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Abstract

After reviewing the definitions and some properties of the Lah numbers and the
Stirling numbers of both kinds, as well as their generalizations (r-Lah numbers, r-
Stirling numbers of both kinds and (l, r)-Stirling numbers of both kinds), we define the
(l, r)-Lah numbers analogously, prove a recurrence relation that they satisfy, express
them explicitly as a multiple sum, and present the difference-differential equations
satisfied by their column and row generating functions, respectively. Finally, we pose
two conjectures, based on experimental evidence.

1 Introduction

After binomial coefficients, the Stirling numbers of the first and second kind are probably the
best known triangular arrays of natural numbers, arising in many combinatorial, algebraic,
and even analytic contexts. Recognized at least since the 18th century, they were joined
and nicely complemented by the Lah numbers (a.k.a. Stirling numbers of the third kind) in
the 1950s. In the 1980s, a third parameter was added to the definition of Stirling numbers,
resulting in the r-Stirling numbers of the first and second kind. In the last decade, the r-Lah
numbers were defined and their properties explored. In 2021, a fourth parameter was added
to the definition of r-Stirling numbers, yielding the (l, r)-Stirling numbers of the first and

second kind. Here we define and explore the analogous (l, r)-Lah numbers.
The article is organized as follows. Section 2 contains definitions of the Lah and r-

Lah numbers, lists some recurrence relations that they satisfy, expresses them explicitly in
terms of factorials, and presents some of their applications. With the exception of explicit
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representation, Section 3 does the same for the Stirling, r-Stirling, and (l, r)-Stirling numbers
of both kinds. In Section 4, we define the new (l, r)-Lah numbers, prove a recurrence
relation that they satisfy, express them explicitly in terms of a multiple sum, and present
the difference-differential equations satisfied by their column and row generating functions,
respectively. Finally, in Section 5, we pose two conjectures, based on experimental evidence.

2 The Lah and r-Lah numbers

The unsigned Lah numbers
⌊

n

k

⌋

count partitions of the set [n] := {1, 2, . . . , n} into k non-
empty linearly ordered blocks (lists, for short).

For n, k ≥ 1, they satisfy the recurrence

⌊

n

k

⌋

= (n+ k − 1)

⌊

n− 1

k

⌋

+

⌊

n− 1

k − 1

⌋

(1)

which, together with the initial conditions
⌊

0
0

⌋

= 1,
⌊

n

0

⌋

=
⌊

0
k

⌋

= 0 for n, k > 0, can be used
to compute

⌊

n

k

⌋

for all n, k ≥ 0.

n

k
0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 2 1 0 0 0 0 0 0
3 0 6 6 1 0 0 0 0 0
4 0 24 36 12 1 0 0 0 0
5 0 120 240 120 20 1 0 0 0
6 0 720 1800 1200 300 30 1 0 0
7 0 5040 15120 12600 4200 630 42 1 0
8 0 40320 141120 141120 58800 11760 1176 56 1

Table 1: Unsigned Lah numbers
⌊

n

k

⌋

for 0 ≤ n, k ≤ 8.

They can also be expressed explicitly in terms of factorials and binomial coefficients as

⌊

n

k

⌋

=
n!

k!

(

n− 1

n− k

)

. (2)

For simple combinatorial proofs of (1) and (2), see, e.g., [13]. Another interesting property
of Lah numbers is that they appear in the coefficients in the expansion of rising powers

xn = x(x+ 1)(x+ 2) · · · (x+ n− 1)
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in terms of falling powers

xn = x(x− 1)(x− 2) · · · (x− n+ 1)

and vice versa, namely:

xn =
n
∑

k=0

⌊

n

k

⌋

xk, xn =
n
∑

k=0

(−1)n+k

⌊

n

k

⌋

xk

for all n ≥ 0 and all x, where x0 = x0 = 1. These identities can easily be proved by induction
on n.

Lah numbers appear not only in combinatorics and algebra, but also in other areas of
mathematics, such as mathematical analysis. For instance, the n-th derivative of the function
e

1

x can be expressed for all n ≥ 0 as

(

e
1

x

)(n)

= e
1

x (−1)n
n
∑

k=0

⌊

n

k

⌋

x−(n+k) = e
1

x

n
∑

k=0

⌊

n

k

⌋′

x−(n+k), (3)

which again can be proved by induction on n. Here
⌊

n

k

⌋′
= (−1)n

⌊

n

k

⌋

are the signed Lah

numbers, introduced in [10] by Slovenian mathematician, statistician, and actuary Ivo Lah
(1896–1979), and later named after him by Riordan in [14, pp. 43–44].

