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Abstract

The Hausdorff metric provides a way to measure the distance between nonempty

compact sets in R
N , from which we can build a geometry of sets. This geometry

is very different than the standard Euclidean geometry and provides many interesting

results. In this paper we focus on line segments in this geometry, where pairs of disjoint

sets A and B satisfying certain distance conditions have the property that there are

exactly m different sets on the line segment AB at every distance from A, where m can

assume many values different than one. We provide new families of sets that generate

previously unrecorded integer sequences via these values of m by connecting the values

of m to the number of edge coverings of a graph corresponding to the sets A and B.
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1 Introduction

The Hausdorff metric h imposes a geometry on the hyperspace H(RN) of all nonempty
compact subsets of R

N . One notion of betweenness in this geometry is an extension of
betweenness in Euclidean geometry. For certain positive integers m, there exists a pair
of disjoint finite sets A and B for which there are m = #([A,B]) different sets on the
line segment defined by these sets at every distance from one of the sets. There are many
fascinating and interesting properties of these numbers m = #([A,B]). For example, for
each integer m between 1 and 18 there exist sets A and B such that #([A,B]) = m, but no
such sets exist for m = 19. Further discussion of this can be found in Section 3.

The number #([A,B]) is related to edge covers of bipartite graphs, which is explained
in more detail in Section 4. For each fixed value of m, varying the size of one of the partite
sets yields different numbers of edge covers, generating integer sequences. These sequences
help us understand more about line segments in H(RN) and edge covers of graphs.

2 The Hausdorff metric

Felix Hausdorff introduced the Hausdorff metric h in the early 20th century as a way to
measure the distance between compact sets. The Hausdorff metric imposes a geometry on
the space H(RN), which is the subject of our study. Throughout, we let dE denote the
standard Euclidean metric in R

N .

Definition 1. The Hausdorff distance h between sets A and B in H(RN) is

h(A,B) = max{d(A,B), d(B,A)},

where
d(A,B) = max

a∈A
{d(a,B)}

and
d(x,A) = min

a∈A
{dE(x, a)}

for every x ∈ A.

In other words, to find the distance d(A,B) from set A to set B, we measure the Euclidean
distance from a point x in A farthest from B to a point in B closest to x. The Hausdorff
distance between A and B is then the larger of d(A,B) and d(B,A). The mapping h in
Definition 1 is called the Hausdorff metric. The proof that h is a metric can be found in
many topology texts, see Barnsley or Edgar [1, 6], for example.

Example 2. Let a1 = (−2, 0), a2 = (−1, 0), b1 = (1,−1), and b2 = (1, 1) in R
2, and define

segments A and B in R
2 as A = a1a2 and B = b1b2 as shown at left in Figure 1. In this

example, d(A,B) = dE(a1, (1, 0)) = 3 and d(B,A) = dE(b1, a2) =
√
5. So h(A,B) = 3.

(Note that d itself is not a metric since d is not symmetric.)
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Figure 1: Left: Segments A and B. Right: Dilations of the segments.

3 Betweenness and finite configurations

We can use the Hausdorff metric to extend the notion of Euclidean betweenness to H(RN).

Definition 3. Let A, B, and C be in H(RN). The set C is between A and B in H(RN) if

h(A,B) = h(A,C) + h(C,B).

We adopt the notation ACB from Blumenthal [3] when C is between A and B. So, as in
Euclidean geometry, the line segment determined by A 6= B in H(RN) is the set of all sets
C satisfying ACB.

The Hausdorff metric is a complicated one, and it is generally not clear how to determine
which sets lie on a given line segment. One construction that helps in this regard is the
dilation of a set.

Definition 4. Let A be in H(RN) and let s be a positive real number. The dilation of A
by s is the set

(A)s = {x ∈ R
N | dE(x, a) ≤ s for some a ∈ A}.

Example 5. Consider again the segments A and B presented in Example 2. In this case,
we have r = h(A,B) = 3. Let s be a real number between 0 and 3 and let t = r − s. See
Figure 1 at right for illustrations of the dilations (A)s and (B)t for a fixed value of s.

The dilation of a set A by s has two important properties. The first is that h(A, (A)s) = s.
The second is that if C satisfies ACB, then C ⊆ (A)s ⇐⇒ d(C,A) ≤ s [5, Theorem 4]. It
follows that C satisfies ACB with h(A,C) = s, then C is a subset of (A)s ∩ (B)h(A,B)−s. An
example of this intersection is shown at right in Figure 1. In fact, Bogdewicz [4] shows that
the set Cs = (A)s ∩ (B)h(A,B)−s always satisfies ACsB with h(A,Cs) = s.

Given sets A and B in H(RN), there are two possibilities for sets C that satisfy ACB.
Blackburn et al. [2] show that if there is a point a ∈ A or a point b ∈ B such that d(a,B) 6=

3



h(A,B) or d(b, A) 6= h(A,B), then there are infinitely many different sets C that satisfy
ACB and d(A,C) = s for any 0 < s < h(A,B). The other possibility is the one of interest
in this paper and we call such a pair of sets a configuration.

