
23 11

Article 23.5.4
Journal of Integer Sequences, Vol. 26 (2023),2

3

6

1

47

The Largest Integer Not

the Sum of Distinct 8th Powers

Michael J. Wiener
20 Hennepin St.

Nepean, ON K2J 3Z4
Canada

michael.james.wiener@gmail.com

Abstract

The largest integer that is not the sum of one or more distinct squares is 128 and

is called the threshold of completeness for the set of squares. A natural extension is to

consider positive cubes and higher powers. Previous research solved this problem for

powers up to 7. Our contribution is the threshold of completeness for 8th powers as well

as lower bounds for powers from 9 to 16. We also describe the mathematical methods

we used to speed up computations. Using 200,000 computer cores, our methods could

find the threshold of completeness for 9th powers in about a month, and for 10th

powers in about a year.

1 Introduction

There is no way to write 128 as the sum of one or more distinct squares, and it is the largest
such number [14]. The fact that the summed squares are distinct is important; 128 = 82+82

does not count. We say that 128 is not summable with the set {12, 22, . . .}, and is the
largest such number. We can prove this by first showing that 128 is not summable with
squares and then showing that each integer from 129 to 249 is summable with the finite set
{12, 22, . . . , 102}. We can then add 112 to each of the solutions for the integers from 129 to
249 to cover the range 250 to 370. We then add 122 to the solutions for the integers from
129 to 370 to extend the covered range. Continuing with 132, 142, . . ., the covered range
extends indefinitely with overlaps but without leaving any gaps. We call 128 the threshold
of completeness for squares.

1

mailto:michael.james.wiener@gmail.com


In this work, we focus on the threshold of completeness for sets of positive nth powers.
However, we can generalize the idea of thresholds of completeness to other sets, such as the
triangular numbers, (x(x+1)/2)x∈N = {1, 3, 6, 10, . . .}, or to any other polynomial. Fuller and
Nichols studied thresholds of completeness for a wide range of generalizations of this problem
including sets that do not include all powers, and requiring that the minimum number of
powers summed be some constant other than 1 [2]. They use the term anti-Waring number
for the smallest number such that it and every subsequent integer is summable. Thus the
anti-Waring number is one more than the threshold of completeness (when both numbers
exist).

The threshold of completeness does not exist for all sets because there might be no point
beyond which all integers are summable. For example, the set of even numbers cannot give
any odd sums, and any finite set only gives a finite number of sums. However, Sprague
proved that the threshold of completeness for positive nth powers exists for all positive
integers n [15], and Roth and Szekeres generalized this proof by showing which polynomials
p(x) are such that (p(x))x∈N has a threshold of completeness [11]. Later, Graham gave an
alternative proof of Roth and Szekeres’ result in an “elementary manner” [3].

Kim made an interesting contribution proving the following upper bound for the threshold
of completeness of positive nth powers:

(b− 1)2n−1
(

r + 2
3
(b− 1)(22n − 1) + 2(b− 2)

)n
− 2a+ ab,

where a = n!2n
2

, b = 2n
3

an−1, r = 2n
2−na [4].

For odd exponents, not being careful about stating that only positive powers are permit-
ted can lead to the misunderstanding that we can include negative powers, such as (−2)3.
Permitting both addition and subtraction of powers is not an interesting generalization of
the threshold of completeness problem. We can see this with the following method that
uses Prouhet’s solution to the Tarry-Escott problem [19]. Consider the 2n consecutive pow-
ers un, (u − 1)n, . . . , (u − 2n + 1)n added and subtracted with the signs of the powers in a
Prouhet-Thue-Morse sequence (+−−+−++−−++−+−−+ . . .) [9, 16, 17, 6], A010060
in the On-Line Encyclopedia of Integer Sequences [13]. Each power is a polynomial in u
whose highest degree term is ±un. When we take the powers in 2n−1 adjacent pairs, the
pairs are finite differences with a spacing of ±1, the un terms cancel, and we are left with
polynomials in u whose highest degree term is ±nun−1. When we take these polynomials in
2n−2 pairs, each pair is a second order finite difference with a spacing of ±2 and is a polyno-
mial whose highest degree term is ±2n(n− 1)un−2. Each step of pairing up the polynomials
produces higher order finite differences (using spacings equal to plus or minus a power of 2)
that reduce the polynomial degree by 1, and all resulting polynomials have the same highest
degree term except for the sign. The final sum is the constant c = n!2n(n−1)/2, independent
of u. This means that by varying u, we get an infinite supply of sums equal to c, each using
2n consecutive powers (from non-overlapping ranges). Now consider any power of the form
(vc + 1)n for arbitrary v. Such powers are congruent to 1 (mod c), and we can subtract
enough sums equal to c to get a sum of 1. This means we now have an infinite supply of
sums equal to 1. With these we can form any sum that is positive, negative, or zero.

2

https://oeis.org/A010060


n Threshold of Completeness for nth powers Reference

1 0
2 128 [14]
3 12,758 [3, 1]
4 5,134,240 [5]
5 67,898,771 [7]
6 11,146,309,947 [2]
7 766,834,015,734 [13]
8 4,968,618,780,985,762 this work
9 ≥ 155,581,444,629,727,232 ...
10 ≥ 13,130,572,287,326,740,862
11 ≥ 1,641,961,088,738,387,417,337
12 ≥ 555,664,230,155,437,340,241,901
13 ≥ 132,999,999,685,872,578,648,583,148
14 ≥ 13,799,996,074,582,156,266,244,947,666
15 ≥ 2,099,999,963,240,136,765,496,329,587,024
16 ≥ 999,999,988,996,135,865,287,858,019,238,512,392

Table 1: Thresholds of completeness.

According to the On-Line Encyclopedia of Integer Sequences (A001661), thresholds of
completeness are known for sets of positive nth powers for exponents n = 1, 2, . . . , 7, with the
n = 7 case solved by Johnson in 2010 [13]. Our contribution is the threshold of completeness
for 8th powers and lower bounds for some higher exponents (see Table 1). We also describe
the mathematical methods we developed to compute thresholds of completeness in enough
detail that others can reproduce and extend our results.

2 Finding thresholds of completeness by finite search

When we say that a threshold of completeness has a particular value, in part we are asserting
that all larger values are summable (see Definition 2). Fortunately, we can prove this with
a finite search.