In the last decade, the r-Lah numbers, denoted by
⌊

n

k

⌋

r
(counting partitions of [n] into k

non-empty lists such that the elements 1, 2, . . . , r are in distinct lists) were defined, and their
properties explored (see [7, 1, 2, 15, 11, 16, 12]; note however that in [15, 11, 16, 12], the r-Lah
number with parameters n, k, r equals our r-Lah number with parameters n+ r, k + r, r).

For n, k ≥ 1, the r-Lah numbers satisfy the recurrence
⌊

n

k

⌋

r

= (n+ k − 1)

⌊

n− 1

k

⌋

r

+

⌊

n− 1

k − 1

⌋

r

(4)

which, together with the initial conditions
⌊

n

k

⌋

r
= 0 if n < k or k < r, and

⌊

n

n

⌋

n
= 1, allows us

to compute
⌊

n

k

⌋

r
for all n, k, r ≥ 0. They are expressed explicitly by the formula

⌊

n

k

⌋

r

=
(n+ r − 1)!

(k + r − 1)!

(

n− r

k − r

)

. (5)

Note that r-Lah numbers have applications in graph theory [12]. They also satisfy iden-
tities connecting rising and falling powers such as

(x+ 2r)n =
n
∑

k=0

⌊

n+ r

k + r

⌋

r

xk, (6)

(x− r)n =
n
∑

k=0

(−1)n+k

⌊

n+ r

k + r

⌋

r

(x+ r)k. (7)

For proofs of identities (4)–(7), see [1] and [11].
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n

k
2 3 4 5 6 7 8

2 1 0 0 0 0 0 0
3 4 1 0 0 0 0 0
4 20 10 1 0 0 0 0
5 120 90 18 1 0 0 0
6 840 840 252 28 1 0 0
7 6720 8400 3360 560 40 1 0
8 60480 90720 45360 10080 1080 54 1

Table 2: 2-Lah numbers
⌊

n

k

⌋

2
for 2 ≤ n, k ≤ 8.

3 The Stirling, r-Stirling, and (l, r)-Stirling numbers

Stirling numbers were introduced by the Scottish mathematician James Stirling (1692–1770)
in 1730. They come in two flavors: unsigned Stirling numbers of the first kind

[

n

k

]

count
permutations of the set [n] with exactly k cycles (or, equivalently, partitions of the set [n]
into k cyclically ordered blocks), while unsigned Stirling numbers of the second kind

{

n

k

}

count partitions of the set [n] into k unordered blocks.
Unsigned Stirling numbers of the first kind for n, k ≥ 1 satisfy the recurrence

[

n

k

]

= (n− 1)

[

n− 1

k

]

+

[

n− 1

k − 1

]

(8)

which, together with the initial conditions
[

0
0

]

= 1,
[

n

0

]

=
[

0
k

]

= 0 for n, k > 0, can be used to
compute

[

n

k

]

for all n, k ≥ 0. They are also the coefficients in the expansion of rising powers
in terms of ordinary powers:

xn =
n
∑

k=0

[

n

k

]

xk. (9)

Similarly, unsigned Stirling numbers of the second kind for n, k ≥ 1 satisfy the recurrence
{

n

k

}

= k

{

n− 1

k

}

+

{

n− 1

k − 1

}

(10)

which, together with the initial conditions
{

0
0

}

= 1,
{

n

0

}

=
{

0
k

}

= 0 for n, k > 0, can be used
to compute

{

n

k

}

for all n, k ≥ 0. They are also the coefficients in the expansion of ordinary
powers in terms of falling powers:

xn =
n
∑

k=0

{

n

k

}

xk. (11)
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There is a nice identity expressing Lah numbers with Stirling numbers of both kinds, namely

⌊

n

k

⌋

=
n
∑

j=0

[

n

j

]{

j

k

}

. (12)

For proofs of identities (8)–(12), see, e.g., [8] or [13].
In the 1980’s, Stirling numbers of both kinds were generalized to r-Stirling numbers (cf.

