +1
By combining (151) and (152), we have the next result.

Proposition 46. If r and k are integers, then

G2 G, Gz + Gopgrn Gri

F22k+1 Fk+2+1 F2k+1(F22k+1+1) Fk+1+1'

6 Extension of the method to the Horadam sequence

In this section we extend the method to a general non-degenerate second order sequence
(Horadam sequence).

The Horadam sequence (W;) = (W;(Wy, Wi; P,Q)) is defined, for all integers and arbi-
trary real numbers Wy, Wi, P # 0, and Q # 0, by the recurrence relation

Wj=PW;1 —QW;, j=2 (153)

with W_j = (PW_]'+1 - W_j+2) /Q
Associated with (I¥;) are the Lucas sequences of the first kind, (U;(P, @)) = (W;(0,1; P, Q)),
and the second kind, (V;(P,Q)) = (W;(2, P; P,(Q)); that is

Uy=0,U,=1, Uj = PUj_l — QUj_Q, ] =2, (154)
and

Vo=2,Vi=P V;=PV;1—-QVja, j=>2 (155)
with U_j = (PU_j11 = U_j42) /Q and V_j = (PV_j11 — V_j42) /Q.

Note that, for convenience and since no confusion can arise, we have retained the notation
(W;) = (W;(Wo, Wy; P,Q)) for the Horadam sequence and (U;) = (U;(P,Q)) and (V;) =
(V;(P,Q)) for the Lucas sequences.

The closed formula for W;(Wy, Wy; P, Q) in the non-degenerate case, P2—4Q > 0, remains

Ac? — Bt? Ao’ — BT!
o—T1 o

W, = 7 (156)
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where

A= W1 — W()’T, B = W1 — W()O', (157)

with ¢ and 7 now given by

U:P%—\/;’?—iél@’ T:P—\/m. (158)

2 )
so that
o+17=P, o—17=+P?-4Q =6, and ot =Q. (159)
In particular,
oI — 7 -
U, = pp V=0l +17. (160)

The following identities, of which (70) to (73) are particular cases, are easy to derive:

Uj+1 - QUjfl = ‘/ja (161>
Uj+1 + QUj—l - PU]', (162)
Vier = QVja = Upe?, (163)

and

Vit1+QVj_1 = PV].
Identity (75) of Lemma 13 on page 24 now reads
AO’j + BTj = Wj-‘rl - QWj—l' (164)
We define the Horadam function w(z) by

Aoc® — B1® B Ac® — B1®
o—1 ) ’

w(x) = z € R, (165)

where A and B are as defined in (157) and ¢ and 7 are as given in (158).
We now discuss the extension of the method to the Horadam sequence. We distinguish
the following three cases:

1. Q <0;
2. P>0and Q > 0;
3. P<0and @ > 0.
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6.1 Casel: Q<0

If the Horadam parameter, @), is negative, then we see from (158) that o is positive and 7 is
negative for all real numbers P; and equation (87) on page 27 in the proof of the theorem
now reads

d

@w(x) = % (Wis1 — QWj_1)Ino — Br In (—Q) — Br/7wi(2m + 1)) , by (164).

T=j€EZ

Taking the real and imaginary parts, we have

d

_ ) - % (Wjt1 = QWj—1)Ino — By’ In (-Q)) (166)

and

[ d
) (%w(:ﬂ)

where m is some integer and

Bw .
) = Y rir@2m+ 1), (167)
r=j€Z 0

BW:B:W1—WOJ.

Equation (166) reduces to (85) when Q = —1. Equation (167) is the same as (88) on page 27
in Section 5, except that the values of ¢ and 7 now depend on P and Q.

A description of how the method (first component) for obtaining new identities from
existing ones works for the general second order (Horadam) sequence (W;(Wy, Wi; P,Q))
with @ < 0 now follows.

1. Let k be a free index in the known identity. Replace each Horadam number, say
Whk,..), with a certain differentiable function of k, namely, w(h(k,...)), with k& now
considered a variable.

2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2 and take the real part, using also the following
prescription:

w(h(k,...)) = Wi, (168)

R ((Z_Z (h(k, .. )>) - % (Whit1.) = QWagor,.p) Ino = Br&In (-Q)) 1 (169)

where 0 = (P +9)/2, 7= (P —0)/2, and 0 = \/P? — 4Q.
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In particular, for the Lucas sequences, we have

u(h(k,...)) = Un,.), (170)
ou V.. 7hik,...) '
R bk, ) = === Ing —In(-Q); (171)
and
v(h(k,...)) = Vage,..), (172)
%%(h(k, ) = Unr ) Ino + 7% In (—Q) ; (173)

of which the generalized Fibonacci relations (35)—(40) on page 11 are particular cases.
Next, we describe how the method (second component) works for the general second

order (Horadam) sequence (W,;(Wy, Wi; P, Q))) when @ < 0. The scheme is the following.