Definition 1. Let S(xn) = {1n, 2n, . . .}, and let Sk(x
n) = {1n, 2n, . . . , kn}.

Definition 2. The threshold of completeness for nth powers, T (S(xn)), is the largest integer
that is not the sum of one or more distinct elements of the set S(xn).

According to Porubský [8], Theorem 3 below began with Richert proving that every
integer greater than 6 is the sum of distinct primes [10], and Sierpiński extending it to more
general purposes [12]. The version below is adapted for finding thresholds of completeness.

3

https://oeis.org/A001661


Theorem 3. Given n, k ∈ Z
+ and t ∈ Z such that

(1) t+ 1 to t+ (k + 1)n (inclusive) are summable with the finite set Sk(x
n), and

(2) (k + 2)n ≤ 2(k + 1)n,

then the threshold of completeness T (S(xn)) ≤ t.

Proof. Let a ≥ 0. Rewrite condition (2) as (k + 2)/(k + 1) ≤ 21/n. Then

k + a+ 2

k + a+ 1
=

k + 2

k + 1
−

a

(k + a+ 1)(k + 1)
≤

k + 2

k + 1
≤ 21/n.

So, if condition (2) holds for k, it also holds if we replace k with any integer larger than k.
Next we use induction. Consider the statement that all integers from t + 1 to t + (b + 1)n

(inclusive) are summable with the finite set Sb(x
n) = {1n, 2n, . . . , bn}. Assume the statement

is true for some b ≥ k. We can then add (b+ 1)n to each solution from t+ 1 to t+ (b+ 1)n

so that all integers from t + 1 to t + 2(b + 1)n are summable using powers no larger than
(b+1)n. Because (b+2)n ≤ 2(b+1)n, we now have that all integers from t+1 to t+(b+2)n

are summable using the set Sb+1(x
n). This proves that if the statement is true for b, then it

is true for b+1. By condition (2), the statement is true for b = k. This completes the proof
by induction that the statement is true for all b ≥ k. So all integers from t+1 to t+(b+1)n

are summable from S(xn) for b growing without bound. Thus, all integers greater than t are
summable, and the threshold of completeness T (S(xn)) ≤ t, as required.

Theorem 3 does not directly give us the threshold of completeness, but once we have t
and k that satisfy its conditions, the problem is reduced to a finite search through integers
less than or equal to t for the largest integer that is not summable. We could add a third
condition to this theorem that t be non-summable so that it is equal to the threshold of
completeness. However, we found that adding this condition is inefficient for exponents 4
and 6 because it requires a larger value for k (see the discussion of Table 2).

3 Exponents up to 6

We describe a simple and fast sieve-like method of finding the threshold of completeness
for small exponents to introduce concepts that will be useful for larger exponents. We
begin with a memory consisting of an array of bits b0, b1, . . . , bµ for some upper limit µ. If
µ ≥ t+(k+1)n, where n, t, and k are as defined in Theorem 3, then the algorithm described
below will succeed in finding T (S(xn)). To start, set b0 = 1, and the remaining bits to 0. In
this state, we are indicating that using no elements of S(xn) at all, the only sum we can form
is 0. Although Definition 2 requires a valid sum to include at least one power, it is convenient
to consider 0 to be the sum of the null set of powers for this computation. Let us consider
the case of squares using µ = 255. The starting state of the memory is b255 = · · · = b1 = 0,
and b0 = 1. Next we make use of Algorithm 5 for adding a power y to every existing sum in
the memory.

4



Definition 4. We use ∧ as the bitwise AND operation, and ∨ as the bitwise OR operation.
Let x, y, z be nonnegative integers with binary representations x =

∑∞
i=0 xi2

i, y =
∑∞

i=0 yi2
i,

z =
∑∞

i=0 zi2
i, and all xi, yi, zi ∈ {0, 1}. We say that z is the bitwise AND of x and y and

write z = x ∧ y if for all i ∈ Z
+
0 , zi = xi AND yi. Similarly, we say that z is the bitwise OR

of x and y and write z = x ∨ y if for all i ∈ Z
+
0 , zi = xi OR yi.

Algorithm 5. Add New Power to Memory. Take a power y and memory limit µ, and add to
the memory y more than every sum already represented in the memory. Given the memory
bits b0, b1, . . . , bµ, we go through the bi from i = µ down to y, and perform bi ← bi OR bi−y.
If we think of the memory as a single large integer W =

∑µ
i=0 bi2

i, this operation is simply
W ← W ∨ (2yW mod 2µ+1) (see Definition 4).

For the first three times we use Algorithm 5 below, we show only b14, . . . , b0 because the
higher order bits are all zeros after these steps. Now we use Algorithm 5 to add the power
y = 12 to the memory. The result is

b14 to b0 : 000000000000011,

which means that the possible sums are 0 and 1. Next we add in 22 to get

b14 to b0 : 000000000110011,

corresponding to sums 0, 1, 4, 5. After the step with 32, we get

b14 to b0 : 110011000110011.

After the 42, 52, . . . , 102 steps, we have

b63 to b0 : 1110111111111110011001111111110001100110001100110110011000110011
b127 to b64 : 1111111111111110111011111111111011101111111111111110111011110111
b191 to b128 : 1111111111111111111111111111111111111111111111111111111111111110
b255 to b192 : 1111111111111111111111111111111111111111111111111111111111111111.

Now b128 = 0 and all the higher order bits are 1. The conditions of Theorem 3 are met for
n = 2, t = 128, and k = 10. All that remains is to find the largest integer less than or
equal to 128 that is not summable. We proceed with the 112 step with Algorithm 5 because
112 ≤ 128, and see that it does not change b128. Thus T (S(x

2)) = 128.
Table 2 shows results for powers up to 6 using this method on a laptop. We see that

T (S(xn)) < t for exponents 4 and 6. If we add the requirement that t = T (S(xn)) to
Theorem 3, execution times increase for the exponent 4 and 6 cases, because we have to
increase k to 38 and 46, respectively. (All execution times in this paper are measured using
a single thread on a 12th Generation Intel(R) Core(TM) i9-12900HK running at 2.50 GHz.
For memory sizes, we use kB = 1024 bytes, MB = 1024 kB, GB = 1024 MB, and TB = 1024
GB.)

