
23 11

Article 23.4.6
Journal of Integer Sequences, Vol. 26 (2023),2

3

6

1

47

On (Almost) Realizable Subsequences

of Linearly Recurrent Sequences

Florian Luca
School of Mathematics

University of the Witwatersrand
1 Jan Smuts Avenue
Braamfontein 2050

Johannesburg
South Africa

and
Max Planck Institute for Software Systems

Saarland Information Campus E1 5
66123 Saarbrücken

Germany
and

Centro de Ciencias Matemáticas UNAM
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Abstract

We show that if (un)n≥1 is a simple linearly recurrent sequence of integers whose
minimal recurrence of order k involves only positive coefficients that has positive initial
terms, then (Muns)n≥1 is the sequence of periodic point counts for some map for a
suitable positive integer M and s any sufficiently large multiple of k!. This extends a
result of Moss and Ward who proved the same result for the Fibonacci sequence.

1 Introduction

A sequence of nonnegative integers (an)n≥1 is called realizable if there is some set X and a
map T : X → X such that

an = Fix(T n) = #{x ∈ X | T n(x) = x},

and is called almost realizable if it is realizable after multiplication by a positive integer.
A simple example of realizability is the shift map T : (xn)n∈Z 7→ (xn+1)n∈Z on the golden

mean shift space

X = {x = (xn)n∈Z ∈ {0, 1}Z | (xk, xk+1) 6= (1, 1) for all k ∈ Z}.

This has

Fix(T n) = #{x ∈ X | T n(x) = x} = Trace

(

1 1
1 0

)n

= Ln (1)

where (Ln)n≥1 = (1, 3, 4, 7, . . .) is the Lucas companion A000204 of the Fibonacci sequence;
we refer to Puri and Ward [11] for more on this example.

A simple example of almost realizability is given by A000079, namely the sequence

(2n−1)n≥1 = (1, 2, 4, . . . )

of powers of 2. Clearly this is not realizable, since a map T witnessing this would have the
property that Fix(T ) = 1, and hence must have Fix(T 2) odd. However the shift map as
above on the full 2-shift X = {0, 1}Z has Fix(T n) = 2n for all n ≥ 1, showing that the
sequence becomes realizable after multiplication by 2. We refer to Moss and Ward [8] for
this and other examples, and the references therein for background on this concept.

Our purpose here is to show that for a large class of linear recurrence sequences the
subsequence obtained by sampling along a sufficiently large power of the index is almost
realizable.

2 Realizable subsequences

Realizable sequences can be characterized in algebraic terms as follows. The sequence (an)n≥1

of non-negative integers is realizable if and only if it satisfies the following two conditions:
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(D)
∑

d|n

µ(n/d)ad ≡ 0 (mod n) for all n ∈ N, and

(S)
∑

d|n

µ(n/d)ad ≥ 0 for all n ∈ N.

Here µ denotes the classical Möbius function. We call (D) the Dold condition and (S) the
sign condition. The equivalence is clear, because the sum arising in (D) and in (S) is the
number of points that lie on a closed orbit of minimal length n under iteration of a map that
witnesses realizability of (an)n≥1.

We write (Fn)n≥1 for A000045, namely the Fibonacci sequence (1, 1, 2, . . . ). Moss [7]
showed that (5Fn2)n≥1, the sequence A054783 multiplied by 5, is realizable. Moss and
Ward [8] extended this to show that (5Fn2k)n≥1, is realizable for k ≥ 1 while (MFn2k+1) is
not realizable for any choice of M = Mk ≥ 1 for any k ≥ 0. These arguments use congruence
properties specific to the Fibonacci sequence, which makes one wonder to what extent such
a result can be extended to other linearly recurrent sequences.

Here we generalize the above result to simple linearly recurrent sequences satisfying some
positivity conditions. Our result is quite general, and its proof uses elementary algebraic
number theory rather than congruences specific to a given sequence.

Let (un)n≥1 be a linearly recurrent sequence of integers of order k. That is, it satisfies a
recurrence relation of the form

un+k = a1un+k−1 + · · ·+ akun

for all n ≥ 1, where a1, . . . , ak, u1, . . . , uk are all integers (this is a harmless assumption for
integer linear recurrences by Fatou’s lemma [2, p. 369]). We assume that the recurrence is
minimal, so in particular ak 6= 0. We ask if there is a monomial f ∈ Z[X] and a positive
integer M with the property that (Muf(n))n≥1 satisfies (D) and (S). Let

F (X) = Xk − a1X
k−1 − · · · − ak

be the minimal polynomial of the sequence (un)n≥1. For background and relevant properties
of linearly recurrent sequences the reader is invited to consult the monograph of Everest et
al. [1]. Let K be the splitting field of F and OK be its ring of integers. Let ∆(K) be the
discriminant of K and let ∆(F ) be the discriminant of F . Let G be the Galois group of K
over Q, let e(G) be the exponent of G, and let N be the order of G.

