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Abstract

We present a differential-calculus-based method which allows one to derive more

identities from a given Fibonacci-Lucas identity containing a finite number of terms

and having at least one free index. The method has two independent components.

The first component allows new identities to be obtained directly from an existing

identity while the second yields a generalization of the existing identity. The strength

of the first component is that no additional information is required about the given

original identity. We illustrate the method by providing new generalizations of some

well-known identities such as d’Ocagne’s identity, Candido’s identity, the Gelin-Cesàro

identity, and Catalan’s identity. The method readily extends to a generalized Fibonacci

sequence.

1 Introduction

Let Fj and Lj be the jth Fibonacci and Lucas numbers, defined for all integers by

Fj =
αj − βj

α− β
, Lj = αj + βj, (1)

where α = (1+
√
5)/2, the golden ratio, and β = (1−

√
5)/2 = −1/α. Of course, α+β = 1,

αβ = −1 and α−β =
√
5. Let (Gj)j∈Z be the gibonacci sequence having the same recurrence

relation as the Fibonacci sequence but starting with arbitrary initial values; that is, let

Gj = Gj−1 +Gj−2, (j ≥ 2),
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with G0 and G1 arbitrary numbers (usually integers) not both zero; and

G−j = G−(j−2) −G−(j−1).

If, inspired by (1), we introduce infinitely differentiable, complex-valued Fibonacci and Lucas
functions, f(x) and l(x), defined by

f(x) =
αx − βx

α− β
, l(x) = αx + βx, x ∈ R; (2)

then, clearly,
f(x)|x=j∈Z = Fj, l(x)|x=j∈Z = Lj;

and we will show that (see §4.2 and §5)

ℜ
(

d

dx
f(x)

∣

∣

∣

∣

x=j∈Z

)

=
Lj√
5
lnα, ℜ

(

d

dx
l(x)

∣

∣

∣

∣

x=j∈Z

)

= Fj

√
5 lnα, (3)

and

ℑ
(

d

dx
f(x)

∣

∣

∣

∣

x=j∈Z

)

= −πβj

√
5
, ℑ

(

d

dx
l(x)

∣

∣

∣

∣

x=j∈Z

)

= πβj; (4)

where, here and throughout this paper, ℜ(X) or ℜX denotes the real part of X and ℑ(X) or
ℑX stands for the imaginary part of X. Many authors have studied various Fibonacci and
Lucas functions in the past; we mention Halsey [5], Parker [20], Spickerman [22], Horadam
and Shannon [11], and Han et al. [6]. The main difference between the approach in this paper
and that in previous work by other authors is that the latter focused on seeking real-valued
Fibonacci and Lucas functions. It is, precisely, the complex-valued nature of the Fibonacci
and Lucas functions defined in (2) and their derivatives that motivated the method developed
in this paper.

Our goal is to present a two-component method, based on (2)–(4) and their extensions,
which allows the discovery of more identities from any known Fibonacci-Lucas identity or
any gibonacci identity consisting of a finite number of terms and having at least one free
index; that is an index that is not being summed over.

To illustrate what we mean, consider the identity

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 4
j+k = 25n

(

F 4
2n+k+1 − F 4

2n+k

)

, (5)

derived, among other similar results, by Hoggatt and Bicknell [7]. This identity has a free
index, k. Working only with the knowledge of (5), our method (first component) allows us
to derive the following presumably new identity:

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 3
j+kLj+k = 25n

(

F 3
2n+k+1L2n+k+1 − F 3

2n+kL2n+k

)

; (6)
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which, in turn, implies the identity

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 2
2j+k = 25nF2(4n+k+1). (7)

We are not done yet, as (7) implies

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F4j+2k = 25nL2(4n+k+1); (8)

which finally implies

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

L4j+2k = 52n+1F2(4n+k+1). (9)

Thus, the four identities (6), (7), (8) and (9) all follow from a knowledge of (5).
Our method (second component) provides the following generalization of (5) to (iden-

tity (131)):

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 3
j+kGj+r = 25n

(

F 3
2n+k+1G2n+r+1 − F 3

2n+kG2n+r

)

.

A further generalization is derived in Proposition 32 on page 39.
As another example, consider the following well-known identity (see, for example, Hoggatt

and Ruggles [8, Theorem 4])

tan−1 1

F2k+1

= tan−1 1

F2k

− tan−1 1

F2k+2

. (10)

Our method (first component) shows that (10) implies the following apparently new identity:

L2k+1

F 2
2k+1 + 1

=
L2k

F 2
2k + 1

− L2k+2

F 2
2k+2 + 1

;

and the method (second component) yields a generalization:

G2k+r+3 +G2k+r+1

F2k+1(F 2
2k+1 + 1)

− Gr+1

F 2
2k+1 + 1

=
Gr+2

F 2
2k + 1

− Gr

F 2
2k+2 + 1

.

Yet another example, our method (first component) shows that the following identity of
Howard [12, Corollary 3.5]:

FsGk+r + (−1)r−1Fs−rGk = FrGk+s, (11)
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having three free indices r, s, and k, implies the following identities:

LsGk+r + (−1)r−1Ls−rGk = Fr(Gk+s+1 +Gk+s−1), (12)

Fs (Gk+r+1 +Gk+r−1) + (−1)rLs−rGk = LrGk+s, (13)

Ls (Gk+r+1 +Gk+r−1) + (−1)r5Fs−rGk = Lr (Gk+s+1 +Gk+s−1) . (14)

The method (second component) provides the following generalization of (11):

HsGk+r + (−1)r−1Hs−rGk = Fr (G0Hk+s−1 +G1Hk+s) ; (15)

where here, and throughout this paper, (Hj)j∈Z is a gibonacci sequence with seedsH0 andH1.
Another generalization of (11) is given in Proposition 36 on page 41.

In Section 5 we will apply the method (second component) to provide a generalization of
Candido’s identity

2
(

F 4
k + F 4

k+1 + F 4
k+2

)

=
(

F 2
k + F 2

k+1 + F 2
k+2

)2
,

to the following (identity (139)):

2
(

HrG
3
k +Hr+1G

3
k+1 +Hr+2G

3
k+2

)

=
(

G2
k +G2

k+1 +G2
k+2

)

(HrGk +Hr+1Gk+1 +Hr+2Gk+2) ,

with a further generalization given in Proposition 38 on page 41; a particular case of which
is

6 (FkFrFsFt + Fk+1Fr+1Fs+1Ft+1 + Fk+2Fr+2Fs+2Ft+2)

= (FkFs + Fk+1Fs+1 + Fk+2Fs+2) (FrFt + Fr+1Ft+1 + Fr+2Ft+2)

+ (FkFr + Fk+1Fr+1 + Fk+2Fr+2) (FsFt + Fs+1Ft+1 + Fs+2Ft+2)

+ (FkFt + Fk+1Ft+1 + Fk+2Ft+2) (FrFs + Fr+1Fs+1 + Fr+2Fs+2) .

The method (second component) extends the d’Ocagne identity

Fr+1Fk − FrFk+1 = (−1)rFk−r,

to the gibonacci sequence as

Gr+1Gk −GrGk+1 = (−1)r (G1Gk−r −G0Gk−r+1) ;

and extends the well-known formula for the sum of the squares of two consecutive Fibonacci
numbers, namely,

F 2
k+1 + F 2

k = F2k+1,

to the gibonacci sequence as

G2
k+1 +G2

k = G0G2k +G1G2k+1.
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We will also establish the following generalization of Catalan’s identity (identity (147)):

Fk+rGk−r+s + Fk−rGk+r+s = 2FkGk+s + (−1)k+r+1F 2
r (Gs+1 +Gs−1) ,

and the Gelin-Cesàro identity

Hk+r−2Gk−1Gk+1Gk+2 +Gk−2Hk+r−1Gk+1Gk+2

+Gk−2Gk−1Hk+r+1Gk+2 +Gk−2Gk−1Gk+1Hk+r+2

= 4Hk+rG
3
k − 2eGG0 (Hr+2 +Hr) + 2eGG1 (Hr+1 +Hr−1) ,

where eG = G2
0 −G2

1 +G0G1.
The method (second component) extends the fundamental identity of Fibonacci and

Lucas numbers,
5F 2

k − L2
k = (−1)k−14,

to the gibonacci sequence as

5G2
k − (Gk+1 +Gk−1)

2 = (−1)k4eG;

and offers an extension of the triple-angle formula of Lucas

F3k = F 3
k+1 + F 3

k − F 3
k−1,

to
G2

0G3k−2 + 2G0G1G3k−1 +G2
1G3k = G3

k+1 +G3
k −G3

k−1.

Using the method, the golden ratio power reduction formula

αk = αFk + Fk−1,

will be shown to imply

G0 (Hk+r +Hk+r−2) +G1 (Hk+r+1 +Hk+r−1)

= Gr (Hk +Hk−2) +Gr+1 (Hk+1 +Hk−1) ,

which subsumes several Fibonacci-Lucas identities.
Consider a generalized Fibonacci sequence (Wj) = (Wj(W0,W1;P )) defined, for all inte-

gers and arbitrary real numbers W0, W1, and P 6= 0, by the recurrence relation

Wj = PWj−1 +Wj−2, j ≥ 2, (16)

with W−j = W−j+2 − PW−j+1.
Two important cases of (Wj) are the special Lucas sequences of the first kind, (Uj(P )) =

(Wj(0, 1;P )), and the second kind, (Vj(P )) = (Wj(2, P ;P )); so that

U0 = 0, U1 = 1, Uj = PUj−1 + Uj−2, j ≥ 2, (17)
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and
V0 = 2, V1 = P, Vj = PVj−1 + Vj−2, j ≥ 2, (18)

with U−j = U−j+2 − PU−j+1 and V−j = V−j+2 − PV−j+1.
We will show that the new method also applies to the generalized Fibonacci sequence.

For example, the method (first component) shows that the identity [9, Equation (3.14),
Q = −1]:

UrWk+1 + Ur−1Wk = Wk+r

implies
VrWk+1 + Vr−1Wk = Wk+r+1 +Wk+r−1. (19)

The new method presented in this paper complements some previous research (for example
the work of Long [16], Dresel [4], and Melham [18]).

The rest of the paper is arranged as follows. In Section 2 we describe the method (first
component) and give examples. We cast about for identities to apply the method (first
component) in Section 3. Further justification of the method (first component) is addressed
in Section 4. A description of the method (second component), with examples including
various extensions and generalizations of some known identities, is presented in Section 5.
Finally, an extension of the method to the general second order (Horadam) sequence is
offered in Section 6.

2 The method, first component

Delaying further justification to Section 4, we present the method (first component) and give
examples.

Here then is how to obtain more identities from any given Fibonacci-Lucas identity having
a free index:

1. Let k be a free index in the known identity. Replace each Fibonacci number, say Fh(k,...),
with a certain differentiable function of k, namely, f(h(k, . . .)), with k now considered
a variable; and replace each Lucas number, say Lh(k,...), with a certain differentiable
function l(h(k, . . .)). The subscript h will be considered a function of several variables;
that is variable k and other parameters (if any) indicated by ellipsis: “. . .”. The explicit
form of f(h(k, . . .)) or l(h(k, . . .)) will not enter into consideration.

2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2 and make the following replacements:

f(h(k, . . .)) → Fh(k,...), (20)

l(h(k, . . .)) → Lh(k,...). (21)
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4. Take the real part of the whole expression/equation obtained in step 3, using also the
following prescription:

ℜ∂f

∂k
(h(k, . . .)) → Lh(k,...)√

5
lnα, (22)

ℜ ∂l

∂k
(h(k, . . .)) → Fh(k,...)

√
5 lnα. (23)

Remark 1. Formally, the method (first component) of obtaining new identities from a known
Fibonacci-Lucas identity proceeds in two quick steps:

(i) Treat the subscripts of Fibonacci and Lucas numbers as variables and differentiate
through the given identity, with respect to the free index of interest, using the rules of
differential calculus.

(ii) Make the following replacements:

∂

∂k
Fh(k,...) →

Lh(k,...)√
5

∂

∂k
h(k, . . .), (24)

∂

∂k
Lh(k,...) → Fh(k,...)

√
5

∂

∂k
h(k, . . .), (25)

lnα → 1, (26)

i → 0; (27)

where i =
√
−1 is the imaginary unit.

For example, given the double-angle identity

F2k = LkFk,

we have, by step (i),

d

dk
F2k =

d

dk
(LkFk) = Lk

d

dk
Fk + Fk

d

dk
Lk;

so that, by step (ii), using (24) and (25), we get

L2k√
5
· d

dk
(2k) = Lk ·

Lk√
5
+ Fk · Fk

√
5;

and hence,
2L2k = L2

k + 5F 2
k . (28)

2.1 Examples

We illustrate the method (first component) with some examples from familiar identities.
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2.2 Example from a connecting formula between Fibonacci and

Lucas numbers

In this example we show that

Lk = Fk+1 + Fk−1 =⇒ 5Fk = Lk+1 + Lk−1.