5



n T (S(xn)) t k Memory Size Run Time

1 0 0 1 2 bits < 1 µs
2 128 128 10 250 bits (32 bytes) 1.3 µs
3 12,758 12,758 20 22,020 bits (3 kB) 27 µs
4 5,134,240 6,211,329 37 8,296,466 bits (1.0 MB) 2.4 ms
5 67,898,771 67,898,771 33 113,334,196 bits (14 MB) 28 ms
6 11,146,309,947 12,840,617,485 42 19,161,980,535 bits (2.3 GB) 7.7 s

Table 2: Results for small exponents.

Unfortunately, using this simple and fast method would require 152 GB for 7th powers
and 776 TB for 8th powers, which is well beyond the memory capacity of a typical laptop.
It would be possible to use the laptop’s solid state drive for 7th powers, and a modern
supercomputer could handle 8th powers, but we chose to find ways to trade extra execution
time for reduced memory requirements.

4 Reducing memory requirements

Here we describe a way to reduce the size of the memory required to find the threshold of
completeness for exponents n = 7 and higher. We begin with an inefficient method and
improve it in a sequence of steps, finishing with a complete algorithm.

4.1 Index searching

To continue, we need to introduce the concept of an index.

Definition 6. An index is a nonnegative integer representing a finite set of positive nth
powers, where the exponent n is explicitly stated or implied by context. Let si = 1 when
power (i + 1)n is in the set, and si = 0 otherwise. Then the set’s index is I =

∑∞
i=0 si2

i.
The sum of the elements in the set of powers represented by index I is

∑∞
i=0 si(i+1)n. Any

summable number has at least one corresponding set of powers that contribute to that sum.
A given sum may have more than one index. For example 25 = 52 = 42 + 32. The set {52}
has index 25−1 = 16, and the set {32, 42} has index 23−1 + 24−1 = 12, but the sum of powers
corresponding to both indexes is 25.

Let b0, . . . , bµ be the available bits of memory for some upper limit µ. In Section 3,
we iterated Algorithm 5 to set bi = 1 when i is a summable number. An alternative way
to fill the memory begins with setting all memory bits b0, . . . , bµ to zero. Then for each
index I = 0, . . . , 2k − 1, where k = ⌊µ1/n⌋, compute the sum v of the nth powers in the set
represented by I, and if v ≤ µ, set bv = 1. This method is far less efficient than the method
from Section 3 and does not reduce memory requirements, but we will improve it below.

6



4.2 Separating sums by congruence class

In Section 4.1, at the end of computation, a memory bit bv, 0 ≤ v ≤ µ, was equal to 0 if v is
not summable, and 1 if v is summable. We got this result with a single large computation.
To reduce memory requirements (or to make use of the µ + 1 available bits of memory for
determining the summability of integers larger than µ), we separate sums into congruence
classes mod 2gn for some g ∈ Z

+. Let L = (µ + 1)2gn − 1. With this new approach, we
repeat the following subcomputation for each m = 0, 1, . . . , 2gn − 1. Set all memory bits bi
to zero. For each index I = 0, . . . , 2k − 1, where k = ⌊L1/n⌋, compute the sum v of the nth
powers in the set represented by I (see Definition 6), and if v ≤ L and v ≡ m (mod 2gn), set
b(v−m)2−gn = 1. At the end of each subcomputation, a memory bit bi is equal to 0 if i2gn+m
is not summable, and 1 if it is summable.

For a given memory limit µ, the methods of Section 4.1 could only determine the summa-
bility of numbers up to µ, but this new approach can determine summability of numbers up
to limit L = (µ+1)2gn−1. This algorithm is even slower than the one in Section 4.1, but at
least the memory requirements are reduced for a given limit L. The advantage of separating
sums by congruence class will become clearer in Section 4.3.

4.3 Separating even and odd powers

To discuss this optimization, it is useful to introduce the concept of a subindex.

Definition 7. A subindex is a nonnegative integer representing a finite set of positive odd
nth powers, where the exponent n is explicitly stated or implied by context. Let si = 1 when
power (2i+1)n is in the set, and si = 0 otherwise. Then the set’s subindex is I =

∑∞
i=0 si2

i.

Definition 8. Let σn(I) be the sum of the elements in the set of odd powers represented by
subindex I: σn(I) =

∑∞
i=0 si(2i+ 1)n, where I =

∑∞
i=0 si2

i, and si ∈ {0, 1} for all i ∈ Z
+
0 .

This optimization starts with the simple but powerful observation that all even powers
are divisible by 2n so that only odd powers determine a sum’s congruence class mod 2n. If
we are only looking for sums congruent to m (mod 2n), then we need consider only subsets of
the odd powers whose sum is congruent to m (mod 2n). Then we can add any combination
of even powers we like without changing the congruence class of the sum. So, where the
algorithm in Section 4.2 with g = 1 searched through indexes 0, . . . , 2k−1 to cover all subset
sums of Sk(x

n), we now cover all the subset sums of just the odd powers less than or equal
to kn by searching through the subindexes I = 0, . . . , 2⌈k/2⌉ − 1. It is only after finding all
subindexes I such that σn(I) ≡ m (mod 2n) and setting memory bit b(σn(I)−m)2−gn = 1 that
were turn our attention to the even powers. Because the sums represented by the memory
bits are spaced 2n apart, when we use Algorithm 5 with y = pn, this has the effect of
adding even power (2p)n to all the sums in the memory. So, we run Algorithm 5 for each
y = 1n, . . . , ⌊k/2⌋n to cover all the even powers less than or equal to kn.