Theorem 1. Assume that F has only simple zeros.

(i) The sequence (Muns)n≥1 satisfies (D) if M is a positive integer which is a multiple

of lcm(∆(K),∆(F )) and s ≥ N is a multiple of e(G).

(ii) Assume in addition that ai ≥ 0 for i = 1, . . . , k and ak 6= 0, that

(a1, . . . , ak) 6= (0, 0, . . . , 1),
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and that ui ≥ 1 for all i ∈ {1, 2, . . . , k}. Then the sequence (Muns)n≥1 satisfies (S)
whenever s = ℓe(G) where ℓ ≥ ℓ0 is a sufficiently large number which can be computed

in terms of the sequence (un)n≥1.

The somewhat strange condition (i) can be explained as follows. The condition ∆(F ) | M
is needed to ensure that the summands involved in the Binet formula for the general term
of Mun are algebraic integers. On the other hand, the additional conditions that ∆(K) | M
together with the conditions on s are sufficient to ensure that the Dold condition (D) is
satisfied. In particular, if F is irreducible, then ∆(K) | ∆(F ), so it suffices that M is a
multiple of ∆(F ). This is not the case for reducible polynomials as the example

F (X) = (X2 − 2)(X3 − 5)

shows. In this case K = Q(
√
2, 3
√
5,
√
−3) has ∆(F ) = −23 · 33 · 52 · 172, which is not a

multiple of ∆(K) = 21831458.

Remark 2.

(a) We have to exclude a periodic sequence of period k ≥ 2 and minimal polynomialXk−1,
since for it the theorem is not true in general. Indeed, consider the simplest case
when k is prime. Then condition (S) requires that uks − u1 ≥ 0. On the other hand,
since ks ≡ k (mod k), we must have uk ≥ u1. It follows that u1, . . . , uk cannot be
chosen to be arbitrary positive integers.

(b) We require the minimal polynomial to only have simple roots, for otherwise (D) may
be false. For example, the sequence defined by un = n for all n ≥ 1 satisfies the linear
recurrence un+2 = 2un+1 − un with minimal polynomial (X − 1)2. Then condition (D)
for (Muns) implies that for a prime p we must have p | M(ps−1), and for given positive
integers M and s this can only hold for the finitely many primes p dividing M . Hence,
for the above sequence, the Dold quotients

1

n

∑

d|n

µ(n/d)ad

for n ≥ 1 are rational numbers whose denominators are divisible by arbitrarily large
primes. Similar arguments are used by Puri and Ward [10, Lem. 2.4] to show that
if (f(n))n≥1 is realizable with f ∈ Z[X], then f is a constant.

(c) A different (arguably more natural) question is to ask when a linear recurrence sequence
itself satisfies (D) without multiplication by a factor or passing to a subsequence.
Minton [6] showed that—up to a finite multiplying factor—this is possible if and only
if the sequence is a linear combination of traces of powers of algebraic numbers. From
this perspective (1) is a manifestation of the fact that the only linearly recurrent
sequences satisfying the Fibonacci recurrence un+2 = un+1 + un for n ≥ 1 which have
this property must have u2 = 3u1 (and hence must be multiples of the Lucas sequence),
a special case shown earlier by Puri and Ward [11] using congruences specific to the
Fibonacci sequence.

4



Returning to the Fibonacci sequence where this phenomena was first observed, the
sequence (Fn)n≥1 has k = 2, a1 = a2 = 1, F1 = F2 = 1 > 0, and minimal polyno-
mial F (X) = X2 − X − 1. Further, K = Q[

√
5]. Thus, ∆(F ) = ∆(K) = 5 and G = Z/2Z

so e(G) = N = 2. Thus, s = 2 satisfies that s is a multiple of e(G) and s ≥ N . We
shall justify the claim that in this case we can take ℓ0 = 1, recovering the result of Moss and
Ward [8] precisely. In fact, we prove it in a more general setting. Let (F

(k)
n )n≥−(k−2) be the k-

generalized Fibonacci sequence satisfying the recurrence relation F
(k)
n+k = F

(k)
n+k−1+ · · ·+F

(k)
n

for n ≥ 2 − k with initial values F
(k)
i = 0 for i = 2 − k, 3 − k, . . . ,−1, 0 and F

(k)
1 = 1.