Following step 1 we write
l(k) = f(k + 1) + f(k − 1)

and (step 2) differentiate with respect to k, obtaining

d

dk
l(k) =

d

dk
f(k + 1) +

d

dk
f(k − 1).

Steps 3 and 4 now give

ℜ d

dk
l(k) = ℜ d

dk
f(k + 1) + ℜ d

dk
f(k − 1);

and by (22) and (23),

Fk

√
5 lnα =

Lk+1√
5

lnα +
Lk−1√

5
lnα;

that is
5Fk = Lk+1 + Lk−1.

2.2.1 Example from the double-angle identity of Fibonacci and Lucas numbers

In this example we demonstrate that:

F2k = LkFk =⇒ 2L2k = L2
k + 5F 2

k . (29)

For the identity F2k = LkFk, step 1 is

f(2k) = l(k)f(k);

where k is now considered a variable.
Following step 2, we differentiate with respect to k to obtain

2
df

dk
(2k) = l(k)

df

dk
(k) + f(k)

dl

dk
(k).

Steps 3 and 4 give

2ℜ df

dk
(2k) = Lkℜ

df

dk
(k) + Fkℜ

dl

dk
(k).
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Thus, using (22) and (23), we have

2
L2k√
5
lnα = Lk

Lk√
5
lnα + Fk

√
5Fk lnα;

which, dropping lnα and multiplying through by
√
5, is

2L2k = L2
k + 5F 2

k .

The interested reader may wish to verify the converse of (29), that is

2L2k = L2
k + 5F 2

k =⇒ F2k = LkFk.

2.2.2 Example from the multiplication formula of Fibonacci and Lucas numbers

Here we show that the multiplication formula

Fk+m + (−1)mFk−m = LmFk

implies
Lk+m + (−1)mLk−m = LmLk (30)

and
Lk+m − (−1)mLk−m = 5FmFk. (31)

We write
f(k +m) + (−1)mf(k −m) = l(m)f(k); (32)

so that, treating k as the free index of interest gives

∂f

∂k
(k +m) + (−1)m

∂f

∂k
(k −m) = l(m)

∂

∂k
f(k).

Thus, by steps 3 and 4, we have

ℜ∂f

∂k
(k +m) + (−1)mℜ∂f

∂k
(k −m) = Lmℜ

∂f

∂k
(k);

and hence, using (22) and (23), we obtain

Lk+m√
5

lnα + (−1)m
Lk−m√

5
lnα = Lm

Lk√
5
lnα;

from which we get (30).
Taking m as the index of interest and differentiating (32) with respect to m yields

∂f

∂m
(k +m)− (−1)m

∂f

∂m
(k −m) + (−1)miπf(k −m) = f(k)

∂

∂m
l(m),
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so that

ℜ ∂f

∂m
(k +m)− (−1)mℜ ∂f

∂m
(k −m) = Fkℜ

∂

∂m
l(m);

and hence
Lk+m√

5
lnα− (−1)m

Lk−m√
5

lnα = FkFm

√
5 lnα;

from which (31) follows.
The reader may verify that the remaining multiplication formula can be discovered by

differentiating (30) with respect to m.

2.2.3 Example from an inverse tangent Fibonacci number identity

Consider the following identity:

tan−1 F2m

F2k+2m−1

= tan−1 Lm

L2k+m−1

− tan−1 Lm

L2k+3m−1

, m even, (33)

which can be derived using the inverse tangent addition formula and basic Fibonacci-Lucas
identities.

We now demonstrate that (33) implies

1

5

F2mL2k+2m−1

F 2
2k+2m−1 + F 2

2m

=
LmF2k+m−1

L2
2k+m−1 + L2

m

− LmF2k+3m−1

L2
2k+3m−1 + L2

m

, m even. (34)

We treat k as the free index of interest. Step 1 gives the Fibonacci-Lucas function form
of (33) as

tan−1 f(2m)

f(2k + 2m− 1)
= tan−1 l(m)

l(2k +m− 1)
− tan−1 l(m)

l(2k + 3m− 1)
;

so that step 2 yields

2f(2m)

f(2k + 2m− 1)2 + f(2m)2
∂f

∂k
(2k + 2m− 1)

=
2l(m)

l(2k +m− 1)2 + l(m)2
∂l

∂k
(2k +m− 1)

− 2l(m)

l(2k + 3m− 1)2 + l(m)2
∂l

∂k
(2k + 3m− 1),

which, by step 3, results in

F2m

F 2
2k+2m−1 + F 2

2m

∂f

∂k
(2k + 2m− 1)

=
Lm

L2
2k+m−1 + L2

m

∂l

∂k
(2k +m− 1)− Lm

L2
2k+3m−1 + L2

m

∂l

∂k
(2k + 3m− 1),

10



whence taking the real part and replacing the derivatives using (22) and (23) gives (34).
By treating m as the free index, the interested reader can verify, using our method,

that (33) also implies

2

5

F2k−1

F 2
2k+2m−1 + F 2

2m

= − F2k−1

L2
2k+m−1 + L2

m

+
F2k+3m−1Lm + F2k+2m−1

L2
2k+3m−1 + L2

m

, m even.

2.3 Extension to a generalized Fibonacci sequence

We now describe how the method (first component) for obtaining new identities from existing
ones works for the generalized Fibonacci sequence (Wj(W0,W1;P )) whose terms are given
in (16). The scheme is the following.

1. Let k be a free index in the known identity. Replace each generalized Fibonacci number,
say Wh(k,...), with a certain differentiable function of k, namely, w(h(k, . . .)), with k now
considered a variable.

2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2 and make the following replacement:

w(h(k, . . .)) → Wh(k,...). (35)

4. Take the real part of the equation/expression obtained in step 3, using also the following
prescription:

ℜ∂w

∂k
(h(k, . . .)) → Wh(k+1,··· ) +Wh(k−1,··· )

δ
ln σ; (36)

where σ = (P + δ)/2 and δ =
√
P 2 + 4.

Note that, on account of (70) and (72), for the special Lucas sequences, (35) and (36) reduce
to

u(h(k, . . .)) → Uh(k,...), (37)

ℜ∂u

∂k
(h(k, . . .)) → Vh(k,...)

δ
ln σ (38)

and

v(h(k, . . .)) → Vh(k,...), (39)

ℜ∂v

∂k
(h(k, . . .)) → Uh(k,...)δ ln σ; (40)

of which the Fibonacci and Lucas relations (20)–(23) are particular cases.
For the gibonacci sequence, (35) and (36) reduce to

g(h(k, . . .)) → Gh(k,...), (41)

ℜ∂g

∂k
(h(k, . . .)) → Gh(k+1,··· ) +Gh(k−1,··· )√

5
lnα. (42)
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2.4 More examples

We give further examples involving the gibonacci sequence and the generalized Fibonacci
sequence.

2.4.1 Examples from an identity of Howard

Consider the following identity, derived by Howard [12, Corollary 3.5]:

FsGk+r + (−1)r−1Fs−rGk = FrGk+s,

Identity (11) has three free indices r, s, and k.
We write

f(s)g(k + r) + (−1)r−1f(s− r)g(k) = f(r)g(k + s). (43)

Treating s as the index of interest and differentiating (43) with respect to s gives

g(k + r)
d

ds
f(s) + (−1)r−1g(k)

∂f

∂s
(s− r) = f(r)

∂g

∂s
(k + s); (44)

so that, using (20) and (41) we get

Gk+rℜ
d

ds
f(s) + (−1)r−1Gkℜ

∂f

∂s
(s− r) = Frℜ

∂g

∂s
(k + s).

We now use (22) to replace the derivatives on the left hand side and (42) to replace the
derivative on the right hand side, obtaining

LsGk+r + (−1)r−1Ls−rGk = Fr(Gk+s+1 +Gk+s−1).

On the other hand, treating r as the index of interest and differentiating (43) with respect
to r yields

f(s)
∂g

∂r
(k + r) + (−1)r−1iπf(s− r)g(k)− (−1)r−1g(k)

∂f

∂r
(s− r)

= g(k + s)
d

dr
f(r);

(45)

so that, taking the real part,

Fsℜ
∂g

∂r
(k + r)− (−1)r−1Gkℜ

∂f

∂r
(s− r) = Gk+sℜ

d

dr
f(r).

Use of (42) and (22) finally gives (identity 13):

Fs (Gk+r+1 +Gk+r−1) + (−1)rLs−rGk = LrGk+s.

The interested reader is invited to discover, by differentiating with respect to s, that (13)
implies

Ls (Gk+r+1 +Gk+r−1) + (−1)r5Fs−rGk = Lr (Gk+s+1 +Gk+s−1) ;

and that differentiating (11) with respect to k does not produce a new result.
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2.4.2 Example from a general recurrence relation

Consider the following identity of Horadam [9, Equation (3.14), Q = −1]:

UrWk+1 + Ur−1Wk = Wk+r.

We write
u(r)w(k + 1) + u(r − 1)w(k) = w(k + r);

and differentiate with respect to r, obtaining

d

dr
u(r) · w(k + 1) +

d

dr
u(r − 1) · w(k) = ∂w

∂r
(k + r);

so that, taking the real part, we find

ℜ d

dr
u(r) ·Wk+1 + ℜ d

dr
u(r − 1) ·Wk = ℜ∂w

∂r
(k + r);

and hence, upon using (38) and (36) to replace the derivatives, we derive identity (19):

VrWk+1 + Vr−1Wk = Wk+r+1 +Wk+r−1.

In particular,

VrUk+1 + Vr−1Uk = Vk+r,

VrVk+1 + Vr−1Vk = (P 2 + 4)Uk+r.

2.4.3 Example from a multiplication formula

Here we will demonstrate that the identity [9, Equation (3.16), Q = −1]:

Wk+r + (−1)rWk−r = VrWk

implies the identity

(Wk+r+1 +Wk+r−1)− (−1)r(Wk−r+1 +Wk−r−1) = UrWkδ
2. (46)

We write
w(k + r) + (−1)rw(k − r) = v(r)w(k)

and differentiate through with respect to r to obtain

∂w

∂r
(k + r) + (−1)rπiw(k − r)− (−1)r

∂w

∂r
(k − r) = w(k)

d

dr
v(r);

so that

ℜ∂w

∂r
(k + r)− (−1)rℜ∂w

∂r
(k − r) = w(k)ℜ d

dr
v(r).

13



Using (36) and (40), we get

Wk+r+1 +Wk+r−1

δ
− (−1)r

(Wk−r+1 +Wk−r−1)

δ
= WkUrδ;

and hence (46).
Identities

Vk+r − (−1)rVk−r = UkUrδ
2

and
Uk+r − (−1)rUk−r = UrVk

are special cases of (46).

3 Applications

In this section, we pick various known results from the literature and apply the method (first
component) to discover new identities.

3.1 New identities from an identity of Long

Long [17, Equation (44)] showed that, for a non-negative integer n and integers k and r,

n
∑

j=0

(

n

j

)

Fr+2kj = Ln
kFr+nk, if k is even. (47)

Based on the knowledge of (47) alone, we will derive the results stated in the proposition.

Proposition 2. If n is a non-negative integer, k is an even integer and r is an integer, then

2
n
∑

j=0

j

(

n

j

)

Lr+2kj = 5nLn−1
k Fr+nkFk + nLn

kLr+nk, (48)

2
n
∑

j=0

j

(

n

j

)

Fr+2kj = nLn−1
k Lr+nkFk + nLn

kFr+nk. (49)

Identity (47) contains two free indices r and k. Treating r as the index of interest
immediately gives the Lucas version of (47), namely,

n
∑

j=0

(

n

j

)

Lr+2kj = Ln
kLr+nk, if k is even;

coming from
n
∑

j=0

(

n

j

)

ℜ∂f

∂r
(r + 2kj) = l(k)nℜ∂f

∂r
(r + nk)

14



and prescription (22).
To derive (48), write (47) as

n
∑

j=0

(

n

j

)

f(r + 2kj) = l(k)nf(r + nk);

treat k as the index of interest and differentiate with respect to k (step 2) to obtain

n
∑

j=0

2j

(

n

j

)

∂f

∂k
(r + 2kj) = nl(k)n−1f(r + nk)

∂

∂k
l(k) + nl(k)n

∂f

∂k
(r + nk),

and, taking the real part,

n
∑

j=0

2j

(

n

j

)

ℜ∂f

∂k
(r + 2kj) = nLn−1

k Fr+nkℜ
∂

∂k
l(k) + nLn

kℜ
∂f

∂k
(r + nk). (50)

Thus (48) follows from step 4 of Section 2, after using (22) and (23) to replace the derivatives
in (50).

To derive (49) treat r as the free index of interest in (48) and write

2
n
∑

j=0

j

(

n

j

)

∂l

∂r
(r + 2kj) = 5nLn−1

k

∂f

∂r
(r + nk)f(k) + nLn

k

∂l

∂r
(r + nk).