Definition 6. A configuration is a pair A,B of sets in H(RN) such that d(a,B) = d(b, A) =
h(A,B) for every a ∈ A and b ∈ B.

We will denote the configuration pair A, B as [A,B]. Blackburn et al. [2] demonstrate
that if A and B are finite sets such that [A,B] is a finite configuration, then there is a
finite number k such that there are exactly k sets C satisfying ACB with h(A,C) = s for
every 0 < s < h(A,B). We denote this number k of sets C satisfying ACB for a finite
configuration [A,B] – that is, the number of different sets which exist at the same location
on the line segment between A and B in H(RN) – by #([A,B]). Moreover, the number
of sets C with ACB and h(A,C) = s is the same for every value of s. Lund et al. [8]
show that there are infinitely many different integers that appear as #([A,B]) – all of the
Fibonacci numbers and even indexed Lucas numbers, for example. Every integer between 1
and 18 is #([A,B]) for some [A,B], and every number between 20 and 36 is #([A,B]) for
some [A,B]. However, Blackburn et al. [2] show that there is, surprisingly, no configuration
[A,B] with #([A,B]) = 19, and Honigs [7] proves that there is no configuration [A,B]
with #([A,B]) = 37. Ovsyannikov [9] extends these results to show that there exist no
configurations [A,B] with #([A,B]) equal to 41, 59, or 67.

4 Bipartite graphs

We are interested in determining which integers can occur as #([A,B]) for some finite con-
figuration [A,B]. As we will see, there is a correspondence between finite configurations and
bipartite graphs, and #([A,B]) is equal to the number of edge covers of the corresponding
graph.

We use the standard terminology and notation from graph theory. We consider simple
graphs G = (V,E) where V is the vertex set and E is the edge set. We say that two vertices
are adjacent if they have an edge in common, two edges are incident if they share a vertex,
and an edge and a vertex are incident if the edge contains the vertex. A bipartite graph
is a graph G = (V,E) such that there exist disjoint sets V1 and V2 (called parts) such that
V = V1 ∪ V2 and there are no adjacent vertices within a part.

Now we make the connection between finite configurations and bipartite graphs. Given
A and B in H(RN), any set C that lies on the line segment AB must satisfy h(A,C) = s and
h(C,B) = h(A,B)− s for some 0 < s < h(A,B). This implies that C ⊆ (A)s ∩ (B)h(a,b)−s.
If [A,B] is a finite configuration, then (A)s ∩ (B)h(A,B)−s is a finite set as illustrated at left
in Figure 2, where A = {a1, a2}, B = {b1, b2}, and C = {c1, c2, c3, c4}.

We can represent this configuration as a bipartite graph. If [A,B] is a finite configuration,
let V = A∪B, and let E be the set {(a, b) : a ∈ A and b ∈ B such that dE(a, b) = h(A,B)}.
Then G[A,B] = (V,E) forms a bipartite graph with parts A and B and edge set E. Notice
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Figure 2: Left: Sets on the line segment AB in H(RN). Right: A corresponding bipartite
graph.

that if C satisfies ACB with h(A,C) = s, then each point c ∈ C satisfies accbc for some
ac ∈ A and bc ∈ B, with dE(ac, c) = s. This point c can be identified with the edge (ac, bc)
in G[A,B] as illustrated at right in Figure 2. The set EC = {(ac, bc) : c ∈ C} is a subset of
E. The subsets C of (A)s ∩ (B)h(a,b)−s that satisfy ACB are those sets C such that every
a ∈ A is a distance s from some c ∈ C, and every b ∈ B is a distance h(a, b)− s from some
c′ ∈ C. In graph theory terms, EC will not isolate any vertices in V . Such a set is called an
edge cover.

Definition 7. An edge cover of a graph G = (V,E) is a subset E ′ of the set E such that
every vertex in V is incident to at least one edge in E ′.

So EC is an edge cover of G[A,B]. Thus, #([A,B]) is equal to the number of edge covers
of G[A,B]. Similarly, every bipartite graph can be viewed as a finite configuration [2, Con-
figuration Construction Theorem]. We also use the notation #(G) for the number of edge
coverings of a graph G.

5 Edge covers of complete bipartite graphs

To understand which integers can appear as #([A,B]) for a finite configuration [A,B], we
investigate edge covers of bipartite graphs. In an attempt to be systematic, we begin with
the complete bipartite graphs, then study what happens when we begin to remove edges.
We let Km,n denote the complete bipartite graph with parts V1 and V2, where |V1| = m and
|V2| = n. Throughout, we assume m ≤ n.

We can also calculate the number of edge covers of a bipartite graph using biadjacency
matrices whose entries are all 0 or 1 (a {0, 1} matrix). The biadjacency matrix of a bipartite
graph with parts V1 and V2 of size m and n is an m×n matrix whose ijth entry is 1 if the ith
vertex in V1 is adjacent to the jth vertex in V2 and is 0 otherwise. Since an edge cover cannot
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isolate a vertex, the number of edge covers of such a bipartite graph is equal to the number
of {0, 1} m× n matrices with no zero rows or columns. This number is well-known and can
be calculated through a standard inclusion-exclusion principle argument. The next theorem
provides the result. (Entry A048291 in the Online Encyclopedia of Integer Sequences (OEIS)
gives this formula for n× n matrices.)