7



So far, we have used the idea in Section 4.2 with g = 1, but we can go further. Suppose
that we seek sums of powers congruent to m (mod 22n) instead of just m (mod 2n). Now,
in a first stage, we enumerate all subindexes I = 0, . . . , 2⌈k/2⌉ − 1 and for each I, compute
its sum of odd powers s = σn(I), and if s ≡ m (mod 2n), then carry ⌊s/2n⌋ and ⌊m/2n⌋ to
a nearly identical second stage that uses ⌊k/2⌋ in place of k. The first stage took care of the
least significant n bits of m, and in the second stage we can think of all sums as divided by
2n. Again, we go through the subindexes, this time looking for sums of powers congruent to
⌊m/2n⌋ (mod 2n). A difference between the first and second stage is that we add the offset
⌊s/2n⌋ to each sum in the second stage. In a final step where we think of all sums as divided
by 22m, we use Algorithm 5 to add powers 1n, 2n, . . . , ⌊k/4⌋n to the memory. If we step back
and do not think of sums as divided by either 2n or 22n, the first stage found sums of odd
powers, the second stage contributed sums of powers xn, where x ≡ 2 (mod 4), and the final
step contributed sums of powers xn, where x ≡ 0 (mod 4). See Algorithms 12 and 13 for a
more precise description of this process. There is no reason why we have to stop there. We
can increase g further to reduce memory requirements at the cost of more execution time.

4.4 Efficiently avoiding sums of powers that are too large

In Section 4.3, enumerating all the sums of odd powers in Sk(x
n) involved counting through

the subindexes I = 0, . . . , 2⌈k/2⌉−1. We are only interested in sums σn(I) ≤ L = (µ+1)2gn−1,
where µ + 1 is the number of memory bits available. However, some of the sums may be
larger than L. In fact, it is common for many subindexes in a row to produce sums σn(I)
that are larger than L. This slows down the algorithm considerably. Given a subindex I
where σn(I) > L, we would like an efficient way to find the next larger subindex I ′ such that
σn(I

′) ≤ L. Theorem 9 is useful here.

Theorem 9.

(1) Consider a subindex I that has at least two 1s in its binary representation. Let 2u

be the weight of the least significant 1 in the binary representation of I, and let 2v be
the weight of the second least significant 1 in the binary representation of I. Then no
subindex I ′ ∈ (I, I − 2u + 2v) is such that σn(I

′) ≤ σn(I).

(2) Consider a subindex I that has at most one 1 in its binary representation. Then no
subindex I ′ > I is such that σn(I

′) ≤ σn(I).

Proof.

(1) Let j = I − 2v − 2u, where v > u. Then all 1s in the binary representation of j
have weight larger than 2v, and (I, I − 2u + 2v) = (j + 2v + 2u, j + 2v + 2v). If
I ′ ∈ (I, I − 2u + 2v), then I ′ = j + 2v + b, where b ∈ (2u, 2v). Because I = j + 2v + 2u,
the binary representations of I and I ′ differ only in bits of weight less than 2v. For I,
the only contribution of bits of weight less that 2v to the sum σn(I) is (2u + 1)n. For

8



I ′, the contribution of bits of weight less that 2v to σn(I
′) is all the bits in b. But the

binary representation of b must either have a 1 of weight 2u along with at least one
other 1, or b must have a 1 with weight larger than 2u. In either case, σn(b) > (2u+1)n,
and thus σn(I

′) > σn(I) for all I
′ ∈ (I, I − 2u + 2v).

(2) If the binary representation of I has fewer than two 1s, then either I = 0, in which
case σn(I) = 0 and the statement is trivially true, or I = 2u for some u. The binary
representation of any subindex I ′ > I must either have a 1 of weight 2u along with
at least one other 1, or it must have a 1 with weight larger than 2u. In either case,
σn(I

′) > σn(I).

Suppose that the least significant 1 in the binary representation of subindex I has weight
2u, and the second least significant 1 has weight 2v (we will deal with the possibility that I
does not have two 1s below). By Theorem 9, if I ′ ∈ (I, I − 2u + 2v), then σn(I

′) > σn(I).
An interesting trick from Warren’s useful book Hacker’s Delight [18, p. 11] for isolating the
least significant 1 in the binary representation of I is to calculate I ∧ (2W − I), where W
is any positive integer such that 2W > I, and ∧ refers to a bitwise AND operation (see
Definition 4). Because computers naturally work modulo 232 or 264 for unsigned integers,
performing I∧(2W−I) is the same as I∧−I for any I that fits in the computer’s word size. So
we will just write this computation as I∧−I. Because I∧−I = 2u, and (I−2u)∧−(I−2u) =
2v, we can compute I − 2u + 2v as follows:

I ← I − (I ∧ −I) followed by I ← I + (I ∧ −I).

If the result is I = 0 because the binary representation of I started with fewer than two 1s,
this means there are no remaining subindexes I ′ > I such that σn(I

′) ≤ σn(I). So, when
we go through the subindexes I from 0 to 2⌈k/2⌉ − 1 as described in Section 4.3, and we
encounter an I such that σn(I) > L = (µ+ 1)2gn− 1, we use the two Hacker’s Delight steps
above to skip over subindexes I ′ where σn(I

′) > L.

4.5 Pre-computing sums sorted by congruence class

In Section 4.3, when enumerating all the sums of subsets of odd powers in Sk(x
n) by counting

through the subindexes from 0 to 2⌈k/2⌉−1, we seek sums congruent to m (mod 2n). A more
efficient version of this process begins with precomputing lists of some of the sums of subsets
of odd powers. For some constant p, we precompute the sums sJ = σn(J) for subindexes
J = 0, . . . , 2p − 1, making a separate list based on each sum’s congruence class mod 2n, and
we sort the sums sJ within each list from smallest to largest. With each sum, we also store
its corresponding subindex J . These precomputed lists allow us to speed up the computation
as shown in Algorithm 12.

9



4.6 Reducing the number of odd powers

Here we describe an optimization that involves ignoring some of the odd powers. This is
useful for exponent n = 8. We begin with an observation about even exponents.

If we add up an odd number of odd powers we get an odd sum. So, if σn(I) is odd
then subindex I must have odd Hamming weight. (We use “Hamming weight” to mean the
number of 1 bits in the binary representation of a nonnegative integer.) Similarly, if σn(I)
is even then subindex I must have even Hamming weight. We can extend this idea further
with Lemma 10 and Theorem 11.

Lemma 10. Suppose a ∈ Z and u ∈ Z
+. Then (2a+ 1)2

u

≡ 1 (mod 2u+2).

Proof. We proceed by induction. Consider u = 1.

(2a+ 1)2 = 4a2 + 4a+ 1 = 8
(

a+1
2

)

+ 1 ≡ 1 (mod 8).