3.2 New identities arising from an identity of Hoggatt and Bick-

nell

Based on Hoggatt and Bicknell’s result [7, Identity 2
′

]:

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 4
j+k = 25n

(

F 4
2n+k+1 − F 4

2n+k

)

,

we wish to derive the four identities (6), (7), (8) and (9) stated in the Introduction section.
Write (5) as

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

f(j + k)4 = 25n
(

f(2n+ k + 1)4 − f(2n+ k)4
)

;

and differentiate through, with respect to k, to obtain

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

4f(j + k)3
∂f

∂k
(j + k)

= 25n
(

4f(2n+ k + 1)3
∂f

∂k
(2n+ k + 1)− 4f(2n+ k)3

∂f

∂k
(2n+ k)

)

;

(51)
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and taking the real part:

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

4F 3
j+kℜ

∂f

∂k
(j + k)

= 25n
(

4F 3
2n+k+1ℜ

∂f

∂k
(2n+ k + 1)− 4F 3

2n+kℜ
∂f

∂k
(2n+ k)

)

.

Thus,

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 3
j+k

Lj+k√
5

= 25n
(

F 3
2n+k+1

L2n+k+1√
5

− F 3
2n+k

L2n+k√
5

)

;

and hence (6). Identities (7), (8) and (9) are derived in the same manner; (7) is obtained
from (6), etc.

3.3 New identities from an inverse tangent identity

Proposition 3. If k is an integer, then

L2k+1

F 2
2k+1 + 1

=
L2k

F 2
2k + 1

− L2k+2

F 2
2k+2 + 1

, (52)

L2k+1

L2kL2k+2

(F 2
2k + 1)(F 2

2k+2 + 1)

(F 2
2k+1 + 1)

=
(F 2

2k+2 + 1)

L2k+2

− (F 2
2k + 1)

L2k

. (53)

Recall identity (10):

tan−1 1

F2k+1

= tan−1 1

F2k

− tan−1 1

F2k+2

.

To derive (52), write (10) as

tan−1 1

f(2k + 1)
= tan−1 1

f(2k)
− tan−1 1

f(2k + 2)
, (54)

and differentiate with respect to k to obtain

1

f(2k + 1)2 + 1

df

dk
(2k + 1)

=
1

f(2k)2 + 1

df

dk
(2k)− 1

f(2k + 2)2 + 1

df

dk
(2k + 2),
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so that, by (20),

1

F 2
2k+1 + 1

ℜ df

dk
(2k + 1)

=
1

F 2
2k + 1

ℜ df

dk
(2k)− 1

F 2
2k+2 + 1

ℜ df

dk
(2k + 2),

and hence (52), upon using (22). Identity (53) is a rearrangement of (52).
Simple telescoping of (52) and (53) produces the results stated in the next proposition.

Proposition 4. If n is an integer, then
n
∑

k=1

L2k+1

F 2
2k+1 + 1

=
3

2
− L2(n+1)

F 2
2(n+1) + 1

,

n
∑

k=1

L2k+1

L2kL2k+2

(F 2
2k + 1)

(

F 2
2k+2 + 1

)

(

F 2
2k+1 + 1

) =
F 2
2(n+1) + 1

L2n+2

− 2

3
;

with the limiting case:
∞
∑

k=1

L2k+1

F 2
2k+1 + 1

=
3

2
.

3.4 New identities from an identity of Jennings

Jennings [13, Theorem 2] showed, among results of a similar nature, that

Fk

n
∑

j=0

(−1)(k+1)(n+j)

(

n+ j

2j

)

L2j
k = F(2n+1)k.

Writing
n
∑

j=0

(−1)(k+1)(n+j)

(

n+ j

2j

)

l(k)2j =
f((2n+ 1)k)

f(k)

and differentiating with respect to k gives
n
∑

j=0

(−1)(k+1)(n+j)(n+ j)πi

(

n+ j

2j

)

l(k)2j +
n
∑

j=0

(−1)(k+1)(n+j)2j

(

n+ j

2j

)

l(k)2j−1 dl

dk
(k)

=
2n+ 1

f(k)

df

dk
((2n+ 1)k)− f((2n+ 1)k)

f(k)2
df

dk
(k),

and taking the real part,
n
∑

j=0

(−1)(k+1)(n+j)2j

(

n+ j

2j

)

L2j−1
k ℜ dl

dk
(k)

=
2n+ 1

Fk

ℜ df

dk
((2n+ 1)k)− F(2n+1)k

F 2
k

ℜ df

dk
(k),

17



which, by (22) and (23) gives

n
∑

j=0

(−1)(k+1)(n+j)2j

(

n+ j

2j

)

L2j−1
k Fk

√
5 =

2n+ 1

Fk

L(2n+1)k√
5

− F(2n+1)k

F 2
k

Lk√
5
;

and hence the result stated in the next proposition.

Proposition 5. For non-negative integers k and n, we have

F 3
k

n
∑

j=0

(−1)(k+1)(n+j)j

(

n+ j

2j

)

L2j
k =

1

10

(

(2n+ 1)F2kL(2n+1)k − F(2n+1)kL
2
k

)

.

We also have the following divisibility property.

Proposition 6. If n and k are non-negative integers, then

10F 3
k divides (2n+ 1)F2kL(2n+1)k − F(2n+1)kL

2
k.

3.5 New identities from Candido’s identity

Setting x = Gk, y = Gk+1 in the algebraic identity

2
(

x4 + y4 + (x+ y)4
)

=
(

x2 + y2 + (x+ y)2
)2

,

gives the following generalization of Candido’s identity:

2
(

G4
k +G4

k+1 +G4
k+2

)

=
(

G2
k +G2

k+1 +G2
k+2

)2
.

Writing

2(g(k)4 + g(k + 1)4 + g(k + 2)4) =
(

g(k)2 + g(k + 1)2 + g(k + 2)2
)2

,

and differentiating with respect to k gives

2

(

g(k)3
dg

dk
(k) + g(k + 1)3

dg

dk
(k + 1) + g(k + 2)3

dg

dk
(k + 2)

)

=
(

g(k)2 + g(k + 1)2 + g(k + 2)2
)

·
(

g(k)
dg

dk
(k) + g(k + 1)

dg

dk
(k + 1) + g(k + 2)

dg

dk
(k + 2)

)

;

(55)

so that applying the prescription (41) and (42) yields

2
(

G3
k(Gk+1 +Gk−1) +G3

k+1(Gk+2 +Gk) +G3
k+2(Gk+3 +Gk+1)

)

= (G2
k +G2

k+1 +G2
k+2) (Gk(Gk+1 +Gk−1)+

Gk+1(Gk+2 +Gk) +Gk+2(Gk+3 +Gk+1)) ,

which can be arranged as stated in the next proposition.
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Proposition 7. For every integer k, we have

G2
k (Gk+1(Gk+2 +Gk) +Gk+2(Gk+3 +Gk+1)−Gk(Gk+1 +Gk−1))

+G2
k+1 (Gk(Gk+1 +Gk−1) +Gk+2(Gk+3 +Gk+1)−Gk+1(Gk+2 +Gk))

+G2
k+2 (Gk(Gk+1 +Gk−1) +Gk+1(Gk+2 +Gk)−Gk+2(Gk+3 +Gk+1))

= 0.

In particular,

F 2
kF2k+3 + F 2

k+1F2k+2 = F 2
k+2F2k+1, (56)

L2
kF2k+3 + L2

k+1F2k+2 = L2
k+2F2k+1. (57)

Subtraction of (56) from (57) gives

Fk−1Fk+1F2k+3 + FkFk+2F2k+2 = Fk+1Fk+3F2k+1,

while their addition yields

(F 2
k+1 + F 2

k−1)F2k+3 + (F 2
k+2 + F 2

k )F2k+2 = (F 2
k+3 + F 2

k+1)F2k+1.

Before closing this section, we bring forth a Candido-type identity of Melham and discover
new identities from it. Melham [19, Theorem 1] has shown that

6

(

2n−1
∑

j=0

G2
k+j

)2

= F 2
2n

(

G4
k+n−2 + 4G4

k+n−1 + 4G4
k+n +G4

k+n+1

)

; (58)

from which, writing f(2n) for F2n, g(k + n − 2) for Gk+n−2, etc. , and differentiating with
respect to k, we have

(

12
2n−1
∑

j=0

g(k + j)2

)

2n−1
∑

j=0

2g(k + j)
∂g

∂k
(k + j)

= f(2n)2
(

4g(k + n− 2)3
∂g

∂k
(k + n− 2) + 16g(k + n− 1)3

∂g

∂k
(k + n− 1)

+16g(k + n)3
∂g

∂k
(k + n) + 4g(k + n+ 1)3

∂g

∂k
(k + n+ 1)

)

.

Taking the real part according to the prescription of steps 2, 3, and 4 of Section 2.3, us-
ing (20), (41) and (42) to replace the Fibonacci and gibonacci functions and derivatives, we
obtain the result stated in the next proposition.

Proposition 8. If n is a non-negative integer and k is an integer, then

6
2n−1
∑

j=0

G2
j+k

2n−1
∑

j=0

Gj+k(Gj+k+1 +Gj+k−1)

= F 2
2n

(

G3
k+n−2(Gk+n−1 +Gk+n−3) + 4G3

k+n−1(Gk+n +Gk+n−2)

+4G3
k+n(Gk+n+1 +Gk+n−1) +G3

k+n+1(Gk+n+2 +Gk+n)
)

.
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In particular,

6
2n−1
∑

j=0

F 2
j+k

2n−1
∑

j=0

F2j+2k = F 2
2n

(

F 2
k+n−2F2(k+n−2) + 4F 2

k+n−1F2(k+n−1)

+4F 2
k+nF2(k+n) + F 2

k+n+1F2(k+n+1)

)

(59)

and

6
2n−1
∑

j=0

L2
j+k

2n−1
∑

j=0

F2j+2k = F 2
2n

(

L2
k+n−2F2(k+n−2) + 4L2

k+n−1F2(k+n−1)

+4L2
k+nF2(k+n) + L2

k+n+1F2(k+n+1)

)

.

(60)

Subtraction of (59) from (60) gives

6
2n−1
∑

j=0

Fj+k+1Fj+k−1

2n−1
∑

j=0

F2j+2k

= F 2
2n

(

Fk+n−1Fk+n−3F2(k+n−2) + 4Fk+nFk+n−2F2(k+n−1)

+4Fk+n+1Fk+n−1F2(k+n) + Fk+n+2Fk+nF2(k+n+1)

)

.

3.6 New identities from the Gelin-Cesàro identity

The Gelin-Cesàro identity
Fk−2Fk−1Fk+1Fk+2 = F 4

k − 1

has the following generalization (Horadam and Shannon [10, Identity (2.5), Q = −1]):

Wk−2Wk−1Wk+1Wk+2 = W 4
k + (−1)kγWW 2

k − h2
W ;

where γW = eW (P 2 − 1), hW = eWP , and eW = PW0W1 +W 2
0 −W 2

1 .
For the sequence of Lucas numbers, we have γL = 0 and eL = 5 = hL, so that

Lk−2Lk−1Lk+1Lk+2 = L4
k − 25;

while for the gibonacci sequence, γG = 0, hG = eG = G0G1 +G2
0 −G2

1 and

Gk−2Gk−1Gk+1Gk+2 = G4
k − e2G.

Writing
w(k − 2)w(k − 1)w(k + 1)w(k + 2) = w(k)4 + (−1)kγw(k)2 − h2

W

and differentiating with respect to k and making use of (35) and (36) from Section 2.3 yields
the result stated in the next proposition.
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Proposition 9. For every integer k,

(Wk−1 +Wk−3)Wk−1Wk+1Wk+2 +Wk−2(Wk +Wk−2)Wk+1Wk+2

+Wk−2Wk−1(Wk +Wk+2)Wk+2 +Wk−2Wk−1Wk+1(Wk+3 +Wk+1) (61)

= 2Wk(Wk+1 +Wk−1)(2W
2
k + (−1)kγW ).

In particular,

(Gk−1 +Gk−3)Gk−1Gk+1Gk+2 +Gk−2(Gk +Gk−2)Gk+1Gk+2

+Gk−2Gk−1(Gk +Gk+2)Gk+2 +Gk−2Gk−1Gk+1(Gk+3 +Gk+1)

= 4G3
k(Gk+1 +Gk−1);

with the special cases

Fk+1Fk+2F2k−3 + Fk−1Fk−2F2k+3 = 2F 3
kLk = 2F 2

kF2k (62)

and
Lk+1Lk+2F2k−3 + Lk−1Lk−2F2k+3 = 2L3

kFk = 2L2
kF2k; (63)

where, to arrive at (62) and (63), we used

Fk+1 + Fk−1 = Lk, Lk+1 + Lk−1 = 5Fk,

and [23, Identity (16a)]
LmFn + LnFm = 2Fm+n.