Theorem 8. Let E(m,n) be the number of edge covers of a Km,n complete bipartite graph.
Then

E(m,n) =
m
∑

j=0

(

m

j

)

(−1)j(2m−j − 1)n.

With this result in hand, we proceed to determine the number of edge covers of the
graphs that result from Km,n by removing one to three edges.

6 Edge covers of Km,n minus one edge

To calculate the number of edge covers of a complete bipartite graph that is missing edges,
we use the following proposition from Honigs [7].

Proposition 9. Let G={V,E} be a graph. Let v1, v2 ∈ V , and suppose (v1, v2) /∈ E. Let G′

= {V,E ′} where E ′=E ∪ {(v1, v2)}. Then

#(G′) = 2#(G) + #(G− v1) + #(G− v2) + #(G− v1 − v2).

We use Proposition 9 to determine the number of edge covers of graphs obtained from
complete graphs by removing one, two, or three edges. We begin with removing one edge.

Theorem 10. Let G be a graph obtained from a complete bipartite graph Km,n after removing
one edge. Then the number of edge covers of G is E1(m,n) where

E1(m,n) = #(G) =
1

2
(E(m,n)− E(m− 1, n)− E(m,n− 1)− E(m− 1, n− 1)). (1)

(The function E in Theorem 10 is defined in Theorem 8.)

Proof. Let the graph G′ be a complete bipartite graph and the graph G be G′ missing one
edge, (v1, w1). Since we are only removing one edge, the completeness of Km,n implies that
it does not matter which edge. Solving for #(G) in Proposition 9 gives

#(G) =
1

2
(#(G′)−#(G− v1)−#(G− w1)−#(G− v1 − w1)).

As depicted in Figure 3, removing vertex v1 from G produces a Km−1,n graph. Removing
vertex w1 from G produces a Km,n−1 graph. Removing vertices v1 and w1 from G produces
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Km,n minus vertex v2 Km,n minus vertices missing vertices v1 and v2

Figure 3: Calculating #(Km,n minus an edge).

a Km−1,n−1 graph. Therefore

#(G) =
1

2
(#(Km,n)−#(Km−1,n)−#(Km,n−1)−#(Km−1,n−1))

=
1

2
(E(m,n)− E(m− 1, n)− E(m,n− 1)− E(m− 1, n− 1)).

As a result of Theorem 10, we obtain integer sequences by fixing the value of m in
calculations of E1(m,n) and letting n change. As examples, we have the sequences given
in Table 1 (sequences simplified with a computer algebra system). The first entry appears
as sequences A024023 and A103453 in the OEIS. This graph theoretic approach to these
sequences provides a new perspective from which to view these sequences

E1(2, n) 3n−1 − 1

E1(3, n) (A335608) 3 · 7n−1 − 5 · 3n−1 + 2

E1(4, n) (A335609) 7 · 15n−1 − 16 · 7n−1 + 4 · 3n − 3

E1(5, n) (A335610) 15 · 31n−1 − 43 · 15n−1 + 46 · 7n−1 − 22 · 3n−1 + 4

E1(6, n) (A335611) 31 · 63n−1 − 106 · 31n−1 + 145 · 15n−1 − 100 · 7n−1 + 35 · 3n−1 − 5

Table 1: Sequences (E1(m,n))n≥m.

It is not difficult to see from the sum (1) and Theorem 8 that the highest power expo-
nential term in E1(m,n) comes from the summands E(m,n) and E(m,n − 1). This term
is

1

2

(

(2m − 1)n − (2m − 1)n−1
)

= (2m−1 − 1)(2m − 1)n−1.
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So the sequence (E1(m,n))n≥m behaves asymptotically as (2m − 1)n−1 as n increases.
To conceptualize how edge covers of complete bipartite graphs missing one edge relate

to the Hausdorff metric geometry, we consider the graph G that is K6,2 missing one edge.
Since E1(6, 2) = 242 we know that G has 242 edge covers. The corresponding configuration
[A,B] with A = {a1, a2, a3, a4, a5, a6} and B = {b1, b2} is illustrated in Figure 4. Because
#([A,B]) = #(G), the number of distinct sets C that lie on the segment AB in H(RN) at
any fixed distance from A is also 242.

b1 b2

a1a2

a3

a4

a5

a6

Figure 4: A configuration [A,B].

7 Edge covers of Km,n minus two edges

The next step in our calculations of numbers of edge covers of subgraphs of complete bipartite
graphs is to consider the case of removing two edges. When we remove two edges from a
complete bipartite graph, there are three different cases for the number of edge covers of the
graph that are based upon the vertices from which the two edges are removed.

Theorem 11. Let G be a Km,n complete bipartite graph missing two edges. Partition the
vertex set V of G into two parts, V1 and V2, where |V1| = m and |V2| = n.

1. The number of edge covers of G when the 2 removed edges are incident to the same
vertex in V1 and not incident to the same vertex in V2 is E21(m,n) where

E21(m,n) = #(G) =
1

2
(E1(m,n)− E(m− 1, n)− E1(m,n− 1)− E(m− 1, n− 1)).

