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Abstract

This paper studies the number of ways a given connected simple graph can be

constructed by a sequence of expanding connected subgraphs starting with a given

vertex. When the graph is a path on n + 1 vertices, these numbers are exactly the

binomial coefficients in row n of Pascal’s triangle. Hence, for other connected graphs,

these numbers, called the connectivity degrees of the vertices, generalize the binomial

coefficients. We show that the connectivity degrees have properties that for paths

reduce to well-known properties of the binomial coefficients. We also prove that the

connectivity degrees of the vertices in a tree, when normalized to sum up to one, are

equal to the steady state probabilities of some Markov chain on the vertices of the

graph. Furthermore, on a connected graph the connectivity degrees of its vertices can

be seen as a measure of centrality. On the class of trees we provide an axiomatic

characterization of this connectivity centrality measure.

1 Introduction

The study of binomial coefficients has a long history of more than two thousand years and
many interpretations are known. Recently we investigated solution concepts for cooperative
games endowed with a communication structure on the set of players represented by a graph
based on the idea that only players connected in the graph are able to cooperate. The
communication ability of a player in a connected graph was evaluated through the number
of ways the graph can be constructed starting with this player and adding successively
players adjacent to those already added before. These numbers of communication ability led
to a new interpretation of the binomial coefficients. It turns out that when a communication
structure on a set of n+1 players is represented by a path from player 0 to player n, for player
k this number is exactly equal to the binomial coefficient

(

n
k

)

. Whence for connected graphs
the communication ability numbers, further called connectivity degrees of the vertices, can
be seen as a generalization of the binomial coefficients. Moreover, it turned out that for
arbitrary connected graphs these numbers possess properties that for paths reduce to well-
known properties of the binomial coefficients. This came really as a nice and unexpected
surprise. But since everything is just lying on the surface and the proofs of the properties
are very simple and straightforward, we were not sure whether this might be something new
and still unknown.

A thorough search through the literature shows that there exists indeed a number of pub-
lications, which in one or another way interpret or generalize the binomial coefficients and
study either some specific properties of the binomial coefficients or more sophisticated math-
ematical objects having similarities or common features with them. For example, Fontené [4]
generalizes binomial coefficients, replacing the natural numbers by an arbitrary sequence An

of real or complex numbers. For An = n these generalized binomial coefficients are the
ordinary binomial coefficients, for An = qn − 1 they recover the q-binomial coefficients, also
called Gaussian binomial coefficients, and as Gould [5] notes, for the sequence of Fibonacci
numbers the Fibonomial coefficients are obtained. Leroy, Rigo, and Stipulanti [6] introduce
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a generalization of Pascal’s triangle based on binomial coefficients of finite words. These co-
efficients count the number of times a word appears as a subsequence of another finite word.
Loeb [7] studies a generalization of the binomial coefficients induced by some generalization
of the factorials. Dash [2] considers relations between graph colorings and binomial coeffi-
cients. However, no publication concerning some generalization or extension of the binomial
coefficients in terms of connectivity degrees of the vertices in a connected graph or some
other equivalent notion has been found.

The results obtained in this paper are quite attractive and promising, and they find nice
applications in different applied studies. For instance, the connectivity degrees of the vertices
provide a measure of centrality on a connected graph, which is an important tool in studying
social networks. Also they appear in formulas providing explicit representations of solutions
for cooperative games with restricted cooperation represented by means of an undirected
communication graph. Cooperative games with restricted cooperation, in particular, may
be used for the evaluation of a political power distribution among a group of political parties
when it is needed to take into account abilities of the parties to communicate with each
other in reaching consensus and making joint decisions. Besides, the connectivity degrees
of the vertices in a tree, when normalized to sum up to one, are equal to the steady state
probabilities of some Markov chain on the vertices of the graph. Applied to paths this gives
another new interpretation of the binomial coefficients.

In this paper we study as a generalization of the binomial coefficients the connectivity
degrees of the vertices in simple connected graphs. We obtain an explicit formula repre-
sentation of the connectivity degree of a vertex in a connected graph via the connectivity
degrees of the adjacent vertices in the connected subgraphs resulting from deleting all edges
containing the vertex. This straightforwardly generalizes the binomial coefficient formula.
As a corollary, this formula provides that when the number of vertices in a graph minus one
is a prime number, then, similar to the binomial coefficients, the connectivity degree of every
cut vertex is divisible by this prime. We also show that, like the binomial coefficients, the
connectivity degree of a vertex is equal to the sum of the connectivity degrees of this vertex
in all subgraphs obtained by deleting precisely one of the non-cut vertices of the graph.
Moreover, similar to the binomial coefficients in any row of Pascal’s triangle, in a tree the
ratio of the connectivity degrees of every two adjacent vertices is equal to the ratio of the
numbers of vertices in the two subgraphs resulting from deleting the edge between these
vertices. For an arbitrary connected graph the latter is true only if the edge is a bridge,
the deletion of which splits the graph in two components. We also prove that in a tree the
connectivity degrees, when normalized to sum up to 1, are the steady state probabilities of
a Markov chain (cf. Norris [8]), in which at any vertex the process moves to an adjacent
vertex with a probability proportional to the number of vertices connected to the vertex
through this adjacent vertex. The Ehrenfest model (cf. P. Ehrenfest and T. Ehrenfest [3]),
a classical physics model to study the properties of thermodynamic equilibrium, evolves a
Markov chain having the same steady state probabilities as the ones on a path. Further-
more, the connectivity degrees of the vertices in a connected graph can be seen as a measure
of centrality (cf. Borgatti and Everett [1]). On the class of trees we provide an axiomatic
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characterization of this connectivity centrality measure.
The structure of the paper is as follows. Some well-known definitions and properties