Thus this lemma is true for u = 1. Now assume it is true for u = v, for some v > 0. So
(2a+ 1)2

v

= 2v+2b+ 1, for some integer b. Then

(2a+ 1)2
v+1

= (2v+2b+ 1)2 = 22v+4b2 + 2v+3b+ 1 ≡ 1 (mod 2v+3).

Thus, if this lemma is true for u = v, it is also true for u = v + 1. This completes the proof
by induction.

Theorem 11. Consider an exponent n that is divisible by 2u, u > 0. If a subindex I has
Hamming weight h, then σn(I) ≡ h (mod 2u+2).

Proof. A consequence of Lemma 10 is that all odd powers for exponent n are congruent to
1 (mod 2u+2). When subindex I has Hamming weight h, σn(I) is the sum of h odd powers.
Thus σn(I) ≡ h (mod 2u+2).

For exponent n = 8, let I be a subindex with Hamming weight h and let q = σ8(I).
Then by Theorem 11, h ≡ q (mod 32). So, when we are enumerating subindexes I looking
for those such that σ8(I) ≡ m (mod 28g) for some g ≥ 1, we need only consider subindexes
with Hamming weight congruent to m (mod 32). However, the number of subindexes with
Hamming weight congruent to m (mod 32) varies considerably with m. Consider the case
of k = 80 so that there are only 40 odd powers. For m = 4, a subindex must have Hamming
weight 4 or 36. There are only

(

40
4

)

+
(

40
36

)

= 182,780 such subindexes available. In contrast,

for m = 20, there are
(

40
20

)

= 137,846,528,820 subindexes available. This increase by a factor
of over 750,000 makes a huge difference in how long it takes to enumerate all the subindexes.
Additionally, the extra computation is mostly wasted because in Algorithm 12 below, we
are just setting the same memory bits to 1 over and over again. To avoid this waste, we
eliminated some of the larger odd powers from our search. For k = 80, we would normally
consider the odd powers 18, 38, . . . , 798. Instead, we defined k′ to be an upper limit on the
number of odd powers used. So, when computing subset sums of Sk(x

8), we did not include

10



the powers (2k′ + 1)8, (2k′ + 3)8, . . . , (2⌈k/2⌉ − 1)8 in any of the subsets. We determined a
suitable k′ for each congruence class m (mod 32) experimentally. If at any point k′ was not
large enough to satisfy the conditions of Theorem 3, we simply increased k′ (without letting
2k′ − 1 exceed k) and tried again. See Section 6 for more details on this optimization.

Another possible use for this observation about the Hamming weight of subindexes would
be to directly search through just those subindexes with the correct Hamming weight instead
of just trying every subindex. This idea works well for exponent n = 16 as we will see in
Section 9, but for exponent n = 8, it was more efficient to use pre-computed sums of odd
powers as described in Section 4.5.

4.7 Efficient method for checking one congruence class

The goal for a given exponent n is to find integers t and k that will satisfy the requirements
of Theorem 3. We do not know in advance which values of t and k will work; finding them
is an iterative process. We make guesses and perform computations to reveal whether we
need to change these guesses. Combining the efficiency improvements in the subsections
above gives the following algorithms that we can use in this iterative process. Algorithm 12
performs the stages of computing sums of odd powers. One use for this algorithm is to check
the range from t+ 1 to t+ (k + 1)n for numbers not summable with Sk(x

n). If a number is
not summable, then we have a new larger candidate for t. Another use is to find numbers
smaller than t that are not summable with S(xn). In this case, we use ⌊t1/n⌋ in place of
k so that we are considering all powers not larger than t. Algorithm 13 uses Algorithm 12
to determine whether we need a larger value for t to satisfy Theorem 3 and to determine if
there exists a larger candidate c for the threshold of completeness.

Algorithm 12. Calculate Sums of Odd Powers for One Congruence Class. The inputs are
a congruence class m mod 2gn, an exponent n, the number of remaining stages g of adding
sums of odd powers, an offset f to be added to each sum, the number k which sets kn to
be the largest power used in sums of powers, the number k′ which sets (2k′ − 1)n to be the
largest odd power used in the sums, and the upper limit L on the size of sums sought. The
output is a memory consisting of bits b0, . . . , bµ, where µ = ⌊(L −m)/2gn⌋. At the end of
the algorithm, ba = 1 if a2gn+m is summable using odd powers 1n, 3n, . . . , (2k′− 1)n and all
even powers less than or equal to kn except for those of the form xn where x ≡ 0 (mod 2g).
Bit ba = 0 otherwise. For each d = 1, 2, . . . , p, we use a precomputed table of pairs (sj, j),
where j is a d-bit subindex, and sj = σn(j) is a sum of odd powers in S2d(x

n). Each table is
separated into distinct lists by each sum’s congruence class mod 2n. Each list is sorted from
smallest to largest sum.

for a = 0, 1, . . . , µ do ba ← 0 end for

maxq ← L− f
i← 0
q ← 0
do

11



use precomputed table of sums of odd powers with subindexes min(p, k′) bits long
use precomputed list of sums of odd powers congruent to m− q − f (mod 2n)
if g > 1 then

for each precomputed pair (sj, j) such that sj ≤ maxq− q do

recursively call Algorithm 12 with inputs
(⌊m/2n⌋, n, g − 1, ⌊(q + f + sj)/2

n⌋, ⌊k/2⌋, ⌈⌊k/2⌋/2⌉, ⌊L/2n⌋)
end for

else

for each precomputed pair (sj, j) such that sj ≤ maxq− q do

b⌊(q+f+sj)/2n⌋ ← 1
end for

end if

i← i+ 2p

q ← σn(i)
while q > maxq and i 6= 0 and i < 2k

′

do

i← i− (i ∧ (−i))
i← i+ (i ∧ (−i))
q ← σn(i)

end while

while i 6= 0 and i < 2k
′

Algorithm 13. Check One Congruence Class. The inputs are a congruence class m mod
2gn, an exponent n, the current largest candidate c for the threshold of completeness, the
current value for t being used to satisfy Theorem 3, the number of stages g of adding sums
of odd powers, limits k and k′ (k′ ≤ ⌈k/2⌉) on the size of powers used in the sums, and the
upper limit L on the size of sums sought. For odd powers, we do not use any powers larger
than (2k′−1)n. For even powers, we do not use any powers larger than kn. We use a memory
consisting of bits bi, i = 0, 1, . . . , µ, where µ = ⌊(L−m)/2gn⌋. To satisfy the requirements of
Theorem 3, we must have L ≥ t+(k+1)n. The output is a boolean value along with possible
updates to the values of c, t, k, and L. The output is (true) if the conditions of Theorem 3
are met for congruence class m (mod 2gn), or if we are able to update c or t to meet these
conditions. Otherwise, the output is (false) and either k has been increased or L has been
increased (in which case we must run this algorithm again with these new inputs). When
the output is (false), it is necessary to start the process of checking all congruence classes
m (mod 2gn) over again. When the memory size must increase, the suggested size may be
larger than necessary, because k may have grown too large. In practice, when the memory
size had to increase, we often chose the new size and the starting value of k manually.