Wolfram [12] conjectured that G = Sk is the full symmetric group on k letters, and this is
known to be so when k is even, when k is small, or when k is prime. These claims are shown
in work of Martin [4], for example. We therefore take Nk := k!; this is a multiple of e(G)
and at least as large as N .

Theorem 3. For k ≥ 2 we can take s = Nkℓ for any ℓ ≥ 1 for the k-generalized Fibonacci

sequence (F
(k)
n )n≥1−(k−2).

Moss and Ward [8] propose the following conjecture at the end of their paper.

Conjecture 4. Let P, Q ∈ Z and let un+2 = Pun+1 − Qun for n ≥ 1, with initial condi-
tions u0 = 0, u1 = 1. Then ((P 2 − 4Q)un2)n≥1 satisfies (D).

This almost follows from Theorem 1, except that there are some additional hypotheses
like the fact that the recurrence must be of minimal order k = 2 and that (P,Q) 6= (0,−1),
in order to apply the theorem. We therefore supply a proof of the following result.

Theorem 5. Conjecture 4 holds.

3 Proofs of theorems

Proof of Theorem 1. To start with, let

F (X) =
k
∏

i=1

(X − λi),

so that we have the (generalized) Binet formula

un =
k

∑

i=1

ciλ
n−1
i

for all n ≥ 1 for coefficients c1, . . . , ck determined from u1, . . . , uk by solving a linear
system of k equations in k unknowns whose matrix is Vandermonde on λ1, . . . , λk. We
write K := Q(λ1, . . . , λk). Then c1, . . . , ck are algebraic numbers in K having the Vander-
monde determinant

√

∆(F ) (for a certain determination of the square root) as a common
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denominator in the sense that
√

∆(F )ci is an algebraic integer for each i = 1, . . . , k. Note

that Mci is a multiple of the algebraic integer
√

∆(K), which is an algebraic integer in OK.
We next turn to the Dold condition. We say that a sequence of algebraic integers (vn)n≥1

satisfies the algebraic Dold condition if (D) is satisfied as algebraic integers. That is, if

1

n

∑

d|n

µ(n/d)vd

is an algebraic integer for all n ≥ 1. Our strategy is to find s such that (
√

∆(K)λns−1
i )n≥1

satisfies the algebraic Dold condition for i = 1, . . . , k. Since linear combinations with alge-
braic integer coefficients of sequences which satisfy the algebraic Dold condition also satisfy
the algebraic Dold condition, this allows us to deduce that

M

√

∆(K)

n

∑

d|n

µ(n/d)uds = M

k
∑

i=1

ci

√

∆(K)

n

∑

d|n

µ(n/d)λds−1
i

is both a rational number and an algebraic integer, so an integer, verifying (D).
Fix λ := λi for some i = 1, . . . , k. We need to find out when

√

∆(K)

n

∑

d|n

µ(n/d)λds−1 =

√

∆(K)

n

∑

d|n

µ(d)λ(n/d)s−1 (2)

is an algebraic integer in OK for all n ≥ 1. We write m :=
∏

p|n p = rad(n) for the radical
of n. Changing the order of summation to complementary divisors as shown and restricting
to squarefree numbers in the summation on the right-hand side (as the Möbius function
vanishes on all other terms), the numerator in (2) is

S :=
√

∆(K)
∑

d|m

µ(d)λ(n/d)s−1.

Clearly S is an algebraic integer, so we may assume that n (and hence m) exceeds 1. Let p
be a prime divisor of n and let w be the exact exponent of p in n, written pw‖n. Writing as
usual ω(n) for the number of distinct prime divisors of n, m has 2ω(n) divisors, half of which
are multiples of p and half of which are not. Thus the above sum can be grouped into 2ω(n)−1

pairs indexed (d, p), where d is a divisor of m
p
, giving

S =
√

∆(K)
∑

d|m
p

(

µ(d)λ(n/d)s−1 + µ(pd)λ(n/(dp))s−1
)

=
√

∆(K)
∑

d|m
p

±λ(n/(pd))s−1
(

λ(n/pd)s(ps−1) − 1
)

.
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Thus, it is sufficient to show that if pw‖n, then S
pw

is an algebraic integer. We let π be a

prime ideal divisor of N in K with πe‖p and NK/Q(π) = pf . We put

Ad := λ(n/dp)s

and

Bd := λ(n/pd)s(ps−1) − 1,

and observe that our aim is to find a condition for s divisible by e(G) such that one would
have

νπ(
√

∆(K)AdBd) ≥ ew.