of the binomial coefficients and graphs are recalled in Section 2. Section 3 introduces the
notion of connectivity degree of the vertices in a connected graph and proves that for a
path the connectivity degrees coincide with a row of Pascal’s triangle. Section 4 shows that
on connected graphs the connectivity degrees possess properties that on paths reduce to
the properties of the binomial coefficients discussed in Sections 2 and 3. Section 5 proves
that on a tree the connectivity degrees when normalized to sum up to 1 are the steady
state probabilities of some Markov chain. Section 6 considers the connectivity degrees as a
centrality measure and provides its axiomatic characterization on the class of trees.

2 Preliminaries

2.1 Binomial coefficients

For all integers n ≥ 0 and 0 ≤ k ≤ n, the binomial coefficient
(

n
k

)

is equal to the number of
ways to choose k from n elements,

(

n

k

)

=
n!

(n− k)! k!
. (1)

Arranging the binomial coefficients in successive rows for n = 0, 1, 2, . . . in a triangular array
gives Pascal’s triangle (A007318 in Sloane et al. [9]), see Figure 1.
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Figure 1: The first eight rows of Pascal’s triangle.

For integers n ≥ 1 and 0 ≤ k ≤ n, formula (1) implies the recurrence relation

(

n

k

)

=

(

n− 1

k − 1

)

+

(

n− 1

k

)

, (2)
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where
(

n−1
k−1

)

= 0 if k = 0 and
(

n−1
k

)

= 0 if k = n. If n is a prime number, from (1) it also

follows that
(

n
k

)

is divisible by this prime for k = 1, . . . , n− 1. For n ≥ 1, (1) further implies
the ratio property

(

n
k

)

(

n
k+1

) =
k + 1

n− k
, k = 0, . . . , n− 1, (3)

where, in row n of Pascal’s triangle, k + 1 is the number of positions from k to the left and
n− k the number of positions from k + 1 to the right. Moreover, for n ≥ 1,

n
∑

k=0

(−1)k
(

n

k

)

=
(

1 + (−1)
)n

= 0. (4)

For integers n ≥ 0 and 0 ≤ k ≤ n, let (n, k) denote position k in row n of Pascal’s
triangle. It is well-known that the binomial coefficient

(

n
k

)

is equal to the number of paths in
Pascal’s triangle that start at the apex (0, 0) and terminate at position (n, k), when at every
step a path moves diagonally to the next row either to the left or to the right. Conversely,
the number of paths in Pascal’s triangle starting at (n, k) and moving at each step diagonally
upwards either to the left or to the right until the apex is reached, is also equal to

(

n
k

)

.

2.2 Graphs and permutations

A (simple) graph is a pair (V,E) consisting of a finite nonempty set V of vertices and a set
E ⊆ {{v, w} | v, w ∈ V, v 6=w} of edges. A graph (V,E) is connected if |V |= 1 or for every
v, w∈V , v 6= w, there is a path in (V,E) between v and w, i.e., for some k ≥ 1 there exists a
sequence of edges {vh, vh+1} ∈ E, h = 1, . . . , k, such that v1 = v and vk+1 = w. The set of all
connected graphs is denoted by G. For S ⊆ V , a graph (S,E|S) with E|S = {e ∈ E | e ⊆ S} is
the subgraph of (V,E) induced by S. The set S is connected in (V,E) if (S,E|S) is connected.
The collection of maximal connected subsets of S in (V,E), called the components of S in
(V,E), is denoted by S/E. The (unique) element in S/E containing v ∈ S is denoted by
(S/E)v and the (unique) element in S/E containing {v, w} ∈ E|S is denoted by (S/E)vw.
For ease of notation, the set V \{v} is denoted by V−v, E|V−v

by E−v, and E\{{v, w}} by
E−vw.

A connected graph (V,E) is a tree if for every v, w ∈ V , v 6= w, there exists a unique
path in (V,E) between v and to w. The set of all trees is denoted by T . A graph (V,E)
is bipartite if V can be partitioned into two sets V1 and V2 such that every edge in E is
composed by one vertex in V1 and one in V2. Every tree is a bipartite graph. If {v, w} ∈ E,
then w is adjacent to v in (V,E). The set of vertices adjacent to v ∈ V in (V,E) is denoted
by BE

v , and dv(V,E) = |BE
v | is the degree of v in (V,E). A vertex v ∈ V is a leaf in (V,E)

if dv(V,E) = 1. A tree (V,E) is a path if dv(V,E) ≤ 2 for all v ∈ V . An edge {v, w} ∈ E
is a bridge in (V,E) if (V/E)vw is disconnected in (V,E−vw). A connected graph (V,E) is a
tree if and only if every edge in E is a bridge. A vertex v ∈ V is a cut vertex in (V,E) if
(V/E)v \ {v} is nonempty and disconnected in (V−v, E−v). The set of non-cut vertices in a
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graph (V,E) is denoted by S(V,E). Every leaf in a graph is a non-cut vertex and in a tree
on two or more vertices every non-cut vertex is a leaf. An element in V−v/E, v ∈ V , is a
satellite of v in (V,E). When (V,E) is a tree, every satellite of a vertex v in (V,E) contains
exactly one vertex adjacent to v in (V,E).