z ← L
do

call Algorithm 12 with inputs (m, n, g, 0, k, k′, z)
for j = 1, 2, . . . , ⌊k/2g⌋ do

12



call Algorithm 5 with power jn

end for

find the largest a ∈ [0, µ] such that ba = 0
if there is no such a then return (true) end if

z ← m+ a2gn − 1
if z < c then return (true) end if

k′ ← k′ + 1
while k′ ≤ ⌈k/2⌉
v ← 0
while (v < z) and (∃ minimum a ∈ (⌊(t−m)/2gn⌋, µ] such that ba = 0) do

v ← m+ a2gn

if (v − t) > (k + 1)n then z ← v − 1 else t← v end if

end while

call Algorithm 12 with inputs (m, n, g, 0, ⌊t1/n⌋, ⌈⌊t1/n⌋/2⌉, t)
for j = 1, 2, . . . , ⌊t1/n/2g⌋ do

call Algorithm 5 with power jn

end for

find the largest a ∈ [0, µ] such that ba = 0
v ← m+ a2gn

if v > c then
c← v
if t < c then t← c end if

if (L− c) < (k + 1)n then L← c+ (k + 1)n; return (false) end if

end if

if (L− t) < (k + 1)n then k ← k + 1; t← c; return (false) end if

if (z − t) < (k + 1)n then return (false) end if

return (true)

4.8 Other observations

Another observation for n = 8 is that all powers are congruent to 0, 1, or 16 modulo 17. For
each exponent, we can come up with many other similar facts for different moduli. There
may be some way to combine several such constraints on powers to speed up the search for
the threshold of completeness, but we do not see a way to use these ideas to further improve
on the optimizations described above.

5 Exponent 7

We used Algorithm 13 to find T (S(x7)). We began by calling this algorithm with m = 0,
n = 7, c = 0, t = 0, g = 1, k = 40, k′ = 20, and L = 1012. Because the exponent is odd, there

13



is nothing to be gained by reducing the number of odd powers as explained in Section 4.6, so
we always used k′ = ⌈k/2⌉. For the first 24 calls, the algorithm returned (false) and increased
one or more of t, k, and L, so we kept starting over at m = 0. After that, the algorithm
would return (true) for several congruence classes mod 27 before failing at some point and
forcing us to start over again. Eventually, Algorithm 13 succeeded for all m = 0, 1, . . . , 27−1
using t = 865,130,689,840 and k = 45 to give c = T (S(x7)) = 766,834,015,734. The whole
process took 19 minutes. If we reduce L to the bare minimum required, the time required
to confirm this result is 7.7 minutes using 1.2 GB of memory.

6 Exponent 8

The work to this point has been a warm-up for the main contribution, which is the threshold
of completeness for exponent n = 8. We found this threshold in four steps. First we did
an initial exploration to find roughly the right sizes of inputs to Algorithm 13. Next we
searched for larger values of c, t, and k. Then we found suitable values for k′ to minimize
computation time. Finally, we did the full computation to get T (S(x8)).

Before the initial exploration, it was clear that using only g = 1 stage of adding odd
powers would require too much memory. In Section 4.6, we saw that a subindex must have
Hamming weight h ≡ m (mod 32). To create a sum of odd powers congruent to 31 (mod
32), the set of odd powers contributing to this sum must contain at least 31 odd powers, and
the subindex for this set must have a Hamming weight of at least 31. So, k′ must be at least
31, and k must be at least 61. Theorem 3 requires L ≥ t+ (k + 1)8, and thus L ≥ 628. The
number of memory bits required is ⌈L/2gn⌉. With g = 1, this requires a 100 GB memory,
which is beyond the resources we had available. Using g = 2 reduces this to 400 MB, and
leaves room for expansion as t and k increase.

In the initial exploration, we focused on the congruence class m (mod 216) likely to give
few subindexes. This has two advantages. The first is that is takes less computation time to
go through these subindexes. The second is that it makes intuitive sense that in such a case
we get our best chance of finding a large candidate for the threshold of completeness c, and
a large value for t to use for Threorem 3. There is no guarantee that this intuition is correct,
but the only cost if we are wrong is greater execution time; it will not lead to an incorrect
final result. Given k′ and m, the number of subindexes with Hamming weight congruent to
m (mod 32) is

Q32(k
′,m) =

∑

i≡m (mod 32)
0≤i≤k′

(

k′

i

)

.

This is a minimum when m ≡ ⌊k′/2⌋ − 16 (mod 32). When k′ is odd, we could have used
m ≡ ⌈k′/2⌉ − 16 (mod 32), because it gives the same sum (the terms are identical but in
reverse order). However, we prefer the first minimum because it has more high Hamming
weight subindexes I whose sums of odd powers σn(I) tend to be larger. When we add in
even powers, larger sums of odd powers have a greater tendency to produce irrelevant total

14



sums that exceed L. We began our initial exploration with m = 0, n = 8, c = 0, t = 0,
g = 2, k = 64, k′ = 32, and L = 1014. As Algorithm 13 changed c, t, k, and L, we changed
k′ to equal ⌈k/2⌉ and m to equal ⌊k′/2⌋ − 16. After 5.5 hours, call number 172 returned
(true) for inputs m = 4, n = 8, c = t = 4,739,704,992,497,666, g = 2, k = 79, k′ = 40, and
L = 6,417,426,592,497,666.