[5, 6, 4]). The unsigned r-Stirling numbers of the first kind
[

n

k

]

r
count permutations of [n]

having k cycles such that the numbers 1, 2, . . . , r are in distinct cycles. They satisfy the
same recurrence as the numbers

[

n

k

]

[

n

k

]

r

= (n− 1)

[

n− 1

k

]

r

+

[

n− 1

k − 1

]

r

, for n, k ≥ 1, (13)

which, together with initial conditions
[

n

k

]

r
= 0 for n < k or k < r, and

[

n

n

]

r
= 1 for r ≤ n,

can be used to compute
[

n

k

]

r
for all n, k, r ≥ 0. Another, so-called ‘cross’ recurrence (in

which r changes but n stays fixed) satisfied by the unsigned r-Stirling numbers of the first
kind is

[

n

k

]

r

=
1

r − 1

([

n

k − 1

]

r−1

−

[

n

k − 1

]

r

)

, for n, k ≥ 1, r ≥ 2 (14)

with initial conditions
[

n

k

]

r
=
[

n

k

]

for r ≤ 1, and
[

n

k

]

r
= 0 for n < k or k < r.

The unsigned r-Stirling numbers of the second kind
{

n

k

}

r
count partitions of [n] into k

nonempty disjoint subsets such that the numbers 1, 2, . . . , r are in distinct subsets. They
satisfy the same recurrence as the numbers

{

n

k

}

{

n

k

}

r

= k

{

n− 1

k

}

r

+

{

n− 1

k − 1

}

r

, for n, k ≥ 1, (15)

which, together with initial conditions
{

n

k

}

r
= 0 for n < k or k < r, and

{

n

n

}

r
= 1 for r ≤ n,

can be used to compute
{

n

k

}

r
for all n, k, r ≥ 0. The ‘cross’ recurrence satisfied by

{

n

k

}

r
is

{

n

k

}

r

=

{

n

k

}

r−1

− (r − 1)

{

n− 1

k

}

r−1

, for n, k, r ≥ 1 (16)

with initial conditions
{

n

k

}

0
=
{

n

k

}

, and
{

n

k

}

r
= 0 for n < k or k < r.

For proofs of identities (13)–(16), see [4].
In 2021, Belbachir and Djemmada [3] introduced (l, r)-Stirling numbers of the first kind

[

n

k

](l)

r
and (l, r)-Stirling numbers of the second kind

{

n

k

}(l)

r
which count ordered l-tuples

(π1, π2, . . . , πl) of partitions of [n] into k cyclically ordered blocks, respectively into k un-
ordered blocks, such that the numbers 1, 2, . . . , r are in distinct cycles, and satisfy

bl π1 = bl π2 = · · · = bl πl
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where for i = 1, 2, . . . , l and πi = {b
(i)
1 , b

(i)
2 , . . . , b

(i)
k }, where b

(i)
1 , . . . b

(i)
k are the blocks of

partition πi, we denote by

bl πi = {min b
(i)
1 ,min b

(i)
2 , . . . ,min b

(i)
k }

the set of block leaders, i.e., of minima of the blocks of partition πi.
Note that the (l, r)-Stirling numbers of the second kind are a generalization of the central

factorial numbers of the second kind, see, e.g., [9].

Example 1. Let us compute
{

4
3

}(2)

2
. Here n = 4, k = 3, l = r = 2, so we need to construct

all partitions of the set [4] = {1, 2, 3, 4} into three nonempty blocks, such that 1 and 2 are
in distinct blocks. There are five such partitions:

π1 = {{1}, {2}, {3, 4}},

π2 = {{1}, {2, 3}, {4}},

π3 = {{1}, {2, 4}, {3}},

π4 = {{1, 3}, {2}, {4}},

π5 = {{1, 4}, {2}, {3}},

and the sets of their block leaders are

bl π1 = bl π3 = bl π5 = {1, 2, 3},

bl π2 = bl π4 = {1, 2, 4}.

Now we compute the number of ordered l-tuples (i.e., ordered pairs) of partitions π1, π2, π3, π4, π5

such that partitions in the same pair share the same set of block leaders. As there are three
partitions with the set of block leaders equal to {1, 2, 3}, and two partitions with the set of
block leaders equal to {1, 2, 4}, we find that

{

4

3

}(2)

2

= 32 + 22 = 13.