A permutation of V is a sequence π = (π1, . . . , π|V |) of the elements of V . For a connected
graph (V,E) and v ∈ V , a permutation π of V is admissible with respect to v in (V,E)
if π1 = v and for j = 2, . . . , |V | the set {π1, . . . , πj} is connected in (V,E). The set of
permutations of V admissible with respect to v in (V,E) is denoted by ΠE

v (V ) and let
cv(V,E) = |ΠE

v (V )|.

3 Connectivity degrees and binomial coefficients on

paths

In this section we introduce the notion of the connectivity degree of a vertex in a connected
graph and show that on paths the connectivity degrees coincide with the binomial coefficients.

In an arbitrary connected graph the number of permutations admissible with respect to
some vertex is equal to the number of ways the graph can be constructed starting at the
vertex by successive adding at each step a vertex adjacent to at least one of those already
added before, or equivalently, the number of ways non-cut vertices can be removed from
the graph one by one until only this vertex is left. Hence, the numbers of permutations
admissible with respect to the vertices in a connected graph reflect the ability of each vertex
to initiate a successive connective creation of the graph. Therefore we call these numbers
connectivity degrees.

Definition 1. For a connected graph (V,E), the connectivity degree of vertex v ∈ V in
(V,E) is given by the number cv(V,E).

Let (V,E) be a path. Without loss of generality we may assume that V = {v0, . . . , vn}
and E = {{v0, v1}, . . . , {vn−1, vn}} for some integer n ≥ 0. Then the connectivity degrees
of the vertices in (V,E) are equal to the binomial coefficients on row n of Pascal’s triangle.
Indeed, for each 0 ≤ k ≤ n, the number cvk(V,E) by definition is equal to the number of
sequences starting at vertex vk and obtained by successive adding vertices adjacent either to
the left or to the right end of those added before, in total k times to the left and n− k times
to the right, i.e.,

cvk(V,E) =
n!

(n− k)! k!
.

This together with equality (1) yields the following theorem.

Theorem 2. Let (V,E) be a path with V = {v0, . . . , vn} and E = {{v0, v1}, . . . , {vn−1, vn}}
for some integer n ≥ 0. Then, for integer 0 ≤ k ≤ n,

cvk(V,E) =

(

n

k

)

. (5)
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Theorem 2 implies that for 0 ≤ k ≤ n the binomial coefficient
(

n
k

)

is equal to the number
of ways the path (V,E) can be constructed starting at vertex vk by successive adding vertices
adjacent to one of the vertices added before, or equivalently, to the number of ways the non-
cut vertices can be removed from the path one by one until only vertex vk is left. Furthermore,
this also implies that for n ≥ 0 the total number of ways a path on n + 1 vertices can be
constructed starting at any vertex is equal to 2n (A000079 in Sloane et al. [9]).

Next, for a path (V,E) with V = {v0, . . . , vn} and E = {{v0, v1}, . . . , {vn−1, vn}}, n ≥ 1,
consider the subpaths (V−v0 , E−v0) and (V−vn , E−vn) obtained by deleting the non-cut vertices
v0 and vn, respectively. All permutations of V admissible with respect to v ∈ V in (V,E)
can be partitioned disjointly into those which end with v0 and those which end with vn.
A permutation (π1, . . . , π|V |−1, v0) of V with π1 = v, v 6= v0, is admissible with respect to
v in (V,E) if and only if permutation (π1, . . . , π|V |−1) of V−v0 is admissible with respect to
v in (V−v0 , E−v0). The latter keeps valid if we replace v0 by vn. Wherefrom, by letting
cv0(V−v0 , E−v0) = 0 and cvn(V−vn , E−vn) = 0, we obtain immediately the next result.

Theorem 3. Let (V,E) be a path with V = {v0, . . . , vn} and E = {{v0, v1}, . . . , {vn−1, vn}}
for some integer n ≥ 1. Then, for integer 0 ≤ k ≤ n,

cvk(V,E) = cvk(V−v0 , E−v0) + cvk(V−vn , E−vn). (6)

Theorem 3 provides the recurrence relation (6) for the connectivity degrees of the vertices
in a path, which reflects the recurrence relation (2) for binomial coefficients. It states that
the connectivity degree of a vertex in a path is equal to the sum of the connectivity degrees
of this vertex in the two subpaths obtained by deleting one of the two non-cut vertices.
Figure 2 illustrates Theorem 3 for n = 7 showing that the connectivity degree of a vertex in
the lower path (V,E) is equal to the sum of the connectivity degrees of this vertex in the
upper path (V−v0 , E−v0) and the middle path (V−v7 , E−v7).

✉ ✉ ✉ ✉ ✉ ✉ ✉ ❞

1 6 15 20 15 6 1 0

❞ ✉ ✉ ✉ ✉ ✉ ✉ ✉

0 1 6 15 20 15 6 1

✉ ✉ ✉ ✉ ✉ ✉ ✉ ✉

v0 v1 v2 v3 v4 v5 v6 v7

1 7 21 35 35 21 7 1

Figure 2: Illustration of Theorem 3 for n = 7.
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4 Connectivity degrees on connected graphs

In this section we show that properties of the connectivity degrees of the vertices in con-
nected graphs generalize the properties of binomial coefficients discussed in the previous two
sections, and therefore the connectivity degrees of the vertices in connected graphs can be
seen as a generalization of the binomial coefficients.