Substituting k + 2 for k and arranging (62) and (63) as

F2k+1

FkFk+1

+
F2k+7

Fk+3Fk+4

=
2F 2

k+2F2k+4

F 4
k+2 − 1

and
F2k+1

LkLk+1

+
F2k+7

Lk+3Lk+4

=
2L2

k+2F2k+4

L4
k+2 − 25

;

and the use of the telescoping summation formula

n
∑

k=1

(−1)k−1
(

fk + (−1)m−1fk+m

)

=
m
∑

k=1

(−1)k−1fk + (−1)n−1

m
∑

k=1

(−1)k−1fk+n

yields the summation identities stated in the next proposition.

Proposition 10. If n is a non-negative integer, then

n
∑

k=1

(−1)k−1F 2
k+2F2k+4

F 4
k+2 − 1

=
5

6
+

(−1)n−1

2

(

F2n+3

Fn+1Fn+2

− F2n+5

Fn+2Fn+3

+
F2n+7

Fn+3Fn+4

)

n
∑

k=1

(−1)k−1L2
k+2F2k+4

L4
k+2 − 25

=
5

14
+

(−1)n−1

2

(

F2n+3

Ln+1Ln+2

− F2n+5

Ln+2Ln+3

+
F2n+7

Ln+3Ln+4

)

;
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with

∞
∑

k=1

(−1)k−1F 2
k+2F2k+4

F 4
k+2 − 1

=
5

6
,

∞
∑

k=1

(−1)k−1L2
k+2F2k+4

L4
k+2 − 25

=
5

14
.

Arranging (61) as

Wj−1 +Wj−3

Wj−2

+
Wj +Wj−2

Wj−1

+
Wj+2 +Wj

Wj+1

+
Wj+3 +Wj+1

Wj+2

=
2Wj(Wj+1 +Wj−1)(2W

3
j + (−1)jγW )

Wj−2Wj−1Wj+1Wj+2

and summing produces the next result.

Proposition 11. If n and k are integers then,

n
∑

j=1

(−1)j−12Wj+k(Wj+k+1 +Wj+k−1)(2W
2
j+k + (−1)j+kγW )

Wj+k−2Wj+k−1Wj+k+1Wj+k+2

= (−1)n+1Wn+k +Wn+k−2

Wn+k−1

+
Wk +Wk−2

Wk−1

+ (−1)n+1Wn+k+3 +Wn+k+1

Wn+k+2

+
Wk+3 +Wk+1

Wk+2

;

provided none of the denominators vanishes.

3.7 New identities from a reciprocal series of Fibonacci numbers

with subscripts k2j

In this section we apply our method (first component) to discover new results associated
with the following identity of Rabinowitz [21, Equation (4)]:

n
∑

j=0

1

Uk2j
=

1 + Uk−1

Uk

+
1− (−1)k

U2k

− Uk2n−1

Uk2n
.

Writing
n
∑

j=0

1

u(k2j)
=

1 + u(k − 1)

u(k)
+

1− (−1)k

u(2k)
− u(k2n − 1)

u(k2n)
,
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and differentiating with respect to k gives

n
∑

j=0

−2j

u(k2j)2
du

dk
(k2j) =

1

u(k)

du

dk
(k − 1)− (1 + u(k − 1))

u(k)2
du

dk
(k)

− (−1)kπi

u(2k)
− 2(1− (−1)k)

u(2k)2
du

dk
(2k)

− 2n

u(k2n)

∂u

∂k
(k2n − 1) +

2nu(k2n − 1)

u(k2n)2
∂u

∂k
(k2n).

Taking the real part while using (37)–(40), we have the next result.

Proposition 12. If n and k are positive integers, then

n
∑

j=0

2jVk2j

U2
k2j

=
(−1)k2 + Vk

U2
k

+
2(1− (−1)k)V2k

U2
2k

− 2n+1

U2
k2n

,

∞
∑

j=0

2jVk2j

U2
k2j

=
(−1)k2 + Vk

U2
k

+
2(1− (−1)k)V2k

U2
2k

.

Note that in arriving at the final form of the first expression in Proposition 12, we used

UrVs − VrUs = (−1)s2Ur−s.

In particular, we have
n
∑

j=0

2jV2j

U2
2j

= P +
2δ2

P 2
− 2n+1

U2
2n

and
n
∑

j=0

2jV2j+1

U2
2j+1

=
δ2

P 2
− 2n+1

U2
2n+1

;

with the special cases
n
∑

j=0

2jL2j

F 2
2j

= 11− 2n+1

F 2
2n

and
n
∑

j=0

2jL2j+1

F 2
2j+1

= 5− 2n+1

F 2
2n+1

.

4 Justification of the method

In this section we provide the rationale behind the method that was described in Section 2.
To facilitate the discussion, we need the closed formula for the generalized Fibonacci se-
quence (Wj).
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4.1 Closed formula for the generalized Fibonacci sequence

Standard methods for solving difference equations give the closed (Binet) formula of the
generalized Fibonacci sequence (Wj) defined by the recurrence relation (16), in the non-
degenerate case, P 2 + 4 > 0, as

Wj =
Aσj − Bτ j

σ − τ
=

Aσj − Bτ j

δ
, (64)

where
A = W1 −W0τ, B = W1 −W0σ, (65)

with

σ =
P +

√
P 2 + 4

2
, τ =

P −
√
P 2 + 4

2
; (66)

so that
σ + τ = P, σ − τ =

√
P 2 + 4 = δ, and στ = −1. (67)

In particular,

Uj =
σj − τ j

σ − τ
, Vj = σj + τ j. (68)

Using the Binet formulas, it is readily established that

U−j = (−1)j−1Uj, V−j = (−1)jVj. (69)

It is also straightforward to establish the following:

Uj+1 + Uj−1 = Vj, (70)

Uj+1 − Uj−1 = PUj, (71)

Vj+1 + Vj−1 = Ujδ
2, (72)

and
Vj+1 − Vj−1 = PVj . (73)

As for the gibonacci sequence, we have

Gj =
(G1 −G0β)α

j − (G1 −G0α) β
j

√
5

. (74)

Lemma 13. For an integer j,

Aσj + Bτ j = Wj+1 +Wj−1, (75)

where A and B are as defined in (65).
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Proof. Let
Rj = Aσj +Bτ j . (76)

Then,

σRj = Aσj+1 − Bτ j−1,

τRj = −Aσj−1 + Bτ j+1.

Thus,
Rj · (σ − τ) =

(

Aσj+1 −Bτ j+1
)

+
(

Aσj−1 − Bτ j−1
)

;

that is
Rjδ = Wj+1δ +Wj−1δ,

or
Rj = Wj+1 +Wj−1. (77)

Identity (75) now follows by equating (76) and (77).

Identity (75) is at the heart of the justification of the calculus-based method of obtaining
Fibonacci identities.

4.2 Justification of the method

We first state a required lemma.

Lemma 14. If λ is a non-zero real number and x is real, then

d

dx
λx =

{

λx lnλ, if λ > 0;

λx (iπ(2m+ 1) + ln (−λ)) , if λ < 0,

where m is an integer.

Thus, if λ is a negative number, then
d

dx
λx is complex multi-valued with the principal

value being
d

dx
λx = λx (iπ + ln (−λ)) . (78)

Proof. If λ is a negative number, then

λx = exp (x lnλ) = exp (x (ln(−1) + ln (−λ))) , (79)

where ln(−1), the complex logarithm of −1, is evaluated as

ln(−1) = ln (exp(iπ(2m+ 1))) = iπ(2m+ 1), m ∈ Z;

so that (79) can now be written as

λx = (−λ)x exp (iπ(2m+ 1)x) ,

from which the second result in (14) now follows by differentiation.
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Consider a generalized Fibonacci function w(x) defined by

w(x) =
Aσx − Bτx

σ − τ
=

Aσx − Bτx

δ
, x ∈ R, (80)

where A and B are as defined in (65) and σ and τ are as given in (66).
Corresponding to (1), (68) and (74), we have the following special cases of (80):

f(x) =
αx − βx

√
5

, l(x) = αx + βx,

u(x) =
σx − τx

σ − τ
, v(x) = σx + τx, (81)

and

g(x) =
AGα

x − BGβ
x

α− β
=

AGα
x −BGβ

x

√
5

, (82)

where
AG = G1 −G0β, BG = G1 −G0α. (83)

Clearly,
w(j) = Wj, j ∈ Z; (84)

that is

u(j) = Uj , v(j) = Vj , g(j) = Gj, f(j) = Fj, l(j) = Lj, j ∈ Z.

Theorem 15. The following identity holds:

ℜ
(

d

dx
w(x)

∣

∣

∣

∣

x=j∈Z

)

=
Wj+1 +Wj−1

δ
ln σ, (85)

where, as usual, ℜ(X) denotes the real part of X.

Proof. We have
d

dx
w(x) =

1

δ

(

A
d

dx
σx −B

d

dx
τx
)

.

From (66), it is clear that σ > 0 and τ < 0 for all real numbers P . Thus, employing
Lemma 14, we find

d

dx
w(x) =

1

δ
(Aσx ln σ −Bτx ln (−τ)− Bτxπi(2m+ 1))

=
1

δ
(Aσx ln σ + Bτx ln σ −Bτx ln σ − Bτx ln (−τ)−Bτxπi(2m+ 1))

=
1

δ
((Aσx + Bτx) ln σ −Bτx ln (−στ)− Bτxπi(2m+ 1)) .
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Since στ = −1, we obtain

d

dx
w(x) =

1

δ
((Aσx + Bτx) ln σ −Bτxπi(2m+ 1)) . (86)

Evaluating (86) at x = j ∈ Z, we have

d

dx
w(x)

∣

∣

∣

∣

x=j∈Z

=
1

δ

(

(Wj+1 +Wj−1) ln σ −Bτ jπi(2m+ 1)
)

, by (75), (87)

from which, on taking the real part, (85) follows, since m, τ , δ, B, Wj+1, and Wj−1 are real
quantities and σ is a positive number.

Of course the derivatives given in (3) are particular cases of (85) with δ =
√
5, Fj+1 +

Fj−1 = Lj, and Lj+1 + Lj−1 = 5Fj. Similarly, (36), (38), (40) and (42) are all consequences
of (85).

Thus, given a (generalized) Fibonacci identity having a free index, on account of (80),
(84) and (85), we can replace (generalized) Fibonacci numbers with (generalized) Fibonacci
functions, perform differentiation and evaluate at integer values to obtain a new (generalized)
Fibonacci identity.

5 The method, second component

The imaginary part of (87) establishes a connection between powers of σ and τ and the
(generalized) Fibonacci numbers; through which new (generalized) Fibonacci identities can
be obtained. We have

ℑ
(

d

dx
w(x)

∣

∣

∣

∣

x=j∈Z

)

= −BW

δ
τ jπ(2m+ 1),

where m is some integer and
BW = B = W1 −W0σ;

the principal value being

ℑ
(

d

dx
w(x)

∣

∣

∣

∣

x=j∈Z

)

= −BW

δ
τ jπ. (88)

Specializing to the special Lucas sequences, we have

BU = 1, BV = P − 2σ = τ − σ = −δ;

so that

ℑ
(

d

dx
u(x)

∣

∣

∣

∣

x=j∈Z

)

= −πτ j

δ
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and

ℑ
(

d

dx
v(x)

∣

∣

∣

∣

x=j∈Z

)

= πτ j.

For the gibonacci sequence, we have

BG = G1 −G0α;

so that

ℑ
(

d

dx
g(x)

∣

∣

∣

∣

x=j∈Z

)

=
G0α−G1√

5
πβj.

For the Fibonacci and Lucas numbers, we have

BF = 1, BL = −
√
5;

so that, in view of (88), the method described in Section 2 can now be applied to a Fibonacci-
Lucas identity with the prescription in step 3 and step 4 of Section 2 replaced with the
following:

3. Simplify the equation obtained in step 2 and make the following replacements:

f(h(k, . . .)) = Fh(k,...), (89)

l(h(k, . . .)) = Lh(k,...). (90)

4. Take the imaginary part of the whole expression/equation obtained in step 3, using
also the following prescription:

ℑ∂f

∂k
(h(k, . . .)) = −πβh(k,...)

√
5

, (91)

ℑ ∂l

∂k
(h(k, . . .)) = πβh(k,...). (92)

Remark 16. Formally, the method (second component) of establishing a connection between
the powers of β and Fibonacci and Lucas numbers in a given Fibonacci-Lucas identity
proceeds in two quick steps:

(i) Treat the subscripts of Fibonacci and Lucas numbers as variables and differentiate
through the given identity, with respect to the free index of interest, using the rules of
differential calculus.

(ii) Make the following replacements:

∂

∂k
Fh(k,...) →

−πβh(k,...)

√
5

∂

∂k
h(k, . . .), (93)

∂

∂k
Lh(k,...) → πβh(k,...) ∂

∂k
h(k, . . .), (94)

lnα → 0, (95)

i → 1; (96)
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where i =
√
−1 is the imaginary unit.