2. The number of edge covers of G when the 2 removed edges are not incident to the same
vertex in V1 but are incident to the same vertex in V2 is E22(m,n) where

E22(m,n) = #(G) =
1

2
(E1(m,n)− E1(m− 1, n)− E(m,n− 1)− E(m− 1, n− 1)).
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3. The number of edge covers of G when the 2 removed edges are not incident to the same
vertex in V1 and are not incident to the same vertex in V2 is E23(m,n) where

E23(m,n) = #(G) =
1

2
(E1(m,n)− E1(m− 1, n)− E1(m,n− 1)− E1(m− 1, n− 1)).

Proof. Assume the graph G′ is a Km,n complete bipartite graph missing one edge. Let G be
a graph obtained from G′ by removing an edge. Let the vertex set V of G be partitioned
into two parts V1 = {v1, v2, . . . , vm} and V2 = {w1, w2, . . . , wn}. We consider three different
cases based on the incidence of the removed edges to certain vertices. The removed edges
can be incident to the same vertex in V1 but not in V2, incident to the same vertex in V2 but
not in V1, or not incident to the same vertex in V1 or V2, as illustrated from left to right,
respectively, in Figure 5.

w1 w2 wn

v1 v2 vm m

n
w1 w2 wn

v1 v2 vm m

n
w1 w2 wn

v1 v2 vm m

n

Figure 5: Case 1, Case 2, and Case 3 for removing two edges.

Case 1: Assume that the 2 removed edges in G are incident to the same vertex in V1 but
are not incident to the same vertex in V2. An illustration of such a graph G can be
seen at left in Figure 6. The edges (v1, w1) and (v1, w2) are missing, and both edges
are incident to vertex v1 in V1. The graph of G′ can be seen at left in Figure 6. Notice
that in the graph G′ only the edge (v1, w1) is missing.

w1 w2 wn

v1 v2 vm m

n
w1 w2 wn

v1 v2 vm m

n

The graph G′ The graph G

Figure 6: Case 1: Removing two edges incident to the same vertex.

Since G′ is a Km,n complete bipartite graph missing one edge, #(G′) = E1(m,n).

When we remove the vertex v1 from G, the result is a Km−1,n complete bipartite graph,
as seen at top left in Figure 7. So #(G− v1) = E(m− 1, n).

When we remove the vertex w2 from G, the result is a Km,n−1 complete bipartite graph
missing one edge, as seen at top right in Figure 7. So #(G− w2) = E1(m,n− 1).
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w1 w2 wn

v2 vm m−1

n
w1 wn

v1 v2 vm m

n−1

The graph G− v1 The graph G− w2

w1 wn

v2 vm m−1

n−1−1

The graph G− {v1, w2}

Figure 7: Case 1: Removing vertices from G.

When we remove vertices v1 and w2 from G, the result is a Km−1,n−1 complete bipartite
graph, as seen at bottom in Figure 7. So #(G− v1 − w2) = E(m− 1, n− 1).

Proposition 9 then gives us

#(G) =
1

2
(E1(m,n)− E(m− 1, n)− E1(m,n− 1)− E(m− 1, n− 1)).

Case 2: In this case, the 2 removed edges in G are not incident to the same vertex in V1

but are incident to the same vertex in V2. Note that this is the same case as case 1
with m and n interchanged.

Case 3: In this case, the 2 removed edges in G are not incident to the same vertex in V1

and are not incident to the same vertex in V2. An example of such a graph G can be
seen at right in Figure 8. The edges (v1, w1) and (vm, vn) are missing. Edge (v1, w1)
is incident to a different vertex in V1 and a different vertex in V2 than edge (vm, wn).
The graph of G′ can be seen at left in Figure 8.

w1 w2 wn

v1 v2 vm m

n
w1 w2 wn

v1 v2 vm m

n

The graph G′ The graph G

Figure 8: Case 3: Removing two edges incident to the same vertex.

Since G′ is a Km,n complete bipartite graph missing one edge, #(G′) = E1(m,n).

When we remove the vertex v1 from G, the result is a Km−1,n complete bipartite graph
missing one edge, as seen top left in Figure 9, so #(G− v1) = E1(m− 1, n).
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w1 w2 wn

v2 vm m−1

n
w2 wn

v1 v2 vm m

n−1

The graph G− v1 The graph G− w1

w1 w2 wn

v1 v2 vm m−1

n−1

The graph G− {v1, w1}

Figure 9: Case 3: Removing vertices from G.

When we remove the vertex w1 from G, the result is a Km,n−1 complete bipartite graph
missing one edge, as seen top right in Figure 9, so #(G− w1) = E1(m,n− 1).

When we remove vertices v1 and w1 from G, the result is a Km−1,n−1 complete bipartite
graph missing one edge, as seen at bottom in Figure 9, so #(G− v1 − w1) = E1(m−
1, n− 1).

Proposition 9 then gives us

#(G) =
1

2
(E1(m,n)− E1(m− 1, n)− E1(m,n− 1)− E1(m− 1, n− 1)).