The first theorem generalizes Theorem 2 for binomial coefficients on paths and relates
the connectivity degree of a vertex in a connected graph to the connectivity degrees of the
adjacent vertices in the subgraphs induced by the satellites of the vertex. Since in a connected
graph (V,E) the satellites of a vertex v ∈ V form a partition of V−v and |V−v| = |V | − 1, the
multinomial coefficient

(

|V | − 1

|C|, C ∈ V−v/E

)

=
(|V | − 1)!
∏

C∈V−v/E

|C|!

is well defined.
For a connected graph (V,E), v ∈ V , and C ∈ V−v/E, define the extended subgraph of

(V,E) induced by C with respect to v by the graph (C,Ev
C) on C with

Ev
C = E|C ∪ {{u, w} | u, w ∈ BE

v ∩ C, u 6= w, {u, w} /∈ E},

in which for every two distinct vertices in C adjacent to v the edge containing these vertices,
when not in E, is added to E|C . Note that E

v
C = E|C if (V,E) is a tree, since in a tree every

vertex has only one adjacent vertex in each of its satellites.

Theorem 4. Let (V,E) be a connected graph and v ∈ V . Then

cv(V,E) =







1, if |V | = 1;
(

|V |−1
|C|, C∈V−v/E

)
∏

C∈V−v/E

∑

w∈BE
v ∩C

cw(C,E
v
C), if |V | ≥ 2. (7)

In particular, when (V,E) is a tree,

cv(V,E) =







1, if |V | = 1;
(

|V |−1
|(V−v/E)w|, w∈BE

v

)
∏

w∈BE
v

cw((V−v/E)w, E|(V−v/E)w), if |V | ≥ 2. (8)

Proof. Clearly, cv(V,E) = 1 if V = {v}. Suppose |V | ≥ 2. Since (V,E) is a connected
graph on at least two vertices, we have that v has at least one neighbor in (V,E). Therefore,
V−v/E 6= ∅ and BE

v ∩ C 6= ∅ for all C ∈ V−v/E.
First, v is only adjacent in (V,E) to the vertices in BE

v ∩C for each C ∈ V−v/E. Therefore,
a permutation π belongs to ΠE

v (V ) if and only if π1 = v and for every C ∈ V−v/E the
subpermutation of π on C, π|C , is admissible with respect to some vertex w ∈ BE

v ∩C in the
extended subgraph (C,Ev

C). The consideration of the extended subgraph (C,Ev
C) instead of
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(C,E|C) is due to the fact that if C contains also vertices adjacent to v other than w, these
vertices can be at any position in π|C because they are connected to w via v. Thus, for each
C ∈ V−v/E, the number of permutations of C that are subpermutations of permutations in
ΠE

v (V ) is equal to
∑

w∈BE
v ∩C

cw(C,E
v
C).

Second, every permutation of V obtained from π ∈ ΠE
v (V ) by replacing π|C for some

C ∈ V−v/E by another permutation admissible with respect to a vertex w ∈ BE
v ∩ C in

(C,Ev
C) is also a permutation in ΠE

v (V ), which explains the product in formula (7).
Third, since the satellites of v in (V,E) are not connected to each other, vertices of

different satellites are unordered concerning admissibility with respect to v. Therefore, the
number of permutations π ∈ ΠE

v (V ), that for all C ∈ V−v/E have the same π|C , is equal to
the number of partitions of a set of |V | − 1 elements into sets of size |C|, C ∈ V−v/E. This
is precisely the multinomial coefficient in formula (7).

If (V,E) is a tree, then every satellite of a vertex v ∈ V in (V,E) is equal to (V−v/E)w
for some unique w ∈ BE

v and formula (7) reduces to (8).

Remark 5. For a path the multinomial coefficients in formula (8) are binomial coefficients,
because every vertex has (at most) two satellites. Moreover, for every vertex the connectiv-
ity degree of each adjacent vertex in the subgraph induced by the satellite containing this
adjacent vertex is equal to 1. Hence, for a path formula (8) reduces to (5).

If v is a non-cut vertex in a connected graph (V,E) with |V | ≥ 2, then V−v is the unique
satellite of v in (V,E), and, in particular, when v is a leaf, then also Ev

V−v
= E−v.

Corollary 6. If v is a non-cut vertex in a connected graph (V,E) with |V | ≥ 2, then

cv(V,E) =
∑

w∈BE
v

cw(V−v, E
v
V−v

).

In particular, if v is a leaf and w ∈ V is the unique adjacent to v vertex in (V,E), then
cv(V,E) = cw(V−v, E−v).

If v ∈ V is a cut vertex in a connected graph (V,E), then v is a non-cut vertex in the
subgraph induced by C+v = C ∪ {v} for every C ∈ V−v/E, and Theorem 4 and Corollary 6
imply the next corollary.

Corollary 7. If v is a cut vertex in a connected graph (V,E), then

cv(V,E) =

(

|V | − 1

|C|, C ∈ V−v/E

)

∏

C∈V−v/E

cv(C+v, E|C+v
).