In the next step, we explored the most promising congruence classes m (mod 216) to give
a value of c closest to the actual threshold of completeness, and values of t and k closest
to those needed for Theorem 3. There are 211 such congruence classes in each mod 32
congruence class. We judged congruence classes 4 and 3 (mod 32) to be the most promising
based on the number of subindexes available for k = 79 and k′ = 40. First, we checked
m = 4, 36, . . . , 216 − 28, but Algorithm 13 returned (true) in every case. Then we checked
m = 3, 35, . . . , 216 − 29 to reveal that we needed to use k = 80, t = 5,784,315,489,954,275,
and L = 7,637,335,678,806,116. Although we did not know it at the time, these turned out
to be the final values needed for use with Theorem 3.

The next step was to find the right k′ values for minimizing the execution time of the
final step. Let k′

m be the smallest k′ such that Algorithm 13 returns (true) for congruence
class m (mod 216). We found k′

0, k
′
1, . . . , k

′
31:

36,37,39,40,38,32,26,22,21,21,20,21,21,21,22,22,23,24,25,25,26,27,28,29,29,30,31,32,33,33,34,35.

We used these values in the final step (below) to speed up the computation. For a given
m < 216, let a = m mod 32. We assumed that a reasonable starting guess for k′

m is k′
a.

In some cases, k′
a was not large enough, and Algorithm 13 had to increase it. Let k∗

a be
the smallest value of k′ such that Algorithm 13 returns (true) for every congruence class
m = a, a+ 32, . . . , a+ 216 − 32 (mod 216). Here is the final list of k∗

0, k
∗
1, . . . , k

∗
31:

36,37,40,40,39,32,27,23,22,21,21,21,21,22,22,23,23,24,25,26,26,27,28,29,30,30,31,32,33,33,34,35.

If we calculate Q32(k
∗
a, a) for a = 0, 1, . . . , 31, the range is from 40,920 to 3,839,160. However,

if we had just used k′ = 40 (which is the number of odd powers in Sk(x
8) for k = 80), the

maximum Q32(40,m) occurs for m ≡ 20 (mod 32), and is Q32(40, 20) = 137,846,528,820.
In contrast, k′ = 26 is sufficient for m ≡ 20 (mod 32), and because Q32(26, 20) = 230,230,
the more efficient version is more than 5 orders of magnitude faster. Thus the optimization
involving k′ to use the minimum number of odd powers necessary is critical.

In the final step, we went through every congruence class m = 0, 1, . . . , 216 − 1 (mod
216) to check whether the conditions of Theorem 3 are satisfied, and to see if there are any
larger candidates for the threshold of completeness. In every case, Algorithm 13 returned
(true), indicating that the conditions are met, and while checking the m = 2466 case, we
found the largest candidate c = T (S(x8)) = 4,968,618,780,985,762. This required 22.6 days
of computation time. Fortunately, we required only 13.6 GB of memory and were able to
run two instances concurrently on a 32 GB laptop. We were also fortunate that the final
candidate c is smaller than the value of t we found early on, so it was not necessary to restart
the search through all congruence classes when we found a larger candidate c.

15



7 Exponents 9 to 12

Starting with exponent n = 9, finding thresholds of completeness requires far more comput-
ing power than we had available. We had to content ourselves with random searching of
promising congruence classes mod 2gn to find the largest non-summable numbers possible
within our computation constraints.

For exponent n = 9, we did an initial exploration to get to k = 73, and t ≈ 1.5 × 1017.
We found that using g = 2 required about 110 GB, so we had to go to g = 3 to reduce
this to about 220 MB. Thus each run with Algorithm 13 covered numbers in one congruence
class mod 227. Initially, each congruence class took about 3 hours to complete. Fortunately,
a new idea reduced this time considerably. For exponents n ≥ 9, the time required to
perform Algorithm 12 dominates the time required for Algorithm 5. So, the new idea is
to periodically pause Algorithm 12, make a temporary copy of the memory bits b0, . . . , bµ,
and perform Algorithm 5 on this temporary copy to see if we have already proven that all
numbers in congruence class m mod 227 in the range from t+1 to t+(k+1)9 are summable
so that we can quit early. This reduced the average time to check a congruence class mod
227 from 3 hours to 51 minutes. However, the total run time for all congruence classes is
still about 13 millennia. So, we were content to choose several thousand congruence classes
at random and report the largest candidate for threshold of completeness we could find (see
Table 1). A side effect of this improvement is that for n ≥ 9 we do not need the n = 8 trick
of using only a subset of the set of powers Sk(x

n) (see Section 4.6); if a congruence class is
slow because it produces many sums of powers, it will likely be possible to quit early using
this new improvement. We used this improvement for all exponents 9 and larger.

We used an additional idea for the even exponents that we will illustrate using the n = 12
case. For n = 12 and g = 3, Algorithm 13 seeks subindexes I with σ12(I) ≡ m (mod 236). By
Theorem 11, because exponent 12 is divisible by 4, the Hamming weight of such a subindex
I must be congruent to σ12(I) mod 16. So, the Hamming weight of I must be congruent to
m mod 16. The number of subindexes I < 2k satisfying this Hamming weight requirement
is

Q16(⌈k/2⌉,m) =
∑

i≡m (mod 16)
0≤i≤⌈k/2⌉

(

⌈k/2⌉

i

)

.

This is a minimum when m ≡ ⌊(k+ 1)/4⌋ − 8 (mod 16). We judged these values of m to be
the most promising for finding large candidates for c and t with Algorithm 13. In case this
reasoning is incorrect, we tried some values of m from other congruence classes mod 16, but
found that they did not give better results.

For exponents 9 to 12, we were able to check enough congruence classes m that we
appeared to find parameters k and t in the correct range for Theorem 3. Table 3 shows the
best parameters we found for each of these exponents as well as the estimated number of cores
required to check all congruence classes and find the threshold of completeness within one
year. The corresponding largest candidates we found for the threshold of completeness are in
Table 1. When we check other congruence classes m, we fail to improve on these parameters

16



Core-Years
n k g t to Complete

9 74 3 160,170,705,729,301,541 1.3× 104

10 74 3 14,784,582,277,082,304,038 1.9× 105

11 79 4 1,692,580,057,933,058,867,601 5.1× 109

12 89 4 640,711,717,768,919,776,264,350 1.2× 1012

Table 3: Best results so far for exponents 9 to 12.

in the vast majority of cases. However, because we have checked such a small fraction
of available congruence classes, the likelihood that we have found the actual threshold of
completeness is very low.