For example, given the double-angle formula:

F2k = LkFk,

we have, by step (i),

d

dk
F2k =

d

dk
(LkFk) = Lk

d

dk
Fk + Fk

d

dk
Lk;

so that, by step (ii), using (93) and (94), we get

−πβ2k

√
5

· d

dk
(2k) = Lk ·

−πβk

√
5

+ Fk · πβk;

and hence,
2βk = Lk − Fk

√
5.

For the special Lucas sequences, (89)–(92) read

u(h(k, . . .)) = Uh(k,...), (97)

v(h(k, . . .)) = Vh(k,...), (98)

ℑ∂u

∂k
(h(k, . . .)) = −πτh(k,...)

δ
, (99)

ℑ∂v

∂k
(h(k, . . .)) = πτh(k,...); (100)

while for the gibonacci sequence, we have

g(h(k, . . .)) = Gh(k,...), (101)

ℑ∂g

∂k
(h(k, . . .)) =

(G0α−G1)πβ
h(k,...)

√
5

= −BG√
5
πβh(k,...). (102)

5.1 Examples

We now give some examples to illustrate the use of (89)–(92) and (101) and (102) in obtaining
new identities from known Fibonacci-Lucas identities.

Note that in the definitions in (1), Fj and Lj do not change when α and β are inter-
changed. Thus, α and β can be interchanged in a Fibonacci-Lucas identity involving Fi-
bonacci numbers, Lucas numbers, α and β and no other irrational numbers. More generally,
we have the observation stated in Proposition 17.

Proposition 17. A (generalized) Fibonacci identity involving (generalized) Fibonacci num-
bers as well as σ and τ and no other irrational numbers remains valid under the exchange
of σ and τ .
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Proof. From (64) and (65), we have

Wj(σ, τ) =
W1 −W0τ

σ − τ
σj − W1 −W0σ

σ − τ
τ j.

It is straightforward to verify that Wj(σ, τ) = Wj(τ, σ); and hence, the proposition.

The generalizations obtained in this section rest on Proposition 17.

5.1.1 Generalizations of the fundamental identity of Fibonacci and Lucas num-

bers

Differentiating the Fibonacci-Lucas function form

5f(k)2 − l(k)2 = (−1)k−14,

of the fundamental identity
5F 2

k − L2
k = (−1)k−14,

and applying the prescription of (89)–(92) yields

5Fkβ
k+r + Lkβ

k+r
√
5 = (−1)k2βr

√
5, (103)

where r is an arbitrary integer; and also, by Proposition 17,

5Fkα
k+r − Lkα

k+r
√
5 = (−1)k−12αr

√
5. (104)

Combining (103) and (104) according to the Binet form (74) leads to the result stated in
Proposition 18.

Proposition 18. If k and r are integers, then

5FkGk+r − Lk (Gk+r+1 +Gk+r−1) = (−1)k−12 (Gr+1 +Gr−1) .

Writing the function form of the identity of Proposition 18 as

5f(k − r)g(k)− l(k − r) (g(k + 1) + g(k − 1))

= (−1)k−r−12 (g(r + 1) + g(r − 1)) ,

and differentiating with respect to r, using again the prescription (89)–(92) and (101)
and (102), we find

5βk−rGk + βk−r
√
5 (Gk+1 +Gk−1)

= (−1)k−r2
√
5 (Gr+1 +Gr−1) + (−1)k−r2

√
5
(

G0β
r−1 −G1β

r
)

,
(105)

and, on account of Proposition 17, also

5αk−rGk − αk−r
√
5 (Gk+1 +Gk−1)

= (−1)k−r+12
√
5 (Gr+1 +Gr−1) + (−1)k−r+12

√
5
(

G0α
r−1 −G1α

r
)

.
(106)

Combining (105) and (106) gives the next result.
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Proposition 19. If k, r, and s are integers, then

5GkHk+s−r − (Gk+1 +Gk−1) (Hk+s−r+1 +Hk+s−r−1)

= (−1)k−r+12 (Gr+1 +Gr−1) (Hs+1 +Hs−1)

+ (−1)k−r2 (G0 (Hr+s +Hr+s−2) +G1 (Hr+s+1 +Hr+s−1)) .

(107)

Setting r = 0 in (107) gives

5GkHk+s − (Gk+1 +Gk−1) (Hk+s+1 +Hk+s−1)

= (−1)k−12 (G1 (Hs+1 +Hs−1)−G0 (Hs+2 +Hs)) ,

which upon using s = 0 and (Hj) = (Gj) gives

5G2
k − (Gk+1 +Gk−1)

2 = (−1)k4eG,

where, as usual, eG = G2
0 −G2

1 +G0G1.

5.1.2 Generalizations of the formula for the sum of squares of two consecutive

Fibonacci numbers

Differentiating the Fibonacci function form

f(k + 1)2 + f(k)2 = f(2k + 1),

of the identity
F 2
k+1 + F 2

k = F2k+1,

we have

f(k + 1)
df

dk
(k + 1) + f(k)

df

dk
(k) =

df

dk
(2k + 1),

and taking the imaginary part, by (89),

Fk+1ℑ
df

dk
(k + 1) + Fkℑ

df

dk
(k) = ℑ df

dk
(2k + 1),

and by (91),
βk+1Fk+1 + βkFk = β2k+1.

Thus
βr+k+1Fk+1 + βr+kFk = β2k+r+1,

or
βs+1Fk+1 + βsFk = βk+s+1, (108)

where s is an arbitrary integer, and also

αs+1Fk+1 + αsFk = αk+s+1. (109)

Combining (108) and (109) according to the Binet formula, we have the next result, equiv-
alent to Vajda [23, Identity (8)].
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Proposition 20. If k and s are integers, then

Fk+1Gs+1 + FkGs = Gk+s+1. (110)

Writing k − 1 for k and setting s = 0 in (110) gives the well-known result:

FkG1 + Fk−1G0 = Gk. (111)

Differentiating the Fibonacci function form of (110), that is

f(k + 1)g(s+ 1) + f(k)g(s) = g(k + s+ 1),

with respect to k and using (91) and (102) gives

−βk+1Gs+1 − βkGs = βk+s+1 (G0α−G1) ,

or
βk+1Gs+1 + βkGs = G0β

k+s +G1β
k+s+1 (112)

and also
αk+1Gs+1 + αkGs = G0α

k+s +G1α
k+s+1. (113)

Combining (112) and (113) produces the next result.

Proposition 21. If k and s are integers, then

Hk+1Gs+1 +HkGs = G0Hk+s +G1Hk+s+1.

In particular,
G2

k+1 +G2
k = G0G2k +G1G2k+1.

5.1.3 Generalizations of the d’Ocagne identity

Differentiating with respect to k, the Fibonacci function form

f(r + 1)f(k)− f(r)f(k + 1) = (−1)rf(k − r),

of the d’Ocagne identity
Fr+1Fk − FrFk+1 = (−1)rFk−r,

gives, upon taking the imaginary part while using (89) and (91),

βkFr+1 − βk+1Fr = (−1)rβk−r,

and also
αkFr+1 − αk+1Fr = (−1)rαk−r,

and hence, the result stated in the next proposition.
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Proposition 22. If r and k are integers, then

Fr+1Gk − FrGk+1 = (−1)rGk−r. (114)

Differentiating the Fibonacci function form of (114):

f(r + 1)g(k)− f(r)g(k + 1) = (−1)rg(k − r),

with respect to r, we find

g(k)
df

dr
(r + 1)− g(k + 1)

df

dr
(r)

= (−1)rπg(k − r)i− (−1)r
∂g

∂r
(k − r);

and consequent upon use of (91), (101) and (102),

βr+sGk+1 − βr+s+1Gk

= (−1)rβsGk−r

√
5 + (−1)r

(

G0β
k+s−r−1 +G1β

k+s−r
)

and also

αr+sGk+1 − αr+s+1Gk

= (−1)r−1αsGk−r

√
5 + (−1)r

(

G0α
k+s−r−1 +G1α

k+s−r
)

and hence, the identity stated in the next proposition.

Proposition 23. If r, s, and k are integers, then

Hr+sGk+1 −Hr+s+1Gk = (−1)r−1 (Hs+1 +Hs−1)Gk−r + (−1)r (G0Hk+s−r−1 +G1Hk+s−r) .
(115)

Writing r − s for r in (115) and setting s = 0 gives

HrGk+1 −Hr+1Gk = (−1)r−1 (2H1 −H0)Gk−r + (−1)r (G0Hk−r−1 +G1Hk−r) ;

and, in particular,

GrGk+1 −Gr+1Gk = (−1)r (G0Gk−r+1 −G1Gk−r) .

5.1.4 Generalizations of Fibonacci power formulas

The well-known identity
G2

k+1 +G2
k−2 = 2

(

G2
k +G2

k−1

)

, (116)

has the gibonacci function form

g(k + 1)2 + g(k − 2)2 = 2
(

g(k)2 + g(k − 1)2
)

,
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which, upon differentiation, gives

g(k + 1)
∂g

∂k
(k + 1) + g(k − 2)

∂g

∂k
(k − 2) = 2g(k)

∂g

∂k
(k) + 2g(k − 1)

∂g

∂k
(k − 1),

and by (101) and (102):

βk+1Gk+1 + βk−2Gk−2 = 2
(

βkGk + βk−1Gk−1

)

;

and multiplying through by βs−k, s an arbitrary integer:

βs+1Gk+1 + βs−2Gk−2 = 2
(

βsGk + βs−1Gk−1

)

; (117)

and also
αs+1Gk+1 + αs−2Gk−2 = 2

(

αsGk + αs−1Gk−1

)

. (118)

Combining (117) and (118) according to the Binet formula yields the following generalization
of (116).

Proposition 24. If s and k are integers, then

Gk+1Hs+1 +Gk−2Hs−2 = 2GkHs + 2Gk−1Hs−1.

Long’s identities [16, (31)–(35)] are all special cases of the above proposition.
The reader is invited to apply the method (second component) to verify that the identity

G3
k+1 = 3G3

k + 6G3
k−1 − 3G3

k−2 −G3
k−3, [2, Equation (3)],

has the following generalization.

Proposition 25. If k, r, and s are integers, then

Gk+1Hr+1Is+1 = 3GkHrIs + 6Gk−1Hr−1Is−1 − 3Gk−2Hr−2Is−2 −Gk−3Hr−3Is−3,

where (Gj), (Hj), and (Ij) are gibonacci sequences.

5.1.5 Generalizations of a triple-angle identity of Lucas

Differentiating the Fibonacci function form

f(3k) = f(k + 1)3 + f(k)3 − f(k − 1)3,

of the identity (see Vorob’ev [24, p. 16]):

F3k = F 3
k+1 + F 3

k − F 3
k−1, (119)

gives, after using (89) and (91),

β3k = F 2
k+1β

k+1 + F 2
kβ

k − F 2
k−1β

k−1,
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that is
β2k+s = F 2

k+1β
s+1 + F 2

kβ
s − F 2

k−1β
s−1, (120)

where s is an arbitrary integer; and also

α2k+s = F 2
k+1α

s+1 + F 2
kα

s − F 2
k−1α

s−1. (121)

Combining (120) and (121), we have the first generalization of (119).

Proposition 26. If k and s are integers, then

G2k+s = F 2
k+1Gs+1 + F 2

kGs − F 2
k−1Gs−1.

The reader is invited to check that application of the method (second component) two
more times with respect to k gives the full generalization of (119), stated in Proposition 27.

Proposition 27. If k, r, and s are integers, then

G0H0Ik+r+s−2 + (G0H1 +G1H0) Ik+r+s−1 +G1H1Ik+r+s

= Gs+1Hr+1Ik+1 +GsHrIk −Gs−1Hr−1Ik−1,

where (Gj), (Hj), and (Ij) are gibonacci sequences with initial terms G0, G1; H0, H1 and
I0, I1.

In particular,

G2
0G3k−2 + 2G0G1G3k−1 +G2

1G3k = G3
k+1 +G3

k −G3
k−1,

with the special cases:

F3k = F 3
k+1 + F 3

k − F 3
k−1,

5L3k = L3
k+1 + L3

k − L3
k−1.

Identities (42)–(45) of Long [16] are special cases of the identity stated in Proposition 27.

5.1.6 Identities from the golden ratio power reduction formula

Differentiating the Fibonacci function form

αk = αf(k) + f(k − 1),

of the golden ratio power reduction formula

αk = αFn + Fn−1;

we obtain

αk lnα = α
∂

∂k
f(k) +

∂

∂k
f(k − 1),
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which, upon use of (22), gives
αk

√
5 = αLk + Lk−1,

and hence
αk+r

√
5 = αr+1Lk + αrLk−1, (122)

where r is an arbitrary integer. Also,

−βk+r
√
5 = βr+1Lk + βrLk−1, (123)

Combining (122) and (123) gives the next result.

Proposition 28. If k and r are integers, then

Gk+r+1 +Gk+r−1 = LkGr+1 + Lk−1Gr.