From the last two corollaries the prime number property immediately follows.
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Corollary 8. For a connected graph (V,E) with |V | − 1 being a prime number, the connec-
tivity degree of every cut vertex is divisible by this prime. Moreover, when (V,E) is a tree,
the connectivity degrees of all leaves are not divisible by this prime.

Note that in a graph with cycles the connectivity degree of a non-cut vertex can be
divisible by this prime. For example, if (V,E) is the complete graph, then every vertex is a
non-cut vertex and its connectivity degree is equal to (|V | − 1)!.

Theorem 4 together with Corollaries 6 and 7 shows that the connectivity degree of a
vertex in a connected graph can be calculated via the connectivity degrees of its adjacent
vertices in smaller subgraphs and for cut vertices also alternatively via the connectivity
degrees of the vertex itself in smaller subgraphs.

Example 9. Consider the graph (V,E) depicted in Figure 3. For cut vertex v2, by Theo-

✉ ✉ ✉ ✉ ✉ ✉

✉ ✉

v1 v2 v3 v4 v5 v6

v7 v8

Figure 3: The graph (V,E) of Example 9.

rem 4,

cv2(V,E) =

(

7

1, 5, 1

)

cv1({v1}, E|{v1}) · cv3(V
′, E ′) · cv7({v7}, E|{v7}),

where V ′={v3, v4, v5, v6, v8} and E ′=E|V ′ . Clearly, cv1({v1}, E|{vv1})= cv7({v7}, E|{v7})=1,
and for the leaf v3 in (V ′, E ′) Corollary 6 implies cv3(V

′, E ′) = cv4(V
′
−v3

, E ′
−v3

) = 3, because
(V ′

−v3
, E ′

−v3
) is a path. Hence,

cv2(V,E) =
7!

1! 5! 1!
· 1 · 3 · 1 = 126.

Similarly, for cut vertex v4,

cv4(V,E) =

(

7

4, 2, 1

)

cv3(V
′′, E ′′) · cv5({v5, v6}, E|{v5,v6}) · cv8({v8}, E|{v8}),

where V ′′ = {v1, v2, v3, v7} and E ′′ = E|V ′′ . Since cv5({v5, v6}, E|{v5,v6})=cv8({v8}, E|{v8})=1
and for the leaf v3 in (V ′′, E ′′) Corollary 6 implies cv3(V

′′, E ′′)=cv2(V
′′
−v3

, E ′′
−v3

)=2, we have

cv4(V,E) =
7!

4! 2! 1!
· 2 · 1 · 1 = 210.
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For leaf v1,

cv1(V,E) = cv2(V−v1 , E−v1) =

(

6

5

)

cv3(V
′, E ′) · cv7({v7}, E|{v7}) = 6 · 3 · 1 = 18.

Note that both cv2(V,E) = 126 and cv4(V,E) = 210 are divisible by the prime number
|V | − 1 = 7 and that cv1(V,E) = 18 is not divisible by 7, as also follows from Corollary 8.

Example 10. Let (V,E) be a star with V = {v0, . . . , vn} and E = {{v0, v1}, . . . , {v0, vn}}
for some n ≥ 0. From Theorem 4 it follows that for the hub v0,

cv0(V,E) = n!,

(A000142 in Sloane et al. [9]), because for |V | = 1 we have n = 0 and n! = 1, and for |V | > 1
we have BE

v0
= V−v0 and (V−v0/E)vk = {vk} for all 1 ≤ k ≤ n. Further, since each vertex vk,

1 ≤ k ≤ n, is a leaf connected to the hub v0 and the subgraph induced by V−vk is a star on
n vertices, Corollary 6 implies that for 1 ≤ k ≤ n,

cvk(V,E) = cv0(V−vk , E−vk) = (n− 1)!.

This also implies that for n ≥ 1 the total number of ways to construct a star on n+1 vertices
starting from any vertex is equal to 2n! (A052849 in Sloane et al. [9]).

Next, let (V,E) be a generalized star with V = {v0, . . . , vn}, n ≥ 0, in which for some
1 ≤ k ≤ n the vertices v1, . . . , vk are adjacent to the hub v0 and each subgraph induced
by (V−v0/E)vh , 1 ≤ h ≤ k, is a path with nh ≥ 1 vertices and having vh as its leaf when

nh > 1. Then cvh((V−v0/E)vh , E|(V−v0
/E)vh

) = 1 for all 1 ≤ h ≤ k, and
∑k

h=1 nh = n. From
Theorem 4 it follows that

cv0(V,E) =

(

n

n1, . . . , nk

)

.

Therefore, in a generalized star the connectivity degree of the hub is equal to the multinomial
coefficient for the sizes of its satellites.