Here, νπ(α) is the exponent of the prime ideal π in the factorization of αOK. Observe that
the different theorem implies that

νπ(∆(K)) ≥ fe(e− 1) ≥ e(e− 1).

Consider first the case π | λ. In this case νπ(Bd) = 0 and

νπ(Ad) ≥
(

n

pd

)s

≥ ps(w−1) ≥ 2s(w−1).

We need to check that
2s(w−1) + e(e− 1)/2 ≥ ew.

This is clear when w = 1, since then the inequality to be proved becomes

1 + e(e− 1)/2 ≥ e

which holds for all e ≥ 1. This is also clear when e = 1 since in that case it is implied
by 2s(w−1) ≥ 2w−1 ≥ w. Finally, if e ≥ 2, w ≥ 2, then s ≥ N ≥ e ≥ 2, so sw ≥ 4.
Since w − 1 ≥ w/2, it suffices to show that 2sw/2 ≥ sw, which is equivalent to 2sw ≥ (sw)2,
which holds since sw ≥ 4.

We next consider the case π ∤ λ. In this case, νπ(Ad) = 0. Write (n/pd)s = αps(w−1),
and ps − 1 = β(pf − 1), where π ∤ αβ. This last formula holds since f | e(G) | s. The
analogue of Euler’s theorem for number fields implies

λpf−1 ≡ 1 (mod π). (3)

By induction on j ≥ 0, we prove that

λpj(pf−1) ≡ 1 (mod πj+1). (4)

Indeed, the case j = 0 is just (3). Assuming congruence (4) is satisfied for j ≥ 0, we write

λpj(pf−1) = 1 + γ
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for some γ ∈ πj+1 and raise it to power p to get

λpj+1(pf−1) = (1 + γ)p

= 1 +

p−1
∑

k=1

(

p

k

)

γk + γp

≡ 1 (mod πγ)

≡ 1 (mod πj+2),

proving the induction step. Evaluating this at j = s(w − 1), we get

λps(w−1)(pf−1) ≡ 1 (mod πs(w−1)+1).

Raising the above congruence to the power αβ, we deduce that

νπ(Bd) ≥ s(w − 1) + 1.

So, it suffices to verify that

s(w − 1) + 1 + e(e− 1)/2 ≥ ew.

This is clear if w = 1 since then the left–hand side is 1 + e(e − 1)/2 ≥ e. It is also clear
if e = 1, since then the left–hand side is s(w − 1) + 1 ≥ (w − 1) + 1 = w. Thus, we assume
that e ≥ 2 and w ≥ 2. Since K is Galois, we have that e | N and s ≥ N . If s ≥ 2e, then it
suffices to show that

2e(w − 1) + 1 ≥ ew.

This is equivalent to ew − 2e + 1 ≥ 0, which holds since w ≥ 2. Finally, if 2e > s ≥ N , we
have that e > N/2 and e is a divisor of N so, in fact s = e = N . So, we need to show that

N(w − 1) + 1 +N(N − 1)/2 ≥ Nw,

which is equivalent to 1 + N(N − 1)/2 ≥ N , which obviously holds for any N ≥ 2 (note
that N ≥ 2 since we are in the case e ≥ 2).

We still need to deal with the sign condition (S), for which we use the following observation
from Puri’s thesis [9]: It is sufficient to show that u(2n)s ≥ nuns for all n ≥ 1. To see this, let λ
be a real root larger than 1 of F (X) = 0. This exists by the intermediate value theorem,
since the hypotheses on the coefficients a1, . . . , ak show that F (1) < 0, and F (x) → ∞
as x → ∞. Note that un ≥ λn−k always holds, again by the hypotheses on the coefficients.
Indeed, it holds for n = 1, . . . , j because in this range uj ≥ 1 ≥ λj−k, and so it holds for
all n ≥ 1 by induction since ai ≥ 0 for i = 1, . . . , k. Moreover, un ≤ λn+n0 for

n0 ≥ logmax{u1, . . . , uk}/ log λ.
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Again this inequality holds for n = 1, . . . , k, so it will hold for all n ≥ 1 by induction. Armed
with these estimates, we now need to show that

