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Abstract

We mainly determine
∑p−1

k=1

(

2k
k

)

hkx
k modulo a prime p with hk =

∑k
j=1

1
2j−1 . We

also provide some applications of this polynomial congruence for some special values

of x which involve the Fibonacci and Lucas numbers.

1 Introduction

In [4], Lehmer presented a long list of interesting series involving the central binomial coef-
ficient

(

2k
k

)

such as
∞
∑

k=1

(

2k

k

)

xk

k
= −2 ln

(

1 +
√
1− 4x

2

)

. (1)

Since then, using many different approaches and methods, several other authors have actively
investigated this kind of sums. Among them we would like to mention [3, 1, 2]. In particular,
Chen in [2, Theorem 8] obtained

∞
∑

k=1

(

2k

k

)

hkx
k = −

ln(1− 4x)

2
√
1− 4x

(2)

with hk =
∑k

j=1
1

2j−1
. In this work, as we did in [5, 7, 6], we are going to consider the sums

of the first p− 1 terms of the above series, with a prime p, and evaluate them modulo p.
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The paper is organized as follows. The next section is devoted to the proofs of two
polynomial congruences which are the finite analogues of the infinite series (1) and (2).
In the third section, we specialize those polynomial congruences to some particular values
(un)n≥1 and (vn)n≥1 related to Fibonacci numbers Fn (A000045) and Lucas numbers Ln

(A000032):

un =
(−1)n

L2
n

=
(−1)n

L2n + 2(−1)n
→ −1,

1

9
,−

1

16
,
1

49
,−

1

121
,

1

324
,−

1

841
, . . .

vn =
(−1)n−1

5F 2
n

=
(−1)n−1

L2n − 2(−1)n
→

1

5
,−

1

5
,
1

20
,−

1

45
,

1

125
,−

1

320
,

1

845
, . . .

Notice that, up to sign, un and vn are the reciprocals of A001254 and A099921 in the On-Line
Encyclopedia of Integer Sequences (OEIS).

For instance, after extending a result by Williams [8], we show that for any integer n ≥ 1,
and for any prime p > 2 not dividing 5FnLn,

p−1
∑

k=1

(

2k

k

)

uk
n

k
≡ 2qp(Ln)−

5nFn

Ln

fp (mod p),

p−1
∑

k=1

(

2k

k

)

hkv
k
n ≡ −

(

5

p

)(

1

2
qp

(

L2
n

5F 2
n

)

+ (−1)n
2n

F2n

fp

)

(mod p).

Here
(

5
p

)

stands for a Legendre symbol, and let

qp(x) =
xp−1 − 1

p
, fp =

Fp−( 5

p)

p

denote the Fermat quotient and the Fibonacci quotient, respectively.
In order to demonstrate the similarities of the above formulas with the corresponding

series evaluations, notice that, by (1) and (2), we obtain

∞
∑

k=1

(

2k

k

)

uk
n

k
= 2 ln(Ln)− 2n ln

(

1 +
√
5

2

)

,

∞
∑

k=1

(

2k

k

)

hkv
k
n = −

√
5Fn

2Ln

ln

(

L2
n

5F 2
n

)

.

2 Polynomial congruences

The next congruence is equivalent to [6, (32)]. Here we give a new and self-contained proof.
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Theorem 1. Let p > 2 be a prime. Then

p−1
∑

k=1

(

2k

k

)

xk

k
≡ 2

1− αp − (1− α)p

p
(mod p) (3)

where x = α(1− α).

Proof. Let β = 1− α. Then, for 1 ≤ k ≤ p− 1, it follows that

(

p

k

)

=
p(p− 1) · · · (p− (k − 1))

k!
≡

p(−1)k−1

k
(mod p2),

and we find

(1− αz)p(1− βz)p =

p
∑

k=0

(

p

k

)

(−αz)k
p
∑

k=0

(

p

k

)

(−βz)k

≡

(

1− αpzp − p

p−1
∑

k=1

αkzk

k

)(

1− βpzp − p

p−1
∑

k=1

βkzk

k

)

≡ 1− (αp + βp)zp + (αβ)pz2p

− p(1− αpzp)

p−1
∑

k=1

βkzk

k
− p(1− βpzp)

p−1
∑

k=1

αkzk

k
(mod p2).