Example 11. Let (V,E) be a cycle graph with the set of vertices V = {v1, . . . , vn} and
the set of edges E = {{v0, v1}, . . . , {vn−1, vn}, {vn, v1}}, n ≥ 3. We prove by induction on
n that cv(V,E) = 2n−2 (A000079 in Sloane et al. [9]) for all v ∈ V . Let v = vk for some
1 ≤ k ≤ n. Since (V,E) is a cycle graph, we have that v is a non-cut vertex in (V,E) and
Bv

E = {vk−1, vk+1}, where vk−1 = vn if k = 1 and vk+1 = v1 if k = n. From Corollary 6 it
follows that

cv(V,E) = cvk−1
(V−v, E

v
V−v

) + cvk+1
(V−v, E

v
V−v

), (9)

where Ev
V−v

= {{vk−1, vk+1}} for n = 3 and Ev
V−v

= E−v ∪ {{vk−1, vk+1}} for n > 3.
If n = 3, then (V−v, E

v
V−v

) is a path on 2 vertices, and, by Theorem 2, equality (9) implies

cv(V,E) = 1 + 1 = 2 = 2n−2.
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Next, let n > 3 and assume that for all cycle graphs on at least 3 and at most n− 1 vertices
the assertion holds. Since (V−v, E

v
V−v

) is a cycle graph on n− 1 vertices, equality (9) implies

cv(V,E) = 2n−3 + 2n−3 = 2n−2.

The latter equality also implies that for n ≥ 3 the total number of ways to construct a cycle
graph on n vertices starting from any vertex is equal to n2n−2 (A057711 in Sloane et al. [9]).

The next theorem generalizes the ratio property (3) for binomial coefficients and states
that in a connected graph the ratio between the connectivity degrees of any two adjacent
vertices connected by a bridge is equal to the ratio of the numbers of vertices in the two
subgraphs resulting from deleting the bridge between these two vertices.

Theorem 12. Let (V,E) be a connected graph and {v, w} a bridge in (V,E). Then

cv(V,E)

cw(V,E)
=

|(V/E−vw)v|

|(V/E−vw)w|
.

Proof. For ease of notation, let Cv = (V/E−vw)v and Cw = (V/E−vw)w. Since (V,E) is
a connected graph and {v, w} is a bridge in (V,E), we have that Cv and Cw are the two
components of V in (V,E−vw). Therefore, for every π ∈ ΠE

v (V ) the subpermutation π|Cw

is admissible with respect to w in (Cw, E|Cw
) and for every π ∈ ΠE

w(V ) the subpermutation
π|Cv

is admissible with respect to v in (Cv, E|Cv
). Since Cv and Cw are not connected to

each other in (V,E−vw), this implies

cv(V,E) =

(

|V | − 1

|Cv| − 1

)

cv(Cv, E|Cv
) · cw(Cw, E|Cw

) (10)

and

cw(V,E) =

(

|V | − 1

|Cw| − 1

)

cw(Cw, E|Cw
) · cv(Cv, E|Cv

).

Hence, since |Cv|+ |Cw| = |V |,

cv(V,E)

cw(V,E)
=

(|V | − 1)!/
(

(|Cv| − 1)!|Cw|!
)

(|V | − 1)!/
(

(|Cw| − 1)!|Cv|!
) =

|Cv|

|Cw|
=

|(V/E−vw)v|

|(V/E−vw)w|
.

In a tree every edge is a bridge, so for a tree Theorem 12 holds for every pair of adjacent
vertices. Hence, if in a tree the connectivity degree of one vertex is known, one can calculate
successively the connectivity degrees of the others. Furthermore, by Theorem 2, for a path
Theorem 12 reduces to the ratio property (3) for binomial coefficients.

Remark 13. Formula (10) provides an alternative way to calculate the connectivity degrees
of the vertices connected by a bridge via their connectivity degrees in smaller subgraphs.
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Theorem 12 implies the next corollary.

Corollary 14. If in a connected graph deleting a bridge splits the graph in two subgraphs
with equal numbers of vertices, the connectivity degrees of both vertices joined by the bridge
are equal.

Note that in Pascal’s triangle we indeed have that
(

n
k−1

)

=
(

n
k

)

for odd n and k = 1
2
(n+1).

Example 15. Consider again the graph (V,E) in Figure 3. In Example 9 we found that
cv4(V,E) = 210. Since the deletion of the bridge {3, 4} yields two subgraphs with four
vertices in each, from Corollary 14 it follows that

cv3(V,E) = cv4(V,E) = 210.

Next, by Theorem 12,

cv2(V,E) =
3

5
cv3(V,E) = 126,

which was also found before. Continuing this way we find

cv1(V,E) = cv7(V,E) =
1

7
cv2(V,E) = 18,

cv5(V,E) =
2

6
cv4(V,E) = 70,

cv6(V,E) =
1

7
cv5(V,E) = 10,

cv8(V,E) =
1

7
cv4(V,E) = 30.

Figure 4 depicts the connectivity degrees of all vertices in (V,E).

✉ ✉ ✉ ✉ ✉ ✉

✉ ✉

18 126 210 210 70 10

18 30

Figure 4: The connectivity degrees for the graph in Figure 3.

The next theorem generalizes the well-known recurrence relation (2) for binomial coef-
ficients and therefore extends Theorem 3 from paths to connected graphs. The theorem
states that the connectivity degree of a vertex in a connected graph is equal to the sum of
the connectivity degrees of this vertex in all subgraphs obtained by deleting from the graph
one of the non-cut vertices.
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Theorem 16. Let (V,E), |V | ≥ 2, be a connected graph and v ∈ V . Then

cv(V,E) =
∑

w∈S(V,E)

cv(V−w, E−w),

where cw(V−w, E−w) = 0 for all w ∈ S(V,E).