The (l, r)-Stirling numbers of the first kind
[

n

k

](l)

r
satisfy the recurrence

[

n

k

](l)

r

= (n− 1)l
[

n− 1

k

](l)

r

+

[

n− 1

k − 1

](l)

r

, for n > k ≥ r ≥ 0, (17)

which, together with initial conditions
[

n

k

](l)

r
= 0 for n < k or k < r, and

[

n

k

](l)

n
= δn,k, where

δn,k = 1 if n = k and δn,k = 0 if n 6= k, can be used to compute the numbers
[

n

k

](l)

r
for all

n, k, l, r ≥ 0. They also satisfy the ‘cross’ recurrence

[

n

k

](l)

r

=
1

(r − 1)l

(

[

n

k − 1

](l)

r−1

−

[

n

k − 1

](l)

r

)

, for n, k, l ≥ 1, r ≥ 2. (18)
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The (l, r)-Stirling numbers of the second kind
{

n

k

}(l)

r
satisfy the recurrence

{

n

k

}(l)

r

= kl

{

n− 1

k

}(l)

r

+

{

n− 1

k − 1

}(l)

r

, for n > k ≥ r ≥ 0, (19)

which, together with initial conditions
{

n

k

}(l)

r
= 0 for n < k or k < r, and

{

n

k

}(l)

n
= δn,k, can

be used to compute the numbers
{

n

k

}(l)

r
for all n, k, l, r ≥ 0. They also satisfy the ‘cross’

recurrence
{

n

k

}(l)

r

=

{

n

k

}(l)

r−1

− (r − 1)l
{

n− 1

k

}(l)

r−1

, for n, k, l, r ≥ 1. (20)

For proofs of identities (17)–(20), see [3].

4 The (l, r)-Lah numbers

Definition 2. (l, r)-Lah numbers
⌊

n

k

⌋(l)

r
count ordered l-tuples (π1, π2, . . . , πl) of partitions

of [n] into k linearly ordered blocks (lists, for short) such that the numbers 1, 2, . . . , r are in
distinct lists, and

bl π1 = bl π2 = · · · = bl πl

where for i = 1, 2, . . . , l and πi = {b
(i)
1 , b

(i)
2 , . . . , b

(i)
k }, where b

(i)
1 , b

(i)
2 , . . . , b

(i)
k are the blocks of

partition πi,
bl πi = {min b

(i)
1 ,min b

(i)
2 , . . . ,min b

(i)
k }

is the set of block leaders, i.e., of minima of the lists in partition πi.

Example 3. Let us compute
⌊

4
3

⌋(2)

2
. Here n = 4, k = 3, l = r = 2, so we need to construct

all partitions of the set [4] = {1, 2, 3, 4} into three nonempty disjoint lists, such that 1 and
2 are in distinct lists. There are 10 such partitions:

π1 = {(1), (2), (3, 4)},

π2 = {(1), (2), (4, 3)},

π3 = {(1), (2, 3), (4)},

π4 = {(1), (3, 2), (4)},

π5 = {(1), (2, 4), (3)},

π6 = {(1), (4, 2), (3)},

π7 = {(1, 3), (2), (4)},

π8 = {(3, 1), (2), (4)},

π9 = {(1, 4), (2), (3)},

π10 = {(4, 1), (2), (3)},
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and the sets of their block leaders are

bl π1 = bl π2 = bl π5 = bl π6 = bl π9 = bl π10 = {1, 2, 3},

bl π3 = bl π4 = bl π7 = bl π8 = {1, 2, 4}.

Now we compute the number of ordered l-tuples (i.e., ordered pairs) of partitions π1, π2, . . . , π10

such that partitions in the same pair share the same set of block leaders. As there are six
partitions with the set of block leaders equal to {1, 2, 3}, and four partitions with the set of
block leaders equal to {1, 2, 4}, we find that

⌊

4

3

⌋(2)

2

= 62 + 42 = 52.

Theorem 4. For n ≥ k ≥ r ≥ 1, (l, r)-Lah numbers satisfy the recurrence relation

⌊

n

k

⌋(l)

r

= (n+ k − 1)l
⌊

n− 1

k

⌋(l)

r

+

⌊

n− 1

k − 1

⌋(l)

r

. (21)

Proof. Let π = (π1, π2, . . . , πl) be an l-tuple of partitions of [n] into k nonempty lists such
that the numbers 1, 2, . . . , r are in distinct lists, and bl π1 = bl π2 = · · · = bl πl. Each such
l-tuple π is of exactly one of the following two types:

Type A: There is an i ∈ [l] such that n is alone in its list in partition πi. Then n is a
block leader in each of π1, π2, . . . , πl; hence n is alone in its list in each of the πi. By
deleting this list from each of the πi, we obtain an l-tuple of partitions ρ = (ρ1, ρ2, . . . , ρl) of
[n − 1] into k − 1 nonempty lists such that the numbers 1, 2, . . . , r are in distinct lists, and
bl ρ1 = bl ρ2 = · · · = bl ρl. Going back, by appending the list (n) to each partition ρi we

recover the initial l-tuple π, hence the number of l-tuples π of partitions of type A is
⌊

n−1
k−1

⌋(l)

r
.