Hence, we have
[zp](1− αz)p(1− βz)p ≡ −αp − βp (mod p2). (4)

On the other hand,

[zp](1− αz)p(1− βz)p = [zp](1− z + xz2)p

= [zp]

p
∑

k=0

(

p

k

)

xkz2k(1− z)p−k

= [zp]

p
∑

k=0

(

p

k

)

xkz2k
p−k
∑

j=0

(

p− k

j

)

(−z)j

=

p−1

2
∑

k=0

(

p

k

)(

p− k

p− 2k

)

(−1)p−2kxk

= −

p−1

2
∑

k=0

(

p

k

)(

p− k

k

)

xk.
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Therefore, we get

[zp](1− αz)p(1− βz)p ≡ −1 + p

p−1

2
∑

k=1

(−1)k
(

p− k

k

)

xk

k

≡ −1 +
p

2

p−1
∑

k=1

(

2k

k

)

xk

k
(mod p2) (5)

where we used the fact that, for 1 ≤ k ≤ p−1
2
,

(

p− k

k

)

=
(p− k) . . . (p− (2k − 1))

k!
≡

(−1)k

2

(

2k

k

)

(mod p),

and p divides
(

2k
k

)

for p−1
2

< k < p. Combining (4) with (5) yields the desired result.

Once the preliminary congruence (3) is obtained, we are in the position to state the main
theorem of this section.

Theorem 2. If p > 2 is a prime then

p−1
∑

k=1

(

2k

k

)

hkx
k ≡

1

2
(1− 4x)

p−1

2

(

p−1
∑

k=1

(

2k

k

)

xk

k
−

p−1
∑

k=1

(

2k

k

)

yk

k

)

(mod p) (6)

where y = − x
1−4x

.

Proof. For 1 ≤ k ≤ p−1
2
,

(p−1
2

k

)

=
(p− 1)(p− 3) . . . (p− (2k − 1))

2kk!
≡

(−1)k(2k − 1)!!

2kk!
=

(

2k

k

)

1

(−4)k
(mod p)

which implies that

p−1
∑

k=0

(

2k

k

)

xk ≡

p−1

2
∑

k=0

(p−1
2

k

)

(−4x)k ≡ (1− 4x)
p−1

2 (mod p). (7)

Furthermore, by [7, (14)], we have that

(

p−1
∑

k=0

(

2k

k

)

xk

)

·

(

p−1
∑

k=1

(

2k

k

)

xk

k

)

≡ 2

p−1
∑

k=1

(

2k

k

)

(H2k −Hk)x
k (mod p) (8)

where Hk =
∑k

j=1
1
j
is the k-th harmonic number.
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In view of the known identity
∑n

k=1

(

n
k

)

(−1)k

k
= −Hn, it follows that

p−1
∑

k=1

(

2k

k

)

Hkx
k ≡

p−1

2
∑

k=1

(p−1
2

k

)

Hk(−4x)k

= −

p−1

2
∑

k=1

(p−1
2

k

)

(−4x)k
k
∑

j=1

(

k

j

)

(−1)j

j

= −

p−1

2
∑

j=1

(−1)j

j

p−1

2
∑

k=j

(p−1
2

k

)(

k

j

)

(−4x)k

= −

p−1

2
∑

j=0

(−1)j

j

(p−1
2

j

)

(−4x)j(1− 4x)
p−1

2
−j

≡ −(1− 4x)
p−1

2

p−1
∑

j=1

(

2j

j

)

yj

j
(mod p). (9)

Finally, given that hk = H2k − 1
2
Hk and combining (7), (8), and (9), we obtain

p−1
∑

k=1

(

2k

k

)

hkx
k =

p−1
∑

k=1

(

2k

k

)

(H2k −Hk)x
k +

1

2

p−1
∑

k=1

(

2k

k

)

Hkx
k

≡
1

2
(1− 4x)

p−1

2

(

p−1
∑

k=1

(

2k

k

)

xk

k
−

p−1
∑

k=1

(

2k

k

)

yk

k

)

(mod p).

If x = 1
2
then y = − x

1−4x
= 1

2
and congruence (6) immediately implies the following

corollary.