Differentiating the function form of the identity stated in Proposition 28 with respect
to k, making use of (92) and (102) while taking the imaginary part gives

−BG√
5
βk+r+1 − BG√

5
βk+r−1 = βkGr+1 + βk−1Gr;

that is
(G0α−G1) β

k+r+1 + (G0α−G1) β
k+r−1 = βkGr+1

√
5 + βk−1Gr

√
5,

and hence

G0β
k+r +G1β

k+r+1 +G0β
k+r−2 +G1β

k+r−1 = −βkGr+1

√
5− βk−1Gr

√
5. (124)

Also,

G0α
k+r +G1α

k+r+1 +G0α
k+r−2 +G1α

k+r−1 = αkGr+1

√
5 + αk−1Gr

√
5. (125)

Combining (124) and (125) using the Binet formula and the lemma gives the result stated
in the next proposition.

Proposition 29. If k and r are integers, then

G0 (Hr+k +Hr+k−2) +G1 (Hr+k+1 +Hr+k−1) = Gr (Hk +Hk−2) +Gr+1 (Hk+1 +Hk−1) .

In particular,

Hk+r+1 +Hk+r−1 = Fr (Hk +Hk−2) + Fr+1 (Hk+1 +Hk−1)

and
5Hk+r = Lr (Hk +Hk−2) + Lr+1 (Hk+1 +Hk−1) ;

with the special cases

Lr+k = FrLk−1 + Fr+1Lk,

Fr+k = FrFk−1 + Fr+1Fk,

5Fr+k = LrLk−1 + Lr+1Lk,

Lr+k = LrFk−1 + Lr+1Fk.
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5.1.7 Sum of products of the terms of two gibonacci sequences

Simple telescoping of the identity

G2
j+k = Gj+k+1Gj+k −Gj+kGj+k−1,

gives
n
∑

j=1

G2
j+k = Gn+kGn+k+1 −GkGk+1,

whose gibonacci function form is

n
∑

j=1

g(j + k)2 = g(n+ k)g(n+ k + 1)− g(k)g(k + 1).

Differentiating:

2
n
∑

j=1

g(j + k)
∂g

∂k
(j + k) = g(n+ k)

∂g

∂k
(n+ k + 1) + g(n+ k + 1)

∂g

∂k
(n+ k)

− g(k)
∂g

∂k
(k + 1)− g(k + 1)

∂g

∂k
(k),

and, upon use of (101) and (102), we have

2
n
∑

j=1

βj+kGj+k = βn+k+1Gn+k + βn+kGn+k+1 − βkGk+1 − βk+1Gk;

which, multiplying through by βs−k, s an arbitrary integer, gives

2
n
∑

j=1

βj+sGj+k = βn+s+1Gn+k + βn+sGn+k+1 − βsGk+1 − βs+1Gk, (126)

and hence also

2
n
∑

j=1

αj+sGj+k = αn+s+1Gn+k + αn+sGn+k+1 − αsGk+1 − αs+1Gk. (127)

Combining (126) and (127) according to the Binet formula yields the result stated in the
next proposition.

Proposition 30. If k, s, and n are integers, then

n
∑

j=1

Gj+kHj+s = Gn+kHn+s+1 +Gn+k+1Hn+s −Gk+1Hs −GkHs+1. (128)
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Using generating function techniques, Berzsenyi [1] found alternative expressions for the
special case

2n+s
∑

j=0

GjGj+2k+s, s = 1 or 0.

Long’s identities [16, (4)–(7)] are alternative expressions for special cases of the above propo-
sition. Kronenburg [15, Identity (11.1)] also derived (128).

5.1.8 Generalizations of Hoggatt and Bicknell’s identity (5)

Taking the imaginary part of (51) on page 15, using (89), we have

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 3
j+kℑ

∂f

∂k
(j + k)

= 25n
(

F 3
2n+k+1ℑ

∂f

∂k
(2n+ k + 1)− F 3

2n+kℑ
∂f

∂k
(2n+ k)

)

;

which, applying (91), gives

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 3
j+kβ

j+k = 25n
(

F 3
2n+k+1β

2n+k+1 − F 3
2n+kβ

2n+k
)

,

and hence

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 3
j+kβ

j+r = 25n
(

F 3
2n+k+1β

2n+r+1 − F 3
2n+kβ

2n+r
)

; (129)

where r is an arbitrary integer.
Interchanging α and β in (129), we also have

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 3
j+kα

j+r = 25n
(

F 3
2n+k+1α

2n+r+1 − F 3
2n+kα

2n+r
)

. (130)

Combining (129) and (130) according to the Binet formula, we have the result stated in the
next proposition.

Proposition 31. If n is a non-negative integer and k is an integer, then

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

F 3
j+kGj+r = 25n

(

F 3
2n+k+1G2n+r+1 − F 3

2n+kG2n+r

)

. (131)
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Observe that (5) and (6) are particular cases of (131).
By applying the method (second component) three more times, with k as the index of

interest, the reader is invited to establish the further generalization presented in the next
proposition.

Proposition 32. If n is a non-negative integer and r, k, and s are integers, then

4n+1
∑

j=0

(−1)j−1

(

4n+ 1

j

)

Ej+kGj+rHj+sIj+t

= 25n (E2n+k+1G2n+r+1H2n+s+1I2n+t+1 − E2n+kG2n+rH2n+sI2n+t) ;

where (E)j∈Z, (G)j∈Z, (H)j∈Z, and (I)j∈Z are gibonacci sequences with seeds E0, E1; G0, G1;
H0, H1 and I0, I1.

5.1.9 Generalizations of an identity of Melham

In this section, we present a generalization of Melham’s identity, (58) on page 19, that is

6

(

2n−1
∑

j=0

G2
k+j

)2

= F 2
2n

(

G4
k+n−2 + 4G4

k+n−1 + 4G4
k+n +G4

k+n+1

)

;

whose Fibonacci-gibonacci function derivative is
(

6
2n−1
∑

j=0

g(k + j)2

)

2n−1
∑

j=0

g(k + j)
∂g

∂k
(k + j)

= f(2n)2
(

g(k + n− 2)3
∂g

∂k
(k + n− 2) + 4g(k + n− 1)3

∂g

∂k
(k + n− 1)

+4g(k + n)3
∂g

∂k
(k + n) + g(k + n+ 1)3

∂g

∂k
(k + n+ 1)

)

.

Taking the imaginary part and applying (101) and (102) leads to

6
2n−1
∑

j=0

G2
k+j

2n−1
∑

j=0

βk+jGk+j

= F 2
2n

(

βk+n−2G3
k+n−2 + 4βk+n−1G3

k+n−1 + 4βk+nG3
k+n + βk+n+1G3

k+n+1

)

,

which multiplying through by βr−k, r an arbitrary integer, gives

6
2n−1
∑

j=0

G2
k+j

2n−1
∑

j=0

βr+jGk+j

= F 2
2n

(

βr+n−2G3
k+n−2 + 4βr+n−1G3

k+n−1 + 4βr+nG3
k+n + βr+n+1G3

k+n+1

)

,

(132)
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and also

6
2n−1
∑

j=0

G2
k+j

2n−1
∑

j=0

αr+jGk+j

= F 2
2n

(

αr+n−2G3
k+n−2 + 4αr+n−1G3

k+n−1 + 4αr+nG3
k+n + αr+n+1G3

k+n+1

)

.

(133)

Combining (132) and (133) according to the Binet formula yields the next result.

Proposition 33. If k and r are integers, then

6
2n−1
∑

j=0

G2
k+j

2n−1
∑

j=0

Hr+jGk+j

= F 2
2n

(

Hr+n−2G
3
k+n−2 + 4Hr+n−1G

3
k+n−1 + 4Hr+nG

3
k+n +Hr+n+1G

3
k+n+1

)

.

Repeated application of the method (second component) two more times to the identity
stated in Proposition 33 with k as the index of interest establishes the next result.

Proposition 34. If k, r, s, and t are integers, then

2
2n−1
∑

j=0

Gk+jJt+j

2n−1
∑

j=0

Hr+jIs+j + 2
2n−1
∑

j=0

Is+jJt+j

2n−1
∑

j=0

Gk+jHr+j

+ 2
2n−1
∑

j=0

Gk+jIs+j

2n−1
∑

j=0

Hr+jJt+j

= F 2
2n (Gk+n−2Hr+n−2Is+n−2Jt+n−2 + 4Gk+n−1Hr+n−1Is+n−1Jt+n−1

+4Gk+nHr+nIs+nJt+n +Gk+n+1Hr+n+1Is+n+1Jt+n+1) ;

where (Gj), (Hj), (Ij), and (Jj) are gibonacci sequences.

5.1.10 Generalizations of an identity of Howard

Taking the imaginary part of (44) on page 12 gives

Gk+rℑ
d

ds
f(s) + (−1)r−1Gkℑ

∂f

∂s
(s− r) = Frℑ

∂g

∂s
(k + s); (134)

which, on using (91) and (102), yields

βsGk+r + (−1)r−1βs−rGk = βk+s−1G0Fr + βk+sG1Fr (135)

and hence, also

αsGk+r + (−1)r−1αs−rGk = αk+s−1G0Fr + αk+sG1Fr. (136)

Combining (135) and (136) provides the following generalization of Howard’s identity (11).
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Proposition 35. If r, s, and k are integers, then

HsGk+r + (−1)r−1Hs−rGk = Fr (G0Hk+s−1 +G1Hk+s) .

By taking the imaginary part of (45) on page 12, the reader is invited to establish the
result stated in Proposition 36.

Proposition 36. If k, r, s, and t are integers, then

Fs (G0Hk+r+t−1 +G1Hk+r+t)− (−1)rFs−rGk (Ht+1 +Ht−1) + (−1)rGkHs−r+t = Gk+sHr+t.

5.1.11 Generalizations of Candido’s identity

Taking the imaginary part of (55) on page 18 according to the prescription of (101) and (102),
we have

2
(

βkG3
k + βk+1G3

k+1 + βk+2G3
k+2

)

=
(

G2
k +G2

k+1 +G2
k+2

) (

βkGk + βk+1Gk+1 + βk+2Gk+2

)

;

which, upon multiplication by βr−k gives

2
(

βrG3
k + βr+1G3

k+1 + βr+2G3
k+2

)

=
(

G2
k +G2

k+1 +G2
k+2

) (

βrGk + βr+1Gk+1 + βr+2Gk+2

)

;
(137)

which, on account of Proposition 17, also implies

2
(

αrG3
k + αr+1G3

k+1 + αr+2G3
k+2

)

=
(

G2
k +G2

k+1 +G2
k+2

) (

αrGk + αr+1Gk+1 + αr+2Gk+2

)

.
(138)

Combining according to the Binet formula gives the following generalization of Candido’s
identity.

Proposition 37. If r and k are integers, then

2
(

HrG
3
k +Hr+1G

3
k+1 +Hr+2G

3
k+2

)

=
(

G2
k +G2

k+1 +G2
k+2

)

(HrGk +Hr+1Gk+1 +Hr+2Gk+2) .
(139)

By differentiating the gibonacci function form of (139) three more times with respect to
k, the reader is invited to demonstrate the further generalization of the Candido identity
stated in Proposition 38.

Proposition 38. If k, r, s, and t are integers, then

6 (GkHrMsNt +Gk+1Hr+1Ms+1Nt+1 +Gk+2Hr+2Ms+2Nt+2)

= (GkMs +Gk+1Ms+1 +Gk+2Ms+2) (HrNt +Hr+1Nt+1 +Hr+2Nt+2)

+ (GkHr +Gk+1Hr+1 +Gk+2Hr+2) (MsNt +Ms+1Nt+1 +Ms+2Nt+2)

+ (GkNt +Gk+1Nt+1 +Gk+2Nt+2) (HrMs +Hr+1Ms+1 +Hr+2Ms+2) ,

where (Mj)j∈Z and (Nj)j∈Z are gibonacci sequences with seeds M0 and M1 and N0 and N1.
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In particular, we have

6 (FkFrFsFt + Fk+1Fr+1Fs+1Ft+1 + Fk+2Fr+2Fs+2Ft+2)

= (FkFs + Fk+1Fs+1 + Fk+2Fs+2) (FrFt + Fr+1Ft+1 + Fr+2Ft+2)

+ (FkFr + Fk+1Fr+1 + Fk+2Fr+2) (FsFt + Fs+1Ft+1 + Fs+2Ft+2)

+ (FkFt + Fk+1Ft+1 + Fk+2Ft+2) (FrFs + Fr+1Fs+1 + Fr+2Fs+2) .

5.2 Generalizations of a Lucas number identity

Differentiating the Lucas function:

l(2r) + 2(−1)r = l(r)2,

of the well-known identity
L2r + 2(−1)r = L2

r,

gives
d

dr
l(2r) + (−1)riπ = l(r)

d

dr
l(r),

which, employing (90) and (92), yields

β2r + (−1)r = βrLr,

or multiplying through by βs−r,

βs+r + (−1)rβs−r = βsLr, (140)

and also
αs+r + (−1)rαs−r = αsLr, (141)

Combining (140) and (141) according to the Binet formula gives the following multiplication
formula (also Vajda [23, Formula (10a)]).