1. Let k be a free index in the known identity. Replace each Horadam number, say
Whk,..), with a certain differentiable function of k, namely, w(h(k,...)), with k& now
considered a variable.

2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2 and take the imaginary part, using also the
following prescription:

w(h(k,...)) = Wh,..), (174)
B _
gg_q“l:(h(h N )) SN —TWWTh(k"“) _ W005 Wi WTh(k""); (175)

where 0 = (P +0)/2, 7= (P —9)/2 and § = \/P? — 4Q.

In particular, for the Lucas sequences, we have

u(h(k,...)) = Ung, ., (176)
ou By e (k)
I _Pu ) — .
\sak(h(k‘, L)) — 5T 5 (177)
and
v(h(k,...)) = Vi), (178)
%%(h(k, ) = —%WTh(k"") = qrhl). (179)

of which the Fibonacci and Lucas relations (89)—(92) on page 28 are particular cases.
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Note that Proposition 17 on page 29 on the interchangeability of ¢ and 7, remains valid;
and that the method (second component) is applicable provided the expression obtained
after substituting Fibonacci, Lucas, gibonacci and Horadam functions f(z), [(x), u(x), v(x),
g(x) and g(z) in the given identity holds for all real numbers, as noted in the remark on
page 43 .

We give an example; but first we state a needed Lemma.

Lemma 47. If k is an integer, then

Wk+1 - O'Wk k Wk+1 — TWk k

W1—0'W0 - Wl—TW() -7

Proof. We prove, by induction, the first identity for a non-negative integer k; and invoke a
theorem of Bruckman and Rabinowitz [3] that if an identity involving generalized Fibonacci
numbers is true for all positive subscripts, it is true for all non-positive subscripts as well.

The identity is obviously true for the base case k = 0. We assume the identity holds for
k=1,2,...n. We have

W(n+1)+1 - UWn+1 . PWn+1 - QWn - UWn+1

W1 — O'Wo N W1 — O'Wo
(o)W — oWy — oW
N W1 - O'Wo
- TWn+1 - UTWn . Wn+1 - UWnT S TnJrl
- Wl_UWO - W1—0'W0 a n .
Thus, the identity holds for n + 1 whenever it holds for n. O]
Consider the following identity (]9, Equation (3.14)]):
U?"Wk?"rl - QUr—lwk = Wk—H“'
We write
w(r)w(k +1) — Qu(r — Nw(k) = w(k + r);
and differentiate with respect to r, obtaining
d ow
— : 1) — —u(r—1)- = — . 1
dru(r) w(k+1) dru(r ) - Qu(k) o (k+r) (180)
Taking the real part, we get
d d ow
il . —R—ulr —1) - — = .
%dru(r) Wit %dru(r ) - QW §R<% (k+1);

which, using (171) and (169), after some rearrangement, gives:

((Ver—H - QW—ka) - (Wk+r+1 - QWk+r—1)) Ino

= (Wiy1 — oWy) — (Wy — o W) Tk) 7" In (—Q) . (181)
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On account of Lemma 47, the right hand side of (181) vanishes and we obtain
ViWis1 — QVicaWi = Wirhn — QWir, Q < 0. (182)

If @ = —1, then (182) reduces to identity (19) derived in Section 2.4.2.
Next, taking the imaginary part of (180), we find

d d ow
el . e _ . _ ol .
\sdru(r) W1 \sdru(r 1)- QW =S 5 (k+1);

which, using (177) and (175), gives
— 7" Wi + QT 'Wy, = (Woo — Wy) 77,

that is
T W1 + QT "Wy = WoQr™ 1 — Wy rt T (183)

and also
—0" Wiyt + Qo™ Wy, = WoQo™ 1 — Wyio . (184)

Combining (183) and (184), using the Binet formula, we have the result stated in Proposi-
tion 48.

Proposition 48. If r and k are integers, then
ZWip1 — QL Wi = WiZyyr — QWoZjgr—1, Q <0 (185)

where W; = W; (Wo, W1, P,Q) and Z; = Z; (Zy, Zy1; P, Q) are two Horadam sequences.