Type B: Otherwise, for each i ∈ [l], the number n is not alone in its list in πi, hence n is
not a block leader in any of π1, π2, . . . , πl. By deleting n from each of the πi, we obtain an
l-tuple of partitions ρ = (ρ1, ρ2, . . . , ρl) of the set [n − 1] into k nonempty lists such that
the numbers 1, 2, . . . , r are in distinct lists, and bl ρ1 = bl ρ2 = · · · = bl ρl. Going back, by
inserting n into some position of some list in each of the ρi, we obtain an l-tuple of partitions
of [n] into k nonempty lists such that the numbers 1, 2, . . . , r are in distinct lists, and the
sets of block leaders of these partitions are the same. As the number of possible insertion
points in a list equals its length plus one, there are (n− 1)+ k = n+ k− 1 possible insertion
points for n in a single partition ρi, and (n+ k− 1)l possibilities for the l-tuple of partitions

ρ. Hence the number of l-tuples π of partitions of type B is (n+ k − 1)l
⌊

n−1
k

⌋(l)

r
.

It follows that the number
⌊

n

k

⌋(l)

r
of all such l-tuples π of partitions of [n] equals the

sum of the number of partitions of type A and the number of partitions of type B, which is
⌊

n−1
k−1

⌋(l)

r
+ (n+ k − 1)l

⌊

n−1
k

⌋(l)

r
.
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This recurrence, together with initial conditions
⌊

n

k

⌋(l)

r
= 0 for n < k or k < r,

⌊

n

n

⌋(l)

r
= 1,

and
⌊

r

k

⌋(l)

r
= δk,r can be used to compute the numbers

⌊

n

k

⌋(l)

r
for all n, k, l, r ≥ 0.

n

k
2 3 4 5 6 7 8

2 1 0 0 0 0 0 0
3 16 1 0 0 0 0 0
4 400 52 1 0 0 0 0
5 14400 2948 116 1 0 0 0
6 705600 203072 12344 216 1 0 0
7 45158400 17154432 1437472 38480 360 1 0
8 3657830400 1760601600 191088544 6978592 99320 556 1

Table 3: (2, 2)-Lah numbers
⌊

n

k

⌋(2)

2
for 2 ≤ n, k ≤ 8.

n

k
3 4 5 6 7 8 9

3 1 0 0 0 0 0 0
4 36 1 0 0 0 0 0
5 1764 100 1 0 0 0 0
6 112896 9864 200 1 0 0 0
7 9144576 1099296 34064 344 1 0 0
8 914457600 142159392 6004512 92200 540 1 0
9 110649369600 21385410048 1156921920 24075712 213700 796 1

Table 4: (2, 3)-Lah numbers
⌊

n

k

⌋(2)

3
for 3 ≤ n, k ≤ 9.

Proposition 5 (some special cases).

⌊

n

r

⌋(l)

r

=

(⌊

n

r

⌋

r

)l

=
(n+ r − 1)! l

(2r − 1)! l
, (22)

⌊

n

n− 1

⌋(l)

r

= 2l
n−1
∑

j=r

jl. (23)

Proof. By Definition 2,
⌊

n

r

⌋(l)

r
is the number of ordered l-tuples (π1, π2, . . . , πl) of partitions

of [n] into r lists such that the numbers 1, 2, . . . , r are in distinct lists, and bl π1 = bl π2 =
· · · = bl πl. As there are r lists in each partition, and 1, 2, . . . , r are in distinct lists, we have

9



bl π = [r] for all partitions π, so
⌊

n

r

⌋(l)

r
is simply the l-th power of the number of partitions of

[n] into r lists such that the numbers 1, 2, . . . , r are in distinct lists. Hence
⌊

n

r

⌋(l)

r
=
(⌊

n

r

⌋

r

)l
,

proving the first equality in (22), while the second equality in (22) follows from (5).
By (21) with k = n− 1, we have for n ≥ 1

⌊

n

n− 1

⌋(l)

r

= (2n− 2)l
⌊

n− 1

n− 1

⌋(l)

r

+

⌊

n− 1

n− 2

⌋(l)

r

=

⌊

n− 1

n− 2

⌋(l)

r

+ (2n− 2)l (24)

since
⌊

n−1
n−1

⌋(l)

r
= 1. Using (24) repeatedly, we obtain

⌊

n

n− 1

⌋(l)

r

=

⌊

n− 1

n− 2

⌋(l)

r

+ (2n− 2)l

⌊

n− 1

n− 2

⌋(l)

r

=

⌊

n− 2

n− 3

⌋(l)

r

+ (2n− 4)l

...
⌊

r + 1

r

⌋(l)

r

=

⌊

r

r − 1

⌋(l)

r

+ (2r)l.