Proposition 39. If r and s are integers, then

Gs+r + (−1)rGs−r = LrGs.

Differentiating the function

g(s+ r) + (−1)rg(s− r) = l(r)g(s),

with respect to r gives

∂g

∂r
(s+ r) + (−1)rπig(s− r)− (−1)r

∂g

∂r
(s− r) = g(s)

d

dr
l(r),
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and taking the imaginary part, making use of (92), (101) and (102), we find

G0

(

βk+r+s−1 − (−1)rβk+s−r−1
)

+G1

(

βk+s−1+r − (−1)rβk+s−1−r
)

= (−1)rβkGs−r

√
5− βr+kGs

√
5,

and also

G0

(

αk+r+s−1 − (−1)rαk+s−r−1
)

+G1

(

αk+s−1+r − (−1)rαk+s−1−r
)

= (−1)r−1αkGs−r

√
5 + αr+kGs

√
5,

and hence the next result.

Proposition 40. If r, k, and s are integers, then

Gs (Hr+k+1 +Hr+k−1) + (−1)r−1Gs−r (Hk+1 +Hk−1)

= G0Fr (Hk+s +Hk+s−2) +G1Fr (Hk+s+1 +Hk+s−1) .

Note that we used

Gs+r − (−1)rGs−r = Fr (Gs+1 +Gs−1) , [23, Formula (10b)].

Note also that (Hj) = (Lj) in the proposition gives the Howard identity (11) while (Hj) = (Fj)
produces (12).

Remark 41. It should be noted that in order that the results obtained by applying the method
(second component) be valid, it is necessary that the (generalized) Fibonacci function identity
obtained from the original (generalized) Fibonacci number identity holds for all real x; not
just integers. Also, the derivative of (−1)x is an imaginary number for real x. In order not
to lose this value, therefore, (−1)2k must not be set equal to unity in the original Fibonacci
identity when converting to the Fibonacci function form. The method (second component)
involves taking the imaginary part. This point is taken into consideration in the examples
presented in § 5.2.1 to 5.2.3.

5.2.1 A generalization of the Gelin-Cesàro identity

Since
Gk−1Gk+1 = G2

k − (−1)keG, [23, Identity 28],

where eG = G2
0 −G2

1 +G1G0, and

Gk−2Gk+2 = (Gk −Gk−1) (Gk +Gk+1)

= G2
k + (GkGk+1 −Gk−1Gk)−Gk−1Gk+1

= G2
k +G2

k −Gk−1Gk+1

= G2
k +G2

k −
(

G2
k − (−1)keG

)

= G2
k + (−1)keG;
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we have the following generalization of the Gelin-Cesàro identity:

Gk−2Gk−1Gk+1Gk+2 = G4
k − (−1)2ke2G,

where we have retained (−1)2k to allow a direct conversion to the gibonacci function form
which is required to hold for all real numbers k, namely,

g(k − 2)g(k − 1)g(k + 1)g(k + 2) = g(k)4 − (−1)2ke2G. (142)

Differentiating (142) gives

d

dk
g(k − 2)g(k − 1)g(k + 1)g(k + 2)

+ g(k − 2)
d

dk
g(k − 1)g(k + 1)g(k + 2)

+ g(k − 2)g(k − 1)
d

dk
g(k + 1)g(k + 2)

+ g(k − 2)g(k − 1)g(k + 1)
d

dk
g(k + 2)

= 4g(k)3
d

dk
g(k)− 2i(−1)2kπe2G;

so that taking the imaginary part, we have

BGβ
k−2Gk−1Gk+1Gk+2 +Gk−2BGβ

k−1Gk+1Gk+2

+Gk−2Gk−1BGβ
k+1Gk+2 +Gk−2Gk−1Gk+1BGβ

k+2

= 4G3
kBGβ

k + 2(−1)2ke2G
√
5;

and substituting (G1 −G0α) for BG from (102) and multiplying through by βr yields

βk+r−2Gk−1Gk+1Gk+2 +Gk−2β
k+r−1Gk+1Gk+2

+Gk−2Gk−1β
k+r+1Gk+2 +Gk−2Gk−1Gk+1β

k+r+2

= 4G3
kβ

k+r + 2
(

βr+1G0 − βrG1

)

eG
√
5,

(143)

which also implies

αk+r−2Gk−1Gk+1Gk+2 +Gk−2α
k+r−1Gk+1Gk+2

+Gk−2Gk−1α
k+r+1Gk+2 +Gk−2Gk−1Gk+1α

k+r+2

= 4G3
kα

k+r − 2
(

αr+1G0 − αrG1

)

eG
√
5.

(144)

Note that we used
1

BG

=
1

G1 −G0α
=

G0β −G1

eG
.

Combining (143) and (144), we arrive at the generalization of the Gelin-Cesàro identity
stated in Proposition 42.
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Proposition 42. If k and r are integers, then

Hk+r−2Gk−1Gk+1Gk+2 +Gk−2Hk+r−1Gk+1Gk+2

+Gk−2Gk−1Hk+r+1Gk+2 +Gk−2Gk−1Gk+1Hk+r+2

= 4Hk+rG
3
k − 2eGG0 (Hr+2 +Hr) + 2eGG1 (Hr+1 +Hr−1) .

5.2.2 Generalizations of Catalan’s identity

Upon differentiating the Fibonacci function form

f(k − r)f(k + r) = f(k)2 + (−1)k+r+1f(r)2,

of Catalan’s identity
Fk−rFk+r = F 2

k + (−1)k+r+1F 2
r ,

with respect to k and applying the prescription (89) and (91), we obtain

Fk+rβ
k−r+s + Fk−rβ

k+r+s = 2Fkβ
k+s + (−1)k+rβsF 2

r

√
5, (145)

and hence also

Fk+rα
k−r+s + Fk−rα

k+r+s = 2Fkα
k+s − (−1)k+rαsF 2

r

√
5. (146)

Combining (145) and (146) according to the Binet formula gives the following generalization
of Catalan’s identity.

Proposition 43. If k, r, and s are integers, then

Fk+rGk−r+s + Fk−rGk+r+s = 2FkGk+s + (−1)k+r+1F 2
r (Gs+1 +Gs−1) . (147)

Writing

Fk−s+rGk−r + Fk−s−rGk+r = 2Fk−sGk + (−1)k−s+r+1F 2
r (Gs+1 +Gs−1) , (148)

and setting k = s gives the multiplication formula

Gs+r − (−1)rGs−r = Fr (Gs+1 +Gs−1) , (149)

derived also by Vajda [23, Formula (10b)].
Applying the method (second component) to (149) with r as the index of interest gives

the next result.

Proposition 44. If r, s, and t are integers, then

Lr (G0Hs+t−1 +G1Hs+t)− (−1)rGs−r (Ht+1 +Ht−1) = Hr+t (Gs+1 +Gs−1) .
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In particular, setting t = s, (Hj) = (Gj), and using [23, Formula (10a)]:

Gn+m + (−1)mGn−m = LmGn,

we have
G0G2s−1 +G1G2s = Gs(Gs+1 +Gs−1).

Differentiating the Fibonacci function form of (148), namely,

f(k − s+ r)g(k − r) + f(k − s− r)g(k + r)

= 2f(k − s)g(k) + (−1)k−s+r+1f(r)2 (g(s+ 1) + g(s− 1)) ,

with respect to s, taking the imaginary part and making use of (89), (91), (101) and (102)
yields the identity stated in Proposition (45).

Proposition 45. If k, r, s, and t are integers, then

Gk+s−rHk+r+t +Gk+s+rHk−r+t

= 2Gk+sHk+t

+ (−1)k+rF 2
r (G0 (Hs+t +Hs+t−2) +G1 (Hs+t+1 +Hs+t−1))

− (−1)k+rF 2
r (Gs+1 +Gs−1) (Ht+1 +Ht−1) .

In particular,
Gk−rGk+r −G2

k = (−1)k+rF 2
r eG.

5.2.3 Generalization of an identity obtained from an inverse tangent relation

The method (second component) cannot be applied to (10) because (54) on page 16 is valid
only for integers k. In order to redeem the situation, we proceed as follows:

tan−1 1

F2k

− tan−1 1

F2k+2

= tan−1 F2k+2 − F2k

F2kF2k+2 + 1

= tan−1 F2k+1

F 2
2k+1 + (−1)2k+1 + 1

,

where we refrained from setting (−1)2k+1 = −1 to ensure that the Fibonacci function form

tan−1 1

f(2k)
− tan−1 1

f(2k + 2)
= tan−1 f(2k + 1)

f(2k + 1)2 + (−1)2k+1 + 1
, (150)

holds for all real numbers k.
Differentiating (150) with respect to k and taking the imaginary part, we find

1

F 2
2k + 1

ℑ df

dk
(2k)− 1

F 2
2k+2 + 1

ℑ df

dk
(2k + 2)

=
1

F 2
2k+1 + 1

ℑ df

dk
(2k + 1)− π

F2k+1

(

F 2
2k+1 + 1

) ,
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which, upon use of (89) and (91), gives

β2k

F 2
2k + 1

− β2k+2

F 2
2k+2 + 1

=
β2k+1

F 2
2k+1 + 1

+

√
5

F2k+1

(

F 2
2k+1 + 1

) ,

that is
αr+2

F 2
2k + 1

− αr

F 2
2k+2 + 1

=
α2k+r+2

√
5

F2k+1

(

F 2
2k+1 + 1

) − αr+1

F 2
2k+1 + 1

, (151)

where r is an arbitrary integer and also

βr+2

F 2
2k + 1

− βr

F 2
2k+2 + 1

= − β2k+r+2
√
5

F2k+1

(

F 2
2k+1 + 1

) − βr+1

F 2
2k+1 + 1

. (152)

By combining (151) and (152), we have the next result.

Proposition 46. If r and k are integers, then

Gr+2

F 2
2k + 1

− Gr

F 2
2k+2 + 1

=
G2k+r+3 +G2k+r+1

F2k+1(F 2
2k+1 + 1)

− Gr+1

F 2
2k+1 + 1

.

6 Extension of the method to the Horadam sequence

In this section we extend the method to a general non-degenerate second order sequence
(Horadam sequence).

The Horadam sequence (Wj) = (Wj(W0,W1;P,Q)) is defined, for all integers and arbi-
trary real numbers W0, W1, P 6= 0, and Q 6= 0, by the recurrence relation

Wj = PWj−1 −QWj−2, j ≥ 2, (153)

with W−j = (PW−j+1 −W−j+2) /Q.
Associated with (Wj) are the Lucas sequences of the first kind, (Uj(P,Q)) = (Wj(0, 1;P,Q)),

and the second kind, (Vj(P,Q)) = (Wj(2, P ;P,Q)); that is

U0 = 0, U1 = 1, Uj = PUj−1 −QUj−2, j ≥ 2, (154)

and
V0 = 2, V1 = P, Vj = PVj−1 −QVj−2, j ≥ 2, (155)

with U−j = (PU−j+1 − U−j+2) /Q and V−j = (PV−j+1 − V−j+2) /Q.
Note that, for convenience and since no confusion can arise, we have retained the notation

(Wj) = (Wj(W0,W1;P,Q)) for the Horadam sequence and (Uj) = (Uj(P,Q)) and (Vj) =
(Vj(P,Q)) for the Lucas sequences.

The closed formula forWj(W0,W1;P,Q) in the non-degenerate case, P 2−4Q > 0, remains

Wj =
Aσj − Bτ j

σ − τ
=

Aσj − Bτ j

δ
, (156)
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where
A = W1 −W0τ, B = W1 −W0σ, (157)

with σ and τ now given by

σ =
P +

√

P 2 − 4Q

2
, τ =

P −
√

P 2 − 4Q

2
; (158)

so that
σ + τ = P, σ − τ =

√

P 2 − 4Q = δ, and στ = Q. (159)

In particular,

Uj =
σj − τ j

σ − τ
, Vj = σj + τ j. (160)

The following identities, of which (70) to (73) are particular cases, are easy to derive:

Uj+1 −QUj−1 = Vj, (161)

Uj+1 +QUj−1 = PUj, (162)

Vj+1 −QVj−1 = Ujδ
2, (163)

and
Vj+1 +QVj−1 = PVj.

Identity (75) of Lemma 13 on page 24 now reads

Aσj +Bτ j = Wj+1 −QWj−1. (164)

We define the Horadam function w(x) by

w(x) =
Aσx − Bτx

σ − τ
=

Aσx − Bτx

δ
, x ∈ R, (165)

where A and B are as defined in (157) and σ and τ are as given in (158).
We now discuss the extension of the method to the Horadam sequence. We distinguish

the following three cases:

1. Q < 0;

2. P > 0 and Q > 0;

3. P < 0 and Q > 0.
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6.1 Case 1: Q < 0

If the Horadam parameter, Q, is negative, then we see from (158) that σ is positive and τ is
negative for all real numbers P ; and equation (87) on page 27 in the proof of the theorem
now reads

d

dx
w(x)

∣

∣

∣

∣

x=j∈Z

=
1

δ

(

(Wj+1 −QWj−1) ln σ − Bτ j ln (−Q)−Bτ jπi(2m+ 1)
)

, by (164).