As a result of Theorem 11, there are three families of integer sequences given by E2i(m,n)
withm fixed and n varying. Some of these sequences are presented in Table 2. The first entry
is given in sequences A024023 and A103453 in the OEIS. Once again, this graph theoretic
approach to these sequences provides a new perspective from which to view these sequences.

E21(2, n) 3n−2 − 1
E21(3, n)
(A335612)

9 · 7n−2 − 11 · 3n−2 + 2

E21(4, n)
(A335613)

49 · 15n−2 − 76 · 7n−2 + 10 · 3n−1 − 3

E21(5, n)
(A337416)

225 · 31n−2 − 421 · 15n−2 + 250 · 7n−2 − 58 · 3n−2 + 4

E21(6, n)
(A337417)

961 · 63n−2 − 2086 · 31n−2 + 1615 · 15n−2 − 580 · 7n−2 + 95 · 3n−2 − 5
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E22(3, n)
(A337418)

7n−1 − 2 · 3n−1 + 1

E22(4, n)
(A340173)

3 · 15n−1 − 8 · 7n−1 + 7 · 3n−1 − 2

E22(5, n)
(A340174)

7 · 31n−1 − 23 · 15n−1 + 4 · 7n − 5 · 3n + 3

E22(6, n)
(A340175)

15 · 63n−1 − 58 · 31n−1 + 89 · 15n−1 − 68 · 7n−1 + 26 · 3n−1 − 4

E23(2, n) 3n−2

E23(3, n)
(A340199)

9 · 7n−2 − 7 · 3n−2 + 1

E23(4, n)
(A340200)

49 · 15n−2 − 60 · 7n−2 + 22 · 3n−2 − 2

E23(5, n)
(A340201)

225 · 31n−2 − 357 · 15n−2 + 202 · 7n−2 − 46 · 3n−2 + 3

E23(6, n)
(A340897)

961 · 63n−2 − 1830 · 31n−2 + 1359 · 15n−2 − 484 · 7n−2 + 79 · 3n−2 − 4

Table 2: Sequences (E2k(m,n))n≥m.

As an example of interpreting edge covers of complete bipartite graphs from a geometric
perspective, consider the configurations [A,B] (left) and [A′, B′] (right) as shown in Figure
10, where A = A′ = {a1, a2, a3, a4, a5, a6} and B = B′ = {b1, b2}. Both configurations have
corresponding K2,6 graphs missing two edges. We have #([A,B]) = E23(2, 6) = 81 and
#([A′, B′]) = E21(2, 6) = 80, so there are 81 distinct sets that lie on the line segment AB
at each fixed distance from A, and 80 distinct sets that lie on the line segment A′B′ at
each distance from A′. These findings correspond to the sequence 3n−2 and the fifth term of
A024023 in the OEIS, respectively.

8 Edge covers of Km,n minus three edges

We will take one more step in our calculations of number of edge covers and determine the
number of edge covers of a Km,n complete bipartite graph missing 3 edges. In this case,
there are 6 different possibilities for the removal of edges as indicated in Theorem 12. The
functions E21 , E22 , and E23 are defined in Theorem 11.

Theorem 12. Let G be a Km,n complete bipartite graph missing three edges. Let the vertex
set V of G be partitioned into two parts V1 and V2 where |V1| = m and |V2| = n.
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Figure 10: Two complete configurations missing two edges.

1. The number of edge covers of G when all 3 removed edges are incident to the same
vertex in V1 but are incident to different vertices in V2 is E31(m,n) where

E31(m,n) = #(G) =
1

2
(E21(m,n)−E(m−1, n)−E21(m,n−1)−E(m−1, n−1)). (2)

2. The number of edge covers of G when all 3 removed edges are incident to different
vertices in V1 and none of the removed edges are incident to the same vertex in V2 is
E32(m,n) where

E32(m,n) = #(G) =
1

2
(E23(m,n)−E23(m−1, n)−E23(m,n−1)−E23(m−1, n−1)).

(3)

3. The number of edge covers of G when all 3 removed edges are incident to different
vertices in V1 but all 3 removed edges are incident to the same vertex in V2 (note that
this equation returns a value of 0 in the K3,n case) is E33(m,n) where

E33(m,n) = #(G) =
1

2
(E22(m,n)−E22(m−1, n)−E(m,n−1)−E(m−1, n−1)). (4)

4. The number of edge covers of G when exactly 2 of the removed edges are incident to
the same vertex in V1 but none of the removed edges are incident to the same vertex in
V2 is E34(m,n) where

E34(m,n) = #(G) =
1

2
(E23(m,n)−E1(m−1, n)−E23(m,n−1)−E1(m−1, n−1)). (5)

5. The number of edge covers of G when all 3 removed edges are incident to different
vertices in V1 but exactly 2 removed edges are incident to the same vertex in V2 is
E35(m,n) where

E35(m,n) = #(G) =
1

2
(E23(m,n)−E23(m−1, n)−E1(m,n−1)−E1(m−1, n−1)). (6)
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6. The number of edge covers of G when exactly 2 removed edges are incident to the
same vertex in V1 and exactly 2 removed edges are incident to the same vertex in V2 is
E36(m,n) where

E36(m,n) = #(G) =
1

2
(E23(m,n)−E1(m−1, n)−E1(m,n−1)−E(m−1, n−1)). (7)

Proof. Assume the graph G′ is a Km,n complete bipartite graph missing two edges. Let the
graph G be a graph obtained from G′ by removing an edge. Let the vertex set V of G be
partitioned into two parts V1 and V2 where |V1| = m and |V2| = n. We consider six different
cases based on the incidence of the removed edges to certain vertices. The possible cases are
those listed in Theorem 12.