Corollary 3. For any prime p > 2,

p−1
∑

k=1

(

2k

k

)

hk

2k
≡ 0 (mod p).

It is worth pointing out that, based on a numerical experiment, the above congruence
seems to have the following conjectural q-analogue: for any odd integer n,

n−1
∑

k=1

[

2k

k

]

q

qk
∏k

j=1(1 + qj)

k
∑

j=1

q2j−1

[2j − 1]q
≡ (−1)

n−1

2

(n− 1)(q − 1)

2
q

n2
−1

4 (mod Φn(q)) (10)
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where [n]q = (1− qn)/(1− q), for 0 ≤ k ≤ n,
[

n

k

]

q

=
(q; q)n

(q; q)k(q; q)n−k

is the q-binomial coefficient with (z; q)n = (1− z)(1− zq) · · · (1− zqn−1), and Φn(q) denotes
the n-th cyclotomic polynomial.

3 Congruences involving Fibonacci and Lucas numbers

We first establish the next two congruences modulo p2, which extend [8, (2.9) and (2.10)].

Lemma 4. Let ε =
(

5
p

)

and let p be a prime different from 2 and 5. Then for any integer

n ≥ 0,

Lnp ≡ Ln +
5n

2
FnFp−ε (mod p2), (11)

Fnp ≡ ε
(

Fn +
n

2
LnFp−ε

)

(mod p2). (12)

Proof. We show both congruences by induction with respect to n. They are are clearly true
for n = 0. For n = 1, by [8, (2.9)], we have Lp−ε ≡ 2ε (mod p2). Therefore

Lp =
1

2
(Lp−εLε + 5Fp−εFε) ≡ εLε +

5

2
Fp−εFε = L1 +

5

2
F1Fp−ε (mod p2)

and

Fp =
1

2
(Lp−εFε + Fp−εLε) ≡ εFε +

ε

2
L1Fp−ε ≡ ε

(

F1 +
1

2
L1Fp−ε

)

(mod p2)

where we applied the identities

2Ln+m = LnLm + 5FnFm, 2Fn+m = LnFm + FnLm,

and εLε = 1 = L1, Fε = 1 = F1.
Inductive step for (11): for n ≥ 3, by the multiple-angle recurrence for Lnp, and because

p divides Fp−ε, we get

Lnp = LpL(n−1)p − (−1)pL(n−2)p

≡
(

1 +
5

2
Fp−ε

)(

Ln−1 +
5(n− 1)

2
Fn−1Fp−ε

)

+

(

Ln−2 +
5(n− 2)

2
Fn−2Fp−ε

)

≡ (Ln−1 + Ln−2) +
5

2
Fp−ε (Ln−1 + (n− 1)Fn−1 + (n− 2)Fn−2)

≡ Ln +
5

2
Fp−ε (Fn + (n− 1)Fn−1 + (n− 1)Fn−2)

≡ Ln +
5n

2
FnFp−ε (mod p2).
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A similar argument shows the inductive step for (12):

Fnp = LpF (n− 1)p− (−1)pF(n−2)p

≡
(

1 +
5

2
Fp−ε

)(

Fn−1 +
(n− 1)

2
Ln−1Fp−ε

)

+

(

Fn−2 +
(n− 2)

2
Ln−2Fp−ε

)

≡ (Fn−1 + Fn−2) +
5

2
Fp−ε (Fn−1 + (n− 1)Ln−1 + (n− 2)Ln−2)

≡ Fn +
5

2
Fp−ε (Ln + (n− 1)Ln−1 + (n− 1)Ln−2)

≡ Fn +
5n

2
LnFp−ε (mod p2).

In the next two theorems we specialize the polynomial congruences (3) and (6) obtained
in the previous section to the numbers un and vn.

Theorem 5. Let n ≥ 1 and let p > 2 be a prime not dividing 5LnFn. Then

p−1
∑

k=1

(

2k

k

)

uk
n

k
≡ −qp(un)−

5nFn

Ln

fp (mod p) (13)

p−1
∑

k=1

(

2k

k

)

vkn
k

≡ −qp(vn)−
nLn

Fn

fp (mod p). (14)

Proof. Let ϕ± = (1±
√
5)/2. For α = ϕn

+/Ln, we have that

α(1− α) =
ϕn
+(Ln − ϕn

+)

L2
n

=
ϕn
+(ϕ

n
−)

L2
n

=
(−1)n

L2
n

= un.