6.2 Case2: P>0and () >0

If the Horadam parameters P and @) are both positive, then it is clear from (158) that o and
T are both positive. In this case we have

d 1 d . d .\ 1 N . N '
%w(x) =5 (A%a - B%T ) =53 ((Ac® + BT*)Inoc — Bt 1In(Q);
so that J .
d—w(a:) =— (Wjz1 —QW,_1)Ino — Br’InQ).
z r=j€Z 0

A description of how the method (first component) for obtaining new identities from existing
ones works for the general second order (Horadam) sequence (W;(Wy, Wy; P,Q)), P > 0, and
@ > 0 now follows.

1. Let k£ be a free index in the known identity. Replace each Horadam number, say
Wh,..), with a certain differentiable function of k, namely, w(h(k,...)), with k now
considered a variable.
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2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2, using also the following prescription:

w(h(k, .. )) — Wh(k7...)7 (186)
o) 1
0_11: (h(k,...)) — 5 (Whiesr,.) — QWige—1,.)) Ino — Br"&)In Q) ; (187)

where, as usual, 0 = (P +6)/2, 7= (P —0)/2, and § = \/P? — 4Q.

In particular, for the Lucas sequences, we have

u(h(k,...)) = Un,.), (188)

%(h(k‘, L)) = % Ino — Th(;m) In Q; (189)
and

v(h(k,...)) = Vi), (190)

%(h(k;, ) = U, ydIno 4 7" 1n Q. (191)

Returning to the example in the previous section, using (189) and (187) in (180) gives

((VerJrl - QVr—lwk) - (Wk;+r+1 - QWk+r—1)) Ino
= ((Wk+1 — UWk) - (Wl - OWO) Tk) TT ana Q > O?

which is the same as (181) with In (—@Q) replaced with In @); and which in view of Lemma 47
gives

VWi = QViea Wy = Wit — QWior, P>0, Q> 0. (192)

6.3 Case3: P<0Oand @) >0

If the parameter P is negative and the parameter () is positive, then it is obvious from (158)
that o and 7 are both negative numbers. In this case we have

d 1/ d . d .
%w(x):g(fl—a —B—T>

=— (Ao (im(2m+1)+In(—0)) — BT* (ir(2n + 1) + In(—71)))

((Ac® + Bt*)In(—0) — B*InQ) + % (2m+1)Ac” — (2n+ 1)B7"),
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where m and n are integers; so that

R (ddxw(x) y Z) = % (Wjs1 — QW;_1)In(—0) — By InQ) (193)

d _ 2
S| —w(z) u (mAo? —nB17) + 7Wj, (194)
dx r=j€EL 5

and

where m and n are integers.
We now describe how the method (first component) works for the general second order

(Horadam) sequence (W;(Wy, Wy; P,Q)) with P < 0 and @ > 0.

1. Let k be a free index in the known identity. Replace each Horadam number, say
Whk,..), with a certain differentiable function of k, namely, w(h(k,...)), with k now
considered a variable.

2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2 and take the real part, using also the following
prescription:

w(h(k, .. )) — Wh(k s (195)

%(2—‘:@(& ))) %((thﬂ — QWie-1,y) In(—=0) = BF®I Q) (196)

where 0 = (P +0)/2, 7= (P —9)/2, and § = / P? — 4Q.

In particular, for the Lucas sequences, we have

u(h(k,...)) = Un,.), (197)
ou vh(k ) Th(k* ) ]
%ak(h(k, ) 5 L (—o) 5@ (198)
and
v(h(k,...)) = Vi, (199)
%%(h(k, ) = Un,)0In (o) + 7" In Q. (200)

We see from (194) that the method (second component) will, in general, not generate
new identities for the general second order (Horadam) sequence (W;(Wy, Wi; P,Q)) when
P <0 and @ > 0. Taking the principal value in (194) gives

8w

SOk = (h(k, ) = 7TW, ) (201)
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for a Horadam function w(h(k,...)) and hence does not facilitate a generalization of an

identity obtained from the first component.

To illustrate the first component for the case P < 0 and @) > 0, equation (181) on page 51

now reads

((V;»Wkﬂ - QW—ka) - (Wk+r+1 - QWkJrr—l)) In <—U)
= (Wis1 — oWy) = (Wi — W) ) 7" InQ, @ >0,

which in view of Lemma 47 gives

ViWis1 = QVooaWy = Wigpin — QWigr, P <0, Q > 0.

Comparing (182), (192) and (202), we find the result stated in the next proposition.

Proposition 49. If k and r are integers, then

ViWiir = QVicaWy = Wi — QWira, Q #0.

In particular, on account of (161) and (163), we have for the Lucas sequences,

ViUpi1 — QVeaUp = Vi,
ViVirr — QVo 1 Vi, = 62U,

We note that identity (203) is a particular case of Howard [12, Theorem 3.1].
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