Case 1: In this case, all 3 removed edges are incident to the same vertex in V1. An example
of a graph of G′, with edges (v1, w2) and (v1, w3) missing, and a corresponding graph G
missing the additional edge (v1, w1) can be seen in Figure 11. All 3 edges are incident
to v1 in V1 but are incident to different vertices in V2.

w1 w2 w3 wn

v1 v2 vm

G

m

n
w1 w2 w3 wn

v1 v2 vm

G

m

n

w1 w2 w3 wn

v2 vm

G−v1

m−1

n
w2 w3 wn

v1 v2 vm

G−w1

m

n−1

w2 w3 wn

v2 vm

G−v1−w1

m−1

n−1

Figure 11: The graphs for case 1.

Since G′ is a Km,n complete bipartite graph missing two edges that are incident to the
same vertex in V1 but different vertices in V2, we have that #(G′) = E21(m,n).

When we remove the vertex v1 from G, the result is a Km−1,n complete bipartite graph,
as seen in Figure 11. So #(G− v1) = E(m− 1, n).

When we remove the vertex w1 from G, the result is a Km,n−1 complete bipartite graph
missing two edges that are incident to the same vertex in V1 but incident to different
vertices in V2, as seen in Figure 11. So #(G− w1) = E21(m,n− 1).
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When we remove vertices v1 and w1 from G, the result is a Km−1,n−1 complete bipartite
graph, as seen in Figure 11. This means we can use E to calculate #(G− v1 −w1), so
#(G− v1 − w1) = E(m− 1, n− 1).

Proposition 9 then gives us

#(G) =
1

2
(E21(m,n)− E(m− 1, n)− E21(m,n− 1)− E(m− 1, n− 1)).

Case 2: In this case, all 3 edges are incident to different vertices in V1 and none of the
vertices are incident to the same vertex in V2. An example of a graphG′ missing vertices
(v2, w2) and (vm, wn) and a corresponding G missing the additional edge (v1, w1) can
be seen in Figure 12. None of the edges are incident to the same vertices in V1 or in
V2.

w1 w2 wn

v1 v2 vm

G

m

n
w1 w2 wn

v1 v2 vm

G

m

n

w1 w2 wm

v2 vm

G−v1

m−1

n
w2 wn

v1 v2 vm

G−w1

m

n−1

w2 wn

v2 vm

G−v1−w1

m−1

n−1

Figure 12: The graphs for case 2.

Since G′ is a Km,n complete bipartite graph missing two edges that are incident to
different vertices in V1 and V2, as seen in Figure 12, we can use E23 to calculate #(G′),
so #(G′) = E23(m,n).

When we remove the vertex v1 from G, the result is a Km−1,n complete bipartite graph
missing two edges that are incident to different vertices in V1 and V2, as seen in Figure
12. This means we can use E23 to calculate #(G− v1), so #(G− v1) = E23(m− 1, n).

When we remove the vertex w1 from G, the result is a Km,n−1 complete bipartite graph
missing two edges that are incident to different vertices in V1 and V2, as seen in Figure
12. This means we can use E23 to calculate #(G−w1), so #(G−w1) = E23(m,n− 1).
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When we remove vertices v1 and w1 from G, the result is a Km−1,n−1 complete bipartite
graph missing two edges that are incident to different vertices in V1 and V2, as seen in
Figure 12. This means we can use E23 to calculate #(G−v1−w1), so #(G−v1−w1) =
E23(m− 1, n− 1).

Proposition 9 then gives us

#(G) =
1

2
(E23(m,n)− E23(m− 1, n)− E23(m,n− 1)− E23(m− 1, n− 1)).

Case 3: In this case, all 3 edges removed are incident to different vertices in V1 but all 3
removed edges are incident to the same vertex in V2. An example of a G′ missing edges
(v2, w1) and (v3, w1) along with a corresponding G missing the additional edge (v1, w1)
can be seen in Figure 13. All 3 edges are incident to different vertices in V1 but are
incident to vertex w1 in V2.

w1

v1 v2 v3

G

m

n
w1

v1 v2 v3

G

m

n

w1

v2 v3

G−v1

m−1

n

v1 v2 v3

G−w1

m

n−1

v2 v3

G−v1−w1

m−1

n−1

Figure 13: The graphs for case 3.

Since G′ is a Km,n complete bipartite graph missing two edges that are incident to
different vertices in V1 but the same vertex in V2, as seen in Figure 13, we can use E22

to calculate #(G′), so #(G′) = E22(m,n).

When we remove the vertex v1 from G, the result is a Km−1,n complete bipartite graph
missing two edges that are incident to different vertices in V1 but the same vertex
in V2, as seen in Figure 13. This means we can use E22 to calculate #(G − v1), so
#(G− v1) = E22(m− 1, n).
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When we remove the vertex w1 from G, the result is a Km,n−1 complete bipartite
graph, as seen in Figure 13. This means we can use E to calculate #(G − w1), so
#(G− w1) = E(m,n− 1).