Proof. The result follows from the fact that every permutation of V admissible with respect
to v in (V,E) ends with some w ∈ S(V,E). The proof strategy is similar to that in the proof
of Theorem 3.

Figure 5 illustrates Theorem 16 by the decomposition of the connectivity degrees of the
vertices in a connected graph with three non-cut vertices, where the numbers represent the
connectivity degrees of the vertices, with zero for the non-cut vertex deleted from the graph.

✉ ✉ ✉

✉

�
�
�
��

3 6 2

3

=

✉ ✉ ✉

❞

1 2 1

0

+
❞ ✉ ✉

✉

0 2 1

1

+
✉ ✉ ❞

✉

�
�
�
��

2 2 0

2

Figure 5: Illustration of Theorem 16.

Theorem 16 gives another iterative procedure for finding connectivity degrees by starting
the calculation in subgraphs of smaller size and increasing successively their sizes.

Example 17. Consider again the cycle graph (V,E) from Example 11 and compute cv(V,E),
v ∈ V , by applying Theorem 16. Since each vertex in V is a non-cut vertex in (V,E), i.e.,
S(V,E) = V , for v ∈ V we obtain from Theorem 16,

cv(V,E) =
∑

w∈V−v

cv(V−w, E−w).

Each subgraph (V−w, E−w), w ∈ V , is a path on n − 1 vertices, and for every v ∈ V and
integer 0 ≤ k ≤ n−2 there exists a unique w ∈ V−v satisfying cv(V−w, E−w) =

(

n−2
k

)

. Hence,
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for every v ∈ V ,

cv(V,E) =
n−2
∑

k=0

(

n− 2

k

)

= 2n−2,

as also obtained in Example 11.

Theorem 16 implies also the following theorem that generalizes formula (4) for the bino-
mial coefficients.

Theorem 18. Let (V,E), |V | ≥ 2, be a connected graph and s = (sv)v∈V be a sign vector
satisfying svsw = −1 for all {v, w} ∈ E. Then

∑

v∈V

svcv(V,E) = 0.

Proof. The proof is by induction on |V |. If V = {v, w}, then cv(V,E) = cw(V,E) = 1, and
therefore cv(V,E)−cw(V,E) = 0. Next, let |V | > 2 and assume that for all connected graphs
on at least 2 and at most |V | − 1 vertices the assertion holds. For each w ∈ S(V,E) we have
that (V−w, E−w) is a connected graph on |V |−1 vertices and susv = −1 for all {u, v} ∈ E−w.
From the induction hypothesis we obtain that for every w ∈ S(V,E),

∑

v∈V

svcv(V−w, E−w) = 0,

where cw(V−w, E−w) = 0. From Theorem 16 it follows that

∑

v∈V

svcv(V,E) =
∑

v∈V

sv
∑

w∈S(V,E)

cv(V−w, E−w) =
∑

w∈S(V,E)

∑

v∈V

svcv(V−w, E−w) = 0.

Remark 19. A sign vector satisfying the condition of Theorem 18 exists if and only if the
graph is bipartite, i.e., the graph has no cycles of odd length. Therefore, for a tree and, in
particular, a path such a sign vector always exists.

Theorem 18 is illustrated in Figure 6, where the numbers sum up to zero.

✉ ✉ ✉ ✉ ✉ ✉

✉ ✉

18 −126 210 −210 70 −10

18 30

Figure 6: Illustration of Theorem 18 for the graph in Figure 3.
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5 Connectivity degrees and steady state probabilities

In this section we show that for a tree by normalizing the sum of the connectivity degrees of
its vertices to 1, one gets the steady state probabilities of a Markov chain on the set of its
vertices as the states.

First, consider a path (V,E) with V = {v0, . . . , vn} and E = {{v0, v1}, . . . , {vn−1, vn}}
for some integer n ≥ 1, and let c be the row vector of connectivity degrees on (V,E), i.e.,
cvk =

(

n
k

)

, k = 0, . . . , n. Let P = (pvkvh)k,h=0,...,n be the (n + 1) × (n + 1) transition matrix
on (V,E) given by

pvkvh =











k
n
, if h = k − 1;

n−k
n
, if h = k + 1;

0, otherwise,

i.e., the transition probability from vertex vk to adjacent vertex vk−1 (vk+1) is proportional
to the number of positions to the left (right) of position k in row n of Pascal’s triangle. The
next theorem follows from straightforward calculations.

Theorem 20. Let (V,E) be a path with V ={v0, . . . , vn} and E={{v0, v1}, . . . , {vn−1, vn}},
n ≥ 1. Then cP = c, i.e., for every integer 0 ≤ k ≤ n the normalized binomial coefficient
(

n
k

)

/2n is the steady state probability that the Markov chain on (V,E) with transition matrix
P is in vertex vk.

Theorem 20 implies that the binomial coefficients in row n of Pascal’s triangle yield the
relative probabilities for the Markov chain with transition matrix P to be in each of the
vertices of a path with n+ 1 vertices.

Remark 21. The Ehrenfest model (cf. [3]), a discrete model for the exchange of gas molecules
between two containers, evolves a Markov chain having the same steady state probabilities.