λ(2n)s−k ≥ nλns+n0

or, equivalently, that

ns(2s − 1) ≥ k + n0 +
log n

log λ
. (5)

To see this, first let n1 ≥ 2(n0 + k) satisfy logn
log λ

≤ n
2
for n ≥ n1. Then for n ≥ n1 we

have k + n0 ≤ n1

2
≤ n

2
, so the right-hand side of (5) is at most n. It follows that (5) holds,

since n(2s − 1) ≥ n is clear. For 1 ≤ n ≤ n1 the right-hand side is at most n0 + k + logn1

log λ

and the left-hand side is at least 2s − 1 ≥ 2e(G)ℓ − 1 and this is larger than n0 + k + logn1

log λ

once ℓ ≥ ℓ0. Thus in all cases if s is a sufficiently large multiple of e(G), then the sign
condition (S) holds.

Proof of Theorem 3. For the particular case of the k-generalized Fibonacci sequence, it is
well-known that the associated minimal polynomial

F (k)(X) = Xk −Xk−1 − · · · − 1

has simple zeros by work of Miles [5], and that the largest real zero λ(k) is increasing in k ≥ 2
and has λ(k) → 2 as k → ∞. In particular, writing

λ = λ(k) ≥ λ(2) =
1 +

√
5

2

we have F
(k)
k < 2k < λ2k, so we can take n0 = 2k in the notation of the sign condition step.

Thus the condition is that n1 ≥ 2(n0 + k) = 6k must be such that logn
log λ

≤ n
2
for n ≥ n1,

which is a consequence of 6 log n ≤ n, which certainly holds for n ≥ 10k ≥ 20. So we
are able to take n1 = 10k. Consequently, for n ≤ n1, the right-hand side in (5) is at
most 10k and the left-hand side is at least ns(2s − 1) ≥ nNk(2Nk − 1) ≥ 10k for all n ≥ 1
and k ≥ 3 where Nk = k!. For k = 2, the above inequality fails for n = 1, 2, but in these
cases F(2n)2 ≥ F4 = 3 > 2F2 holds anyway. Hence, we can take ℓ0 = 1 for any k ≥ 2.

Proof of Theorem 5. First consider the case Q = 0. In this degenerate case we may take
two approaches (for non-negative P at any rate), and we include both to illustrate the two
points of view. If P = 0 then the only realizable sequence is the zero sequence, so we assume
that P ≥ 1.

Arithmetic proof: We have un = P n−1, so c1 = 1/P in Binet’s formula and λ = P . Going
through the proof of Theorem 1, we see that we need P | M to deal with the denominator
of c1. Next, in case p does not divide P , we are in the case of π ∤ λ, and then pw | S
whenever pw | n. In the case of π | λ above, we have that if p | P , then e = N = 1. We saw
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in the proof of Theorem 1 for this case that if p | P and w ≥ 2, then νp(Ad) ≥ 2w−1 > w,
whereas for w = 1, we have νp(Ad) ≥ 1 = w. So, in fact we even see that (|P |un2)n≥1 satisfies
the Dold condition in this case, and we do not need the factor P 2.

Dynamical proof for positive P : Here (Pun)n≥1 is the sequence (P, P 2, . . . ), which we
identify as (Fix(T n))n≥1, where T : X → X is the shift map on the full P -shift. Taking the
union of P disjoint copies of this system produces a map S with

(Fix(Sn))n≥1 = (P 2, P 3, P 4, . . . ).

It follows that (P 2un)n≥1 is realizable, and in particular satisfies (D). On the other hand,
sampling along a monomial subsequence always preserves realizability, so (P 2un2) is also
realizable. Work of Jaidee, Moss, and Ward [3] shows that no other polynomials have this
property.

We next turn to the case (P,Q) = (0,−1). This is an excluded case of Theorem 1.
In this case, un = 0 if n is even and un = 1 if n is odd. So, in (D), the sum S is zero
if n is odd. Further, in the sum S, for every prime p dividing m, the amounts (n/d)2

and (n/(pd))2 are both even or both odd, so this difference is zero unless p = 2 and one
of (n/d)2 and (n/(2d))2 is even and the other is odd. But the only chance for this to happen
is when 2‖n, and in this last case the prime 2 from the denominator of the Dold ratio can
be absorbed into |∆(F )| = |P 2 − 4Q| = 4.

The remaining cases (P,Q) 6= (P, 0), (0,−1) follow from Theorem 1 on noticing that

∆(F ) = P 2 − 4Q (6)

is a multiple of ∆(K).
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