When we remove vertices v1 and w1 from G, the result is a Km−1,n−1 complete bipartite
graph, as seen in Figure 13. This means we can use E to calculate #(G− v1 −w1), so
#(G− v1 − w1) = E(m− 1, n− 1).

Proposition 9 then gives us

#(G) =
1

2
(E22(m,n)− E22(m− 1, n)− E(m,n− 1)− E(m− 1, n− 1)).

Case 4: In this case, exactly 2 of the removed edges are incident to the same vertex in V1,
but none of the removed edges are incident to the same vertex in V2. An example
of a graph G′ missing edges (v1, w2) and (v2, w3) along with a corresponding graph
G missing the additional edge (v1, w1) can be seen in Figure 14. There are 2 edges
incident to v1 in V1 while one edge is not. All of the edges are incident to different
vertices in V2.

w1 w2 w3

v1 v2

G

m

n
w1 w2 w3

v1 v2

G

m

n

w1 w2 w3

v2

G−v1

m−1

n
w2 w3

v1 v2

G−w1

m

n−1

w2 w3

v2

G−v1−w1

m−1

n−1

Figure 14: The graphs for case 4.

Since G′ is a Km,n complete bipartite graph missing two edges that are incident to
different vertices in V1 and V2, as seen in Figure 14, we can use E23 to calculate #(G′),
so #(G′) = E23(m,n).

When we remove the vertex v1 from G, the result is a Km−1,n complete bipartite
graph missing one edge, as seen in Figure 14. This means we can use E1 to calculate
#(G− v1), so #(G− v1) = E1(m− 1, n).
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When we remove the vertex w1 from G, the result is a Km,n−1 complete bipartite graph
missing two edges that are incident to different vertices in V1 and different vertices in
V2, as seen in Figure 14. This means we can use E23 to calculate #(G − w1), so
#(G− w1) = E23(m,n− 1).

When we remove vertices v1 and w1 from G, the result is a Km−1,n−1 complete bipartite
graph missing one edge, as seen in Figure 14. This means we can use E1 to calculate
#(G− v1 − w1), so #(G− v1 − v2) = E1(m− 1, n− 1).

Proposition 9 then gives us

#(G) =
1

2
(E23(m,n)− E1(m− 1, n)− E23(m,n− 1)− E1(m− 1, n− 1)).

Case 5: In this case, all 3 removed edges are incident to different vertices in V1, but exactly
2 removed edges are incident to the same vertex in V2. An example of a graph G′

missing edges (v2, w1) and (v3, w3) along with a corresponding graph G missing the
additional edge (v1, w1) can be seen in Figure 15. All 3 edges are incident to different
vertices in V1, but 2 of the edges are incident to w1 in V2.

w1 w3

v1 v2 v3

G
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n
w1 w3

v1 v2 v3

G
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w1 w3

v2 v3
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n
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v1 v2 v3

G−w1

m

n−1
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v2 v3

G−v1−w1

m−1

n−1

Figure 15: The graphs for case 5.

Since G′ is a Km,n complete bipartite graph missing two edges that are incident to
different vertices in V1 and V2, as seen in Figure 15, we can use E23 to calculate #(G′),
so #(G′) = E23(m,n).

When we remove the vertex v1 from G, the result is a Km−1,n complete bipartite graph
missing two edges that are incident to different vertices in V1 and V2, as seen in Figure
15. This means we can use E23 to calculate #(G− v1), so #(G− v1) = E23(m− 1, n).
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When we remove the vertex w1 from G, the result is a Km,n−1 complete bipartite
graph missing one edge, as seen in Figure 15. This means we can use E1 to calculate
#(G− w1), so #(G− w1) = E1(m,n− 1).

When we remove vertices v1 and w1 from G, the result is a Km−1,n−1 complete bipartite
graph missing one edge, as seen in Figure 15. This means we can use E1 to calculate
#(G− v1 − w1), so #(G− v1 − w1) = E1(m− 1, n− 1).

Proposition 9 then gives us

#(G) =
1

2
(E23(m,n)− E23(m− 1, n)− E1(m,n− 1)− E1(m− 1, n− 1)).

Case 6: In this case, exactly 2 removed edges are incident to the same vertex in V1 and
exactly 2 removed edges are incident to the same vertex in V2. An example of a graph
G′ missing edges (v2, w1) and (v1, w2) along with a corresponding graph G missing the
additional edge (v1, w1) can be seen in Figure 16. Exactly two edges are incident to v1
in V1, and exactly two edges are incident to w1 in V2.
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Figure 16: The graphs for case 6.

Since G′ is a Km,n complete bipartite graph missing two edges that are incident to
different vertices in V1 and V2, as seen in Figure 16, we can use E23 to calculate #(G′),
so #(G′) = E23(m,n).

When we remove the vertex v1 from G, the result is a Km−1,n complete bipartite
graph missing one edge, as seen in Figure 16. This means we can use E1 to calculate
#(G− v1), so #(G− v1) = E1(m− 1, n).