Taking the real and imaginary parts, we have

ℜ
(

d

dx
w(x)

∣

∣

∣

∣

x=j∈Z

)

=
1

δ

(

(Wj+1 −QWj−1) ln σ −BW τ j ln (−Q)
)

(166)

and

ℑ
(

d

dx
w(x)

∣

∣

∣

∣

x=j∈Z

)

= −BW

δ
τ jπ(2m+ 1), (167)

where m is some integer and
BW = B = W1 −W0σ.

Equation (166) reduces to (85) when Q = −1. Equation (167) is the same as (88) on page 27
in Section 5, except that the values of σ and τ now depend on P and Q.

A description of how the method (first component) for obtaining new identities from
existing ones works for the general second order (Horadam) sequence (Wj(W0,W1;P,Q))
with Q < 0 now follows.

1. Let k be a free index in the known identity. Replace each Horadam number, say
Wh(k,...), with a certain differentiable function of k, namely, w(h(k, . . .)), with k now
considered a variable.

2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2 and take the real part, using also the following
prescription:

w(h(k, . . .)) → Wh(k,...), (168)

ℜ
(

∂w

∂k
(h(k, . . .))

)

→ 1

δ

((

Wh(k+1,...) −QWh(k−1,...)

)

ln σ −Bτh(k,...) ln (−Q)
)

; (169)

where σ = (P + δ)/2, τ = (P − δ)/2, and δ =
√

P 2 − 4Q.
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In particular, for the Lucas sequences, we have

u(h(k, . . .)) → Uh(k,...), (170)

ℜ∂u

∂k
(h(k, . . .)) → Vh(k,...)

δ
ln σ − τh(k,...)

δ
ln (−Q) ; (171)

and

v(h(k, . . .)) → Vh(k,...), (172)

ℜ∂v

∂k
(h(k, . . .)) → Uh(k,...)δ ln σ + τh(k,...) ln (−Q) ; (173)

of which the generalized Fibonacci relations (35)–(40) on page 11 are particular cases.
Next, we describe how the method (second component) works for the general second

order (Horadam) sequence (Wj(W0,W1;P,Q)) when Q < 0. The scheme is the following.

1. Let k be a free index in the known identity. Replace each Horadam number, say
Wh(k,...), with a certain differentiable function of k, namely, w(h(k, . . .)), with k now
considered a variable.

2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2 and take the imaginary part, using also the
following prescription:

w(h(k, . . .)) → Wh(k,...), (174)

ℑ∂w

∂k
(h(k, . . .)) → −BW

δ
πτh(k,...) =

W0σ −W1

δ
πτh(k,...); (175)

where σ = (P + δ)/2, τ = (P − δ)/2 and δ =
√

P 2 − 4Q.

In particular, for the Lucas sequences, we have

u(h(k, . . .)) → Uh(k,...), (176)

ℑ∂u

∂k
(h(k, . . .)) → −BU

δ
πτh(k,...) = −πτh(k,...)

δ
; (177)

and

v(h(k, . . .)) → Vh(k,...), (178)

ℑ∂v

∂k
(h(k, . . .)) → −BV

δ
πτh(k,...) = πτh(k,...); (179)

of which the Fibonacci and Lucas relations (89)–(92) on page 28 are particular cases.
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Note that Proposition 17 on page 29 on the interchangeability of σ and τ , remains valid;
and that the method (second component) is applicable provided the expression obtained
after substituting Fibonacci, Lucas, gibonacci and Horadam functions f(x), l(x), u(x), v(x),
g(x) and g(x) in the given identity holds for all real numbers, as noted in the remark on
page 43 .

We give an example; but first we state a needed Lemma.

Lemma 47. If k is an integer, then

Wk+1 − σWk

W1 − σW0

= τ k,
Wk+1 − τWk

W1 − τW0

= σk.

Proof. We prove, by induction, the first identity for a non-negative integer k; and invoke a
theorem of Bruckman and Rabinowitz [3] that if an identity involving generalized Fibonacci
numbers is true for all positive subscripts, it is true for all non-positive subscripts as well.

The identity is obviously true for the base case k = 0. We assume the identity holds for
k = 1, 2, . . . n. We have

W(n+1)+1 − σWn+1

W1 − σW0

=
PWn+1 −QWn − σWn+1

W1 − σW0

=
(σ + τ)Wn+1 − στWn − σWn+1

W1 − σW0

=
τWn+1 − στWn

W1 − σW0

=
Wn+1 − σWn

W1 − σW0

τ = τnτ = τn+1.

Thus, the identity holds for n+ 1 whenever it holds for n.

Consider the following identity ([9, Equation (3.14)]):

UrWk+1 −QUr−1Wk = Wk+r.

We write
u(r)w(k + 1)−Qu(r − 1)w(k) = w(k + r);

and differentiate with respect to r, obtaining

d

dr
u(r) · w(k + 1)− d

dr
u(r − 1) ·Qw(k) =

∂w

∂r
(k + r). (180)

Taking the real part, we get

ℜ d

dr
u(r) ·Wk+1 −ℜ d

dr
u(r − 1) ·QWk = ℜ∂w

∂r
(k + r);

which, using (171) and (169), after some rearrangement, gives:

((VrWk+1 −QVr−1Wk)− (Wk+r+1 −QWk+r−1)) ln σ

=
(

(Wk+1 − σWk)− (W1 − σW0) τ
k
)

τ r ln (−Q) .
(181)
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On account of Lemma 47, the right hand side of (181) vanishes and we obtain

VrWk+1 −QVr−1Wk = Wk+r+1 −QWk+r−1, Q < 0. (182)

If Q = −1, then (182) reduces to identity (19) derived in Section 2.4.2.
Next, taking the imaginary part of (180), we find

ℑ d

dr
u(r) ·Wk+1 −ℑ d

dr
u(r − 1) ·QWk = ℑ∂w

∂r
(k + r);

which, using (177) and (175), gives

−τ rWk+1 +Qτ r−1Wk = (W0σ −W1) τ
k+r,

that is
−τ rWk+1 +Qτ r−1Wk = W0Qτ k+r−1 −W1τ

k+r (183)

and also
−σrWk+1 +Qσr−1Wk = W0Qσk+r−1 −W1σ

k+r. (184)

Combining (183) and (184), using the Binet formula, we have the result stated in Proposi-
tion 48.

Proposition 48. If r and k are integers, then

ZrWk+1 −QZr−1Wk = W1Zk+r −QW0Zk+r−1, Q < 0; (185)

where Wj = Wj (W0,W1;P,Q) and Zj = Zj (Z0, Z1;P,Q) are two Horadam sequences.

6.2 Case 2: P > 0 and Q > 0

If the Horadam parameters P and Q are both positive, then it is clear from (158) that σ and
τ are both positive. In this case we have

d

dx
w(x) =

1

δ

(

A
d

dx
σx −B

d

dx
τx
)

=
1

δ
((Aσx + Bτx) ln σ −Bτx lnQ) ;

so that
d

dx
w(x)

∣

∣

∣

∣

x=j∈Z

=
1

δ

(

(Wj+1 −QWj−1) ln σ − Bτ j lnQ
)

.

A description of how the method (first component) for obtaining new identities from existing
ones works for the general second order (Horadam) sequence (Wj(W0,W1;P,Q)), P > 0, and
Q > 0 now follows.

1. Let k be a free index in the known identity. Replace each Horadam number, say
Wh(k,...), with a certain differentiable function of k, namely, w(h(k, . . .)), with k now
considered a variable.
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2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2, using also the following prescription:

w(h(k, . . .)) → Wh(k,...), (186)

∂w

∂k
(h(k, . . .)) → 1

δ

((

Wh(k+1,...) −QWh(k−1,...)

)

ln σ −Bτh(k,...) lnQ
)

; (187)

where, as usual, σ = (P + δ)/2, τ = (P − δ)/2, and δ =
√

P 2 − 4Q.

In particular, for the Lucas sequences, we have

u(h(k, . . .)) → Uh(k,...), (188)

∂u

∂k
(h(k, . . .)) → Vh(k,...)

δ
ln σ − τh(k,...)

δ
lnQ; (189)

and

v(h(k, . . .)) → Vh(k,...), (190)

∂v

∂k
(h(k, . . .)) → Uh(k,...)δ ln σ + τh(k,...) lnQ. (191)

Returning to the example in the previous section, using (189) and (187) in (180) gives

((VrWk+1 −QVr−1Wk)− (Wk+r+1 −QWk+r−1)) ln σ

=
(

(Wk+1 − σWk)− (W1 − σW0) τ
k
)

τ r lnQ, Q > 0,

which is the same as (181) with ln (−Q) replaced with lnQ; and which in view of Lemma 47
gives

VrWk+1 −QVr−1Wk = Wk+r+1 −QWk+r−1, P > 0, Q > 0. (192)

6.3 Case 3: P < 0 and Q > 0

If the parameter P is negative and the parameter Q is positive, then it is obvious from (158)
that σ and τ are both negative numbers. In this case we have

d

dx
w(x) =

1

δ

(

A
d

dx
σx − B

d

dx
τx
)

=
1

δ
(Aσx (iπ(2m+ 1) + ln (−σ))−Bτx (iπ(2n+ 1) + ln (−τ)))

=
1

δ
((Aσx + Bτx) ln (−σ)−Bτx lnQ) +

iπ

δ
((2m+ 1)Aσx − (2n+ 1)Bτx) ,
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where m and n are integers; so that

ℜ
(

d

dx
w(x)

∣

∣

∣

∣

x=j∈Z

)

=
1

δ

(

(Wj+1 −QWj−1) ln (−σ)−BW τ j lnQ
)

(193)

and

ℑ
(

d

dx
w(x)

∣

∣

∣

∣

x=j∈Z

)

=
2π

δ

(

mAσj − nBτ j
)

+ πWj, (194)

where m and n are integers.
We now describe how the method (first component) works for the general second order

(Horadam) sequence (Wj(W0,W1;P,Q)) with P < 0 and Q > 0.

1. Let k be a free index in the known identity. Replace each Horadam number, say
Wh(k,...), with a certain differentiable function of k, namely, w(h(k, . . .)), with k now
considered a variable.

2. By applying the usual rules of calculus, differentiate, with respect to k, through the
identity obtained in step 1.

3. Simplify the equation obtained in step 2 and take the real part, using also the following
prescription:

w(h(k, . . .)) → Wh(k,...), (195)

ℜ
(

∂w

∂k
(h(k, . . .))

)

→ 1

δ

((

Wh(k+1,...) −QWh(k−1,...)

)

ln (−σ)− Bτh(k,...) lnQ
)

; (196)

where σ = (P + δ)/2, τ = (P − δ)/2, and δ =
√

P 2 − 4Q.

In particular, for the Lucas sequences, we have

u(h(k, . . .)) → Uh(k,...), (197)

ℜ∂u

∂k
(h(k, . . .)) → Vh(k,...)

δ
ln (−σ)− τh(k,...)

δ
lnQ; (198)

and

v(h(k, . . .)) → Vh(k,...), (199)

ℜ∂v

∂k
(h(k, . . .)) → Uh(k,...)δ ln (−σ) + τh(k,...) lnQ. (200)

We see from (194) that the method (second component) will, in general, not generate
new identities for the general second order (Horadam) sequence (Wj(W0,W1;P,Q)) when
P < 0 and Q > 0. Taking the principal value in (194) gives

ℑ∂w

∂k
(h(k, . . .)) → πWh(k,...) (201)
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for a Horadam function w(h(k, . . .)) and hence does not facilitate a generalization of an
identity obtained from the first component.

To illustrate the first component for the case P < 0 and Q > 0, equation (181) on page 51
now reads

((VrWk+1 −QVr−1Wk)− (Wk+r+1 −QWk+r−1)) ln (−σ)

=
(

(Wk+1 − σWk)− (W1 − σW0) τ
k
)

τ r lnQ, Q > 0,

which in view of Lemma 47 gives

VrWk+1 −QVr−1Wk = Wk+r+1 −QWk+r−1, P < 0, Q > 0. (202)

Comparing (182), (192) and (202), we find the result stated in the next proposition.

Proposition 49. If k and r are integers, then

VrWk+1 −QVr−1Wk = Wk+r+1 −QWk+r−1, Q 6= 0. (203)

In particular, on account of (161) and (163), we have for the Lucas sequences,

VrUk+1 −QVr−1Uk = Vk+r,

VrVk+1 −QVr−1Vk = δ2Uk+r.

We note that identity (203) is a particular case of Howard [12, Theorem 3.1].
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