Summing these equations and cancelling all the underlined terms, we find

⌊

n

n− 1

⌋(l)

r

=

⌊

r

r − 1

⌋(l)

r

+
n−1
∑

j=r

(2j)l = 2l
n−1
∑

j=r

jl,

which is (23).

Theorem 6. (l, r)-Lah numbers can be expressed explicitly as

⌊

n

k

⌋(l)

r

=
∑

r+1≤j1<j2<···<jn−k≤n

(2j1 − 2)l(2j2 − 3)l · · · (2jn−k − (n− k + 1))l. (25)

Proof. We will compute
⌊

n

k

⌋(l)

r
by counting in how many ways one can construct an l-

tuple π = (π1, π2, . . . , πl) of partitions of the set [n] into k lists such that 1, 2, . . . , r are
in distinct lists, and bl π1 = bl π2 = · · · = bl πl. In π1 there will be k leading elements
1, 2, . . . , r, λr+1, λr+2, . . . , λk ∈ [n] with r + 1 ≤ λr+1 < λr+2 < · · · < λk ≤ n, and n − k

non-leading elements ν1, ν2, . . . , νn−k ∈ [n] with r + 1 ≤ ν1 < ν2 < · · · < νn−k ≤ n.

10



Starting with a set of k lists of length 1 containing their leaders, i.e., with

{(1), (2), . . . , (r), (λr+1), (λr+2), . . . , (λk)},

we insert the non-leading elements ν1, ν2, . . . , νn−k one after another into the above lists,
counting the ways to do this as we go along. A non-leading element νi can be inserted into
a list iff this list’s leader is smaller than νi; on the other hand, νi can be inserted into any
position within any such list. We now prove that for i = 1, 2, . . . , n − k, there are exactly

2νi − (i+ 1) possible insertion points for νi. Recall that when inserting an element into any
of k given lists in any position, where the sum of the list lengths is ℓ, the total number of
possible insertion points is k + ℓ.

i = 1: Since ν1 is the least non-leader, all the smaller elements 1, 2, . . . , ν1 − 1 are leaders,
hence there ν1 − 1 lists of length 1 into which ν1 can be inserted. Hence there are (ν1 − 1) +
(ν1 − 1) = 2ν1 − 2 possible insertion points for ν1.

i > 1: Assume that all the νi−1 elements smaller than νi have already been inserted into the
lists. All of them, except for ν1, ν2, . . . , νi−1, are leaders, hence there are νi−1−(i−1) = νi−i

lists into which νi can be inserted. These lists jointly contain νi − 1 elements, so there are
(νi − i) + (νi − 1) = 2νi − (i+ 1) possible insertion points for νi as claimed.

In all, we thus have (2ν1−2)(2ν2−3) · · · (2νn−k−(n−k+1)) ways to construct partition π1,
and the same number of ways also for each of π2, π3, . . . , πl independently. Hence the number
of ways to construct an l-tuple π = (π1, π2, . . . , πl) for a fixed choice of ν1, ν2, . . . , νn−k is
(2ν1−2)l(2ν2−3)l · · · (2νn−k−(n−k+1))l, and the total number of such l-tuples is obtained
by summing this product over all possible choices of ν1, ν2, . . . , νn−k. Hence

⌊

n

k

⌋(l)

r

=
∑

r+1≤ν1<ν2<···<νn−k≤n

(2ν1 − 2)l(2ν2 − 3)l · · · (2νn−k − (n− k + 1))l,

which proves the theorem.

Theorem 7. For k ≥ r ≥ 1 and l ≥ 1, the column generating function

F
l,r

k (z) =
∞
∑

n=0

⌊

n

k

⌋(l)

r

zn

of (l, r)-Lah numbers, as a formal power series, satisfies the difference-differential equation

F
l,r

k (z) = zF
l,r

k−1(z) +
l
∑

j=0

(

l

j

)

(k − 1)l−j

j
∑

i=0

{

j

i

}

zi
di

dzi

(

zF
l,r

k (z)
)

. (26)
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Proof. Multiplying recurrence (21) by zn and formally summing it on n from 2 to ∞ yields

∞
∑

n=2

⌊

n

k

⌋(l)

r

zn =
∞
∑

n=2

(n+ k − 1)l
⌊

n− 1

k

⌋(l)

r

zn +
∞
∑

n=2

⌊

n− 1

k − 1

⌋(l)

r

zn. (27)

Rewrite the left-hand side of (27) as

∞
∑

n=2

⌊

n

k

⌋(l)

r

zn = F
l,r

k (z)−

⌊

0

k

⌋(l)

r

−

⌊

1

k

⌋(l)

r

z =

{

F
l,r

k (z), if k ≥ 2;

F
l,r

k (z)− z, if k = 1.

Rewrite the second term on the right-hand side of (27) as

∞
∑

n=2

⌊

n− 1

k − 1

⌋(l)

r

zn =
∞
∑

n=1

⌊

n

k − 1

⌋(l)

r

zn+1 = z

(

F
l,r

k−1(z)−

⌊

0

k − 1

⌋(l)

r

)

= z

{

F
l,r

k−1(z), if k ≥ 2;

F
l,r

k−1(z)− 1, if k = 1,
=

{

zF
l,r

k−1(z), if k ≥ 2;

zF
l,r

k−1(z)− z, if k = 1,

and the first term on the right-hand side of (27) as

∞
∑

n=2

(n+ k − 1)l
⌊

n− 1

k

⌋(l)

r

zn =
∞
∑

n=2

l
∑

j=0

(

l

j

)

nj(k − 1)l−j

⌊

n− 1

k

⌋(l)

r

zn

=
l
∑

j=0

(

l

j

)

(k − 1)l−j

∞
∑

n=2

⌊

n− 1

k

⌋(l)

r

njzn

=
l
∑

j=0

(

l

j

)

(k − 1)l−j

∞
∑

n=2

⌊

n− 1

k

⌋(l)

r

j
∑

i=0

{

j

i

}

ni zn

=
l
∑

j=0

(

l

j

)

(k − 1)l−j

j
∑

i=0

{

j

i

} ∞
∑

n=1

⌊

n

k

⌋(l)

r

(n+ 1)i zn+1

=
l
∑

j=0

(

l

j

)

(k − 1)l−j

j
∑

i=0

{

j

i

} ∞
∑

n=1

⌊

n

k

⌋(l)

r

zi
di

dzi
zn+1

=
l
∑

j=0

(

l

j

)

(k − 1)l−j

j
∑

i=0

{

j

i

}

zi
di

dzi

(

z

∞
∑

n=1

⌊

n

k

⌋(l)

r

zn

)

=
l
∑

j=0

(

l

j

)

(k − 1)l−j

j
∑

i=0

{

j

i

}

zi
di

dzi

(

zF
l,r

k (z)
)

.
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Putting the three rewritten terms of equation (27) together again, we obtain

{

F
l,r

k (z), if k ≥ 2;

F
l,r

k (z)− z, if k = 1,
=

{

zF
l,r

k−1(z), if k ≥ 2;

zF
l,r

k−1(z)− z, if k = 1,

+
l
∑

j=0

(

l

j

)

(k − 1)l−j

j
∑

i=0

{

j

i

}

zi
di

dzi

(

zF
l,r

k (z)
)

,

which is equivalent to equation (26).

Theorem 8. For n− 1 ≥ r ≥ 1 and l ≥ 1, the row generating function

P l,r
n (x) =

n
∑

k=0

⌊

n

k

⌋(l)

r

xk (28)

of (l, r)-Lah numbers, which is a polynomial in x of degree n, satisfies the difference-differential

equation

P l,r
n (x) = xP

l,r
n−1(x) +

l
∑

j=0

(

l

j

)

(n− 1)l−j

j
∑

i=0

{

j

i

}

xi d
i

dxi

(

P
l,r
n−1(x)

)

. (29)

Proof. Multiplying recurrence (21) by xk and summing it on k from 2 to n yields

n
∑

k=2

⌊

n

k

⌋(l)

r

xk =
n
∑

k=2

(n+ k − 1)l
⌊

n− 1

k

⌋(l)

r

xk +
n
∑

k=2

⌊

n− 1

k − 1

⌋(l)

r

xk. (30)

Rewrite the left-hand side of (30) as

n
∑

k=2

⌊

n

k

⌋(l)

r

xk = P l,r
n (x)−

⌊

n

0

⌋(l)

r

−

⌊

n

1

⌋(l)

r

x.