19



When we remove the vertex w1 from G, the result is a Km,n−1 complete bipartite
graph missing one edge, as seen in Figure 16. This means we can use E1 to calculate
#(G− w1), so #(G− w1) = E1(m,n− 1).

When we remove vertices v1 and w1 from G, the result is a Km−1,n−1 complete bipartite
graph, as seen in Figure 16. This means we can use E to calculate #(G− v1 −w1), so
#(G− v1 − w1) = E(m− 1, n− 1).

Proposition 9 then gives us

#(G) =
1

2
(E23(m,n)− E1(m− 1, n)− E1(m,n− 1)− E(m− 1, n− 1)).

A few of the sequences given by Theorem 12 are shown in Table 3. The first entry is
given in sequences A024023 and A103453—the remainder had not been previously recorded
in the OEIS.

Theorem 12 once again informs us about the number of sets that lie on certain line
segments in H(RN) at a fixed distance from one of the endpoints. For example, if A =
{a1, a2, a3, a4, a5, a6} and B = {b1, b2}, then #([A,B]) = E31(2, 6) = 26 when [A,B] is the
configuration shown at left in Figure 17, and #([A,B]) = E34(2, 6) = 27 when [A,B] is the
configuration shown at right in Figure 17.

b1 b2

a1a2

a3

a4

a5

a6
b1 b2

a1a2

a3

a4

a5

a6

Figure 17: Two complete configurations missing three edges.

9 Conclusion

All of the sequences (E1(k, n)) for k from 3 to 6, (E2i(k, n)) for i from 1 to 3 and k from 3
to 6, and (E3i(k, n)) for i from 1 to 6 and k from 4 to 6 in this investigation were previously
uncatalogued integer sequences in the OEIS. It is likely that line segments in H(RN) (and
edge covers of graphs) can provide many more examples of new integer sequences.
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E31(2, n) 3n−3 − 1
E31(3, n)
(A340898)

27 · 7n−3 − 29 · 3n−3 + 2

E31(4, n)
(A340899)

343 · 15n−3 − 424 · 7n−3 + 28 · 3n−2 − 3

E31(5, n)
(A342580)

3375 · 31n−3 − 4747 · 15n−3 − 166 · 3n−3 + 1534 · 7n−3 + 4

E31(6, n)
(A342796)

29791 · 63n−3 − 46666 · 31n−3 + 20305 · 15n−3 − 3700 · 7n−3 + 275 · 3n−3 − 5

E32(3, n)
(A342850)

27 · 7n−3 − 3n−1

E32(4, n)
(A340403)

343 · 15n−3 − 216 · 7n−3 + 4 · 3n−1 − 1

E32(5, n)
(A340404)

3375 · 31n−3 − 2891 · 15n−3 + 846 · 7n−3 − 10 · 3n−1 + 2

E32(6, n)
(A340405)

29791 · 63n−3 − 31050 · 31n−3 + 12369 · 15n−3 − 2260 · 7n−3 + 19 · 3n−1 − 3

E33(4, n)
(A340433)

15n−1 − 3 · 7n−1 + 3n − 1

E33(5, n)
(A340434)

3 · 31n−1 − 11 · 15n−1 + 15 · 7n−1 − 3n−1 + 2

E33(6, n)
(A340435)

7 · 63n−1 − 30 · 31n−1 + 51 · 15n−1 − 43 · 7n−1 + 6 · 3n − 3

E34(3, n)
(A340436)

27 · 7n−3 − 13 · 3n−3 + 1

E34(4, n)
(A340437)

343 · 15n−3 − 264 · 7n−3 + 52 · 3n−3 − 2

E34(5, n)
(A340438)

3375 · 31n−3 − 3339 · 15n−3 + 1054 · 7n−3 − 118 · 3n−3 + 3

E34(6, n)
(A341551)

29791 · 63n−3 − 34890 · 31n−3 + 14673 · 15n−3 − 2740 · 7n−3 + 211 · 3n−3 − 4

E35(3, n)
(A341552)

3 · 7n−2 − 2 · 3n−2

E35(4, n)
(A341553)

21 · 15n−2 − 4 · 7n−1 + 11 · 3n−2 − 1

E35(5, n)
(A342327)

105 · 31n−2 − 185 · 15n−2 + 116 · 7n−2 − 29 · 3n−2 + 2

E35(6, n)
(A342328)

465 · 63n−2 − 982 · 31n−2 + 807 · 15n−2 − 316 · 7n−2 + 56 · 3n−2 − 3

E36(3, n)
(A343372)

3 · 7n−2 − 4 · 3n−2 + 1

E36(4, n)
(A343373)

21 · 15n−2 − 36 · 7n−2 + 17 · 3n−2 − 2

E36(5, n)
(A343374)

105 · 31n−2 − 217 · 15n−2 + 148 · 7n−2 − 13 · 3n−1 + 3

E36(6, n)
(A343800)

465 · 63n−2 − 1110 · 31n−2 + 967 · 15n−2 − 388 · 7n−2 + 70 · 3n−2 − 4

Table 3: Sequences (E3k(m,n))n≥n.
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