8 Exponents 13 to 15

For exponents 13 to 15, every run of Algorithm 13 produced a new larger candidate c for
the threshold of completeness. This means that we are very likely not in the correct range
of parameter values k and t to satisfy the conditions of Theorem 3. The values of k we used
for these exponents were 96, 96, and 98, respectively. For each exponent, the last run took
weeks to complete, and the next run with larger parameter values would likely take even
longer. Further, the lower bounds on threshold of completeness values in Table 1 for these
exponents contain suspicious strings of 9s. This is because we happened to choose round
numbers for the limit L, and Algorithm 13 found a non-summable value not much below L.
The actual thresholds of completeness could easily be orders of magnitude larger than our
best efforts so far for these exponents.

9 Exponent 16

Using Theorem 11, we know that if we are examining congruence class m mod 216g for
exponent 16, the Hamming weight of subindexes must be congruent to m (mod 64). We
modified Algorithm 12 to search through only those subindexes with the correct Hamming
weight rather than use the pre-computed sorted table of sums of odd powers (see Section 4.5).
This sped up the calculations significantly allowing us to complete the last run that produced
the n = 16 entry in Table 1 in a few weeks despite the fact that we needed to use k = 164,
which is significantly larger than the values we needed for smaller exponents. However, there
is no reason to believe that we are particularly close to the actual threshold of completeness.

17



10 Conclusion

The thresholds of completeness for sets of positive nth powers were known for exponents
up to 7. Our main contribution is to show that the threshold of completeness for n = 8 is
T (S(x8)) = 4,968,618,780,985,762. We also found lower bounds for exponents 9 to 16. Using
200,000 computer cores, our methods could find T (S(x9)) in about a month and T (S(x10)) in
about a year. But the computing power required for higher exponents is impractical without
significant improvements to our methods.

References

[1] R. E. Dressler and T. Parker, 12,758, Math. Comp. 52 (1974), 313–314.

[2] C. Fuller and R. H. Nichols, Generalized anti-Waring numbers, J. Integer Sequences 18

(2015), Article 15.10.5.

[3] R. L. Graham, Complete sequences of polynomial values, Duke Math. J. 31 (1964),
275–285.

[4] D. Kim, On the largest integer that is not a sum of distinct positive nth powers, J.
Integer Sequences 20 (2017), Article 17.7.5.

[5] S. Lin, Computer experiments on sequences which form integral bases, in J. Leech, ed.,
Computational Problems in Abstract Algebra, Pergamon Press, 1970, pp. 365–370.

[6] M. Morse, Recurrent geodesics on a surface of negative curvature, Trans. Amer. Math.
Soc. 22 (1921), 84–100.

[7] C. Patterson, The Derivation of a High Speed Sieve Device, Ph.D. thesis, University of
Calgary, 1992.

[8] Š. Porubský, Richert’s theorem, preprint, 2009, https://www.cs.cas.cz/portal/

AlgoMath/NumberTheory/AdditiveNumberTheory/RichertTheorem.htm.

[9] E. Prouhet, Mémoire sur quelques relations entre les puissances des nombres, C. R.
Math. Acad. Sci. Paris 33 (1851), 225.

[10] H. Richert, Über Zerfällungen in ungleiche Primzahlen, Math. Z. 52 (1949), 342–343.

[11] K. F. Roth and G. Szekeres, Some asymptotic formulae in the theory of partitions, Q.
J. Math. 5 (1954), 241–259.

[12] W. Sierpiński, Elementary Theory of Numbers, 2nd ed., translated from Polish, A.
Schinzel, ed., North-Holland and PWN-Polish Scientific Publishers, Vol. 31, 1988.

18

https://cs.uwaterloo.ca/journals/JIS/VOL18/Fuller/fuller2.html
https://cs.uwaterloo.ca/journals/JIS/VOL20/Kim/kim6.html
https://www.cs.cas.cz/portal/AlgoMath/NumberTheory/AdditiveNumberTheory/RichertTheorem.htm
https://www.cs.cas.cz/portal/AlgoMath/NumberTheory/AdditiveNumberTheory/RichertTheorem.htm


[13] N. J. A. Sloane et al., The On-Line Encyclopedia of Integer Sequences, 2023. Available
at https://oeis.org.

[14] R. Sprague, Über Zerlegungen in ungleiche Quadratzahlen,Math. Z. 51 (1948), 289–290.

[15] R. Sprague, Über Zerlegungen in n-te Potenzen mit lauter verschiedenen Grundzahlen,
Math. Z. 51 (1948), 466–468.

[16] A. Thue, Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906),
1–22. Reprinted in T. Nagell, ed., Selected Mathematical Papers of Axel Thue, Univer-
sitetsforlaget, Oslo, 1977, pp. 139–158.

[17] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid.
Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1–67. Reprinted in T. Nagell, ed., Selected Mathe-
matical Papers of Axel Thue, Universitetsforlaget, Oslo, 1977, pp. 413–478.

[18] H. Warren, Jr., Hacker’s Delight, Pearson Education Inc., Addison-Wesley, 2003.

[19] E. M. Wright, Prouhet’s 1851 solution of the Tarry-Escott problem of 1910, Amer.
Math. Monthly 66 (1959), 199–201.

2010 Mathematics Subject Classification: Primary 11P05.
Keywords: threshold of completeness, anti-Waring number, sum of powers.

(Concerned with sequences A001661 and A010060.)

Received January 21 2023; revised versions received February 4 2023; May 16 2023; June 1
2023. Published in Journal of Integer Sequences, June 6 2023.

Return to Journal of Integer Sequences home page.

19

https://oeis.org
https://oeis.org/A001661
https://oeis.org/A010060
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Finding thresholds of completeness by finite search
	Exponents up to 6
	Reducing memory requirements
	Index searching
	Separating sums by congruence class
	Separating even and odd powers
	Efficiently avoiding sums of powers that are too large
	Pre-computing sums sorted by congruence class
	Reducing the number of odd powers
	Efficient method for checking one congruence class
	Other observations

	Exponent 7
	Exponent 8
	Exponents 9 to 12
	Exponents 13 to 15
	Exponent 16
	Conclusion