Next, we show that also for a tree the connectivity degrees of the vertices determine the
steady state distribution of some Markov chain. For a given tree (V,E) with |V | ≥ 2, let
c = (cv(V,E))v∈V be the |V |-dimensional row vector of connectivity degrees on (V,E) and
P = (pvw)v,w∈V the |V | × |V | transition matrix on (V,E) given by

pvw =

{

|(V−v/E)w|
|V |−1

, if {v, w} ∈ E;

0, otherwise,
(11)

i.e., the transition probability from vertex v to adjacent vertex w is proportional to the size
of the satellite of v in (V,E) containing w. The following theorem generalizes Theorem 20
for the binomial coefficients to the connectivity degrees of the vertices in trees.

Theorem 22. Let (V,E) be a tree with |V | ≥ 2. Then cP = c, i.e., for every v ∈ V the
normalized connectivity degree cv(V,E)/

∑

w∈V cw(V,E) is the steady state probability that
the Markov chain on (V,E) with transition matrix P defined in (11) is in vertex v.
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Proof. Since (V,E) is a tree, we have (V−w/E)v = (V/E−vw)v and (V−v/E)w = (V/E−vw)w.
Therefore, Theorem 12 implies that for every w ∈ BE

v ,

|(V−w/E)v|cw(V,E) = |(V−v/E)w|cv(V,E).

Since
∑

w∈BE
v

|(V−v/E)w| = |V | − 1, after summation over w ∈ BE
v we obtain

∑

w∈BE
v

|(V−w/E)v|cw(V,E) = (|V | − 1)cv(V,E).

Dividing both sides by |V | − 1 yields
∑

w∈BE
v

cwpwv = cv, which completes the proof.

Remark 23. It is easy to verify that for a connected graph (V,E) with |V | ≥ 2 we have
dP ′ = d, where d = (dv(V,E))v∈V and P ′ = (p′vw)v,w∈V is the |V | × |V | transition matrix on
(V,E) given by

p′vw =

{

1/dv(V,E), if {v, w} ∈ E;

0, otherwise.

Therefore, the degrees of the vertices of an arbitrary connected graph, when normalized to
sum equal to 1, are the steady state probabilities of a Markov chain in which at every vertex
the process moves with equal probability to each of its adjacent vertices.

6 Connectivity degrees as centrality measure

For a connected graph each permutation of vertices admissible with respect to some vertex
induces a way of successive connective construction of the graph starting at this vertex, which
gives grounds to consider the connectivity degrees of the vertices in a connected graph as a
measure of centrality. Centrality is a fundamental concept in network analysis and centrality
measures answer the question which vertices in a graph under scrutiny are important, cf.
Borgatti and Everett [1].

A centrality measure is a function f on the set of connected simple graphs G that assigns
to every (V,E) ∈ G a vector f(V,E) = (fv(V,E))v∈V , where fv(V,E) measures the centrality
of v ∈ V in (V,E). A well-known centrality measure is the degree measure assigning to a
connected graph the vector of degrees of its vertices. We define the connectivity centrality
measure as the function c on G that assigns to every (V,E) ∈ G the vector of connectivity
degrees of its vertices c(V,E) = (cv(V,E))v∈V . The properties and examples above in fact
support this definition. Indeed, if {v, w} ∈ E is a bridge in (V,E) ∈ G and component
(V/E−vw)v has more vertices than component (V/E−vw)w, it is quite natural to consider
vertex v to have a more central position in the graph than w, and this is just reflected by
the inequality cv(V,E) > cw(V,E), as follows from Theorem 12. As shown by Example 10,
the connectivity centrality of the hub in a star with n + 1 vertices is n times larger than
that of each of the n non-cut vertices. Also Figures 2 and 4 depicting graphs together with
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the connectivity degrees of their vertices visually demonstrate that the closer a vertex to the
center is, the higher is its connectivity degree.

In the literature it is quite standard to characterize centrality measures by their properties
(axioms). It is easy to see that the connectivity centrality measure meets the next three
axioms.

Single vertex normalization: A centrality measure f on G satisfies single vertex normal-
ization if fv(V,E) = 1 when V = {v}.

Because in a singleton (connected) graph there is just one vertex, the axiom emphasizes
the importance of this vertex, assigning to it a positive measure normalized to 1.

Remark 24. The degree measure does not satisfy single vertex normalization, because the
degree of a vertex in a graph on one vertex is zero. It seems natural that such a singleton
vertex is of importance and has a positive measure.

The ratio property: A centrality measure f on G satisfies the ratio property if for every
(V,E) ∈ G and bridge {v, w} in (V,E),

fv(V,E)

fw(V,E)
=

|(V/E−vw)v|

|(V/E−vw)w|
.

To the best of our knowledge the ratio property does not hold for any centrality measure
known in the literature, nevertheless it seems to be rather natural. The axiom states that
the centralities of two vertices connected by a bridge are proportional to the sizes of the
resulting after deletion of the bridge components containing these vertices.

Leaf consistency: A centrality measure f on G satisfies leaf consistency if for every
(V,E) ∈ G and leaf v in (V,E), we have fv(V,E) = fw(V−v, E−v), where w is the unique
vertex in (V,E) adjacent to v.

Consistency properties are quite usual in the literature on the characterization of func-
tions, for instance, in the theory of solutions for cooperative games. Here the axiom states
that a leaf is as central in a graph as its unique adjacent vertex is central in the subgraph
without the leaf.

On the class of trees T the connectivity centrality measure can be characterized by these
three axioms.

Theorem 25. The connectivity centrality measure is the unique