Rewrite the second term on the right-hand side of (30) as

n
∑

k=2

⌊

n− 1

k − 1

⌋(l)

r

xk =
n−1
∑

k=1

⌊

n− 1

k

⌋(l)

r

xk+1 = x

(

P
l,r
n−1(x)−

⌊

n− 1

0

⌋(l)

r

)

and the first term on the right-hand side of (30) as

n
∑

k=2

(n+ k − 1)l
⌊

n− 1

k

⌋(l)

r

xk =
n
∑

k=2

l
∑

j=0

(

l

j

)

kj(n− 1)l−j

⌊

n− 1

k

⌋(l)

r

xk
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=
l
∑

j=0

(

l

j

)

(n− 1)l−j

n
∑

k=2

⌊

n− 1

k

⌋(l)

r

kjxk

=
l
∑

j=0

(

l

j

)

(n− 1)l−j

n
∑

k=2

⌊

n− 1

k

⌋(l)

r

j
∑

i=0

{

j

i

}

ki xk

=
l
∑

j=0

(

l

j

)

(n− 1)l−j

j
∑

i=0

{

j

i

} n
∑

k=2

⌊

n− 1

k

⌋(l)

r

ki xk

=
l
∑

j=0

(

l

j

)

(n− 1)l−j

j
∑

i=0

{

j

i

} n
∑

k=2

⌊

n− 1

k

⌋(l)

r

xi d
i

dxi
xk

=
l
∑

j=0

(

l

j

)

(n− 1)l−j

j
∑

i=0

{

j

i

}

xi d
i

dxi

(

n
∑

k=2

⌊

n− 1

k

⌋(l)

r

xk

)

=
l
∑

j=0

(

l

j

)

(n− 1)l−j

j
∑

i=0

{

j

i

}

xi d
i

dxi

(

P
l,r
n−1(x)−

⌊

n− 1

0

⌋(l)

r

−

⌊

n− 1

1

⌋(l)

r

x

)

.

Putting the three rewritten terms of equation (30) together again, and checking that
⌊

n

0

⌋(l)

r

+

⌊

n

1

⌋(l)

r

=

⌊

n− 1

0

⌋(l)

r

x

+
l
∑

j=0

(

l

j

)

(n− 1)l−j

j
∑

i=0

{

j

i

}

xi d
i

dxi

(

⌊

n− 1

0

⌋(l)

r

+

⌊

n− 1

1

⌋(l)

r

x

)

for all n− 1 ≥ r ≥ 1 and l ≥ 1, we obtain equation (29).

5 Conclusion

We conclude the paper with two conjectures, based on experimental evidence.

Conjecture 9. For n ≥ k ≥ r ≥ 1, the sequence

(

⌊

n

k

⌋(l)

r

)n

k=0

is strictly log-concave.

Conjecture 10. All the roots of polynomials P l,r
n (x), defined in (28), are real and non-

positive.
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[11] G. Nyul and G. Rácz, The r-Lah numbers, Discrete Math. 338 (2015), 1660–1666.
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[13] M. Petkovšek and T. Pisanski, Combinatorial interpretation of unsigned Stirling and
Lah numbers, Pi Mu Epsilon J. 12 (2007), 417–424.

[14] J. Riordan, An Introduction to Combinatorial Analysis, John Wiley & Sons, Inc.; Chap-
man & Hall, Ltd., 1958.

[15] M. Shattuck, Generalized r-Lah numbers, arxiv preprint, arXiv:1412.8721 [math.NT],
2014. Available at http://arxiv.org/abs/1412.8721.

15

http://arxiv.org/abs/2101.11039
https://arxiv.org/abs/2202.13130
http://arxiv.org/abs/1412.8721


[16] M. Shattuck, Generalized r-Lah numbers, Proc. Indian Acad. Sci. Math. Sci. 126

(2016), 461–478.

2020 Mathematics Subject Classification: Primary 05A19. Secondary 05A18, 11B37, 11B73.

Keywords : Lah numbers, Stirling number of the first and second kind, r-Lah number, r-
Stirling number of the first and second kind, (l, r)-Lah number, (l, r)-Stirling number of
the first and second kind, recurrence relation, explicit representation, generating function,
(l, r)-Lah polynomial.

(Concerned with sequences A008277, A008297, A132393, A143497, A143498, and A143499.)

Received June 27 2022; revised version received January 25 2023. Published in Journal of

Integer Sequences, February 25 2023.

Return to Journal of Integer Sequences home page.

16

https://oeis.org/A008277
https://oeis.org/A008297
https://oeis.org/A132393
https://oeis.org/A143497
https://oeis.org/A143498
https://oeis.org/A143499
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	The Lah and r-Lah numbers
	The Stirling, r-Stirling, and (l,r)-Stirling numbers
	The (l,r)-Lah numbers
	Conclusion
	Acknowledgments