Let x = un in (3). Then we find

p−1
∑

k=1

(

2k

k

)

uk
n

k
≡ 2

1− αp − (1− α)p

p

=
2

pLp
n

(

Lp
n − ϕnp

+ − (Ln − ϕn
+)

p
)

=
2

Lp
n
·
Lp
n − Lnp

p

=
2

Lp−1
n

qp(Ln)−
2

Lp
n
·
Lnp − Ln

p

≡ 2qp(Ln)−
2

Ln

·
5nFnFp−ε

2p

≡ −qp(un)−
5nFn

Ln

fp (mod p)
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where we applied Fermat’s little theorem, (11), and FnLn = F2n. Also recall that qp(x · y) ≡
qp(x) + qp(y) (mod p).

For α = ϕn
+/(

√
5Fn), we have

α(1− α) =
ϕn
+(
√
5Fn − ϕn

+)

5F 2
n

=
ϕn
+(−ϕn

−)

5F 2
n

=
(−1)n−1

5F 2
n

= vn.

In the same manner, setting x = vn in (3), we obtain

p−1
∑

k=1

(

2k

k

)

vkn
k

≡ 2
1− αp − (1− α)p

p

=
2

p5p/2F p
n

(

5p/2F p
n − ϕnp

+ − (
√
5Fn − ϕn

+)
p
)

=
2

5p/2F p
n
·
5p/2F p

n −
√
5Fnp

p

=
2

F p−1
n

qp(Fn)−
2

5
p−1

2 F p
n

·
Fnp − 5

p−1

2 Fn

p

≡ 2qp(Fn) + qp(5)−
2ε

Fn

·
Fnp − εFn

p

≡ −qp(vn)−
nLn

Fn

fp (mod p),

where we used (12), and

5
p−1

2 ≡
(

5

p

)

(

1 +
p

2
qp(5)

)

(mod p2),

which is a consequence of [5, Lemma 4.1].

Theorem 6. Let n ≥ 1 and let p > 2 be a prime not dividing 5LnFn. Then

p−1
∑

k=1

(

2k

k

)

hku
k
n ≡

(

5

p

)(

1

2
qp

(

vn
un

)

+ (−1)n
2n

F2n

fp

)

(mod p) (15)

and
p−1
∑

k=1

(

2k

k

)

hkv
k
n ≡ −

p−1
∑

k=1

(

2k

k

)

hku
k
n (mod p). (16)

Proof. Setting x = un, the identity L2
n − 5F 2

n = 4(−1)n yields

1− 4x =
L2
n − 4(−1)n

L2
n

=
5F 2

n

L2
n

,
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and therefore

y =
−x

1− 4x
= −

(−1)n

L2
n

·
L2
n

5F 2
n

=
(−1)n−1

5F 2
n

= vn.

Moreover

(1− 4x)
p−1

2 = 5
p−1

2

F p−1
n

Lp−1
n

≡
(

5

p

)

(mod p).

Thus, by (6), (13), and (14), we obtain (15). Indeed,

p−1
∑

k=1

(

2k

k

)

hku
k
n ≡

1

2
(1− 4un)

p−1

2

(

p−1
∑

k=1

(

2k

k

)

uk
n

k
−

p−1
∑

k=1

(

2k

k

)

vkn
k

)

≡
1

2

(

5

p

)(

qp(vn)− qp(un) +

(

Ln

Fn

−
5Fn

Ln

)

nfp

)

≡
1

2

(

5

p

)(

qp

(

vn
un

)

+
4(−1)n

F2n

nfp

)

(mod p).

It remains to show (16). Since

1− 4vn = 1− 4y = 1 +
4x

1− 4x
= (1− 4x)−1 = (1− 4un)

−1,

it follows that

(1− 4vn)
p−1

2 = (1− 4un)
−

p−1

2 ≡
(

5

p

)−1

≡
(

5

p

)

(mod p)

and we are done because of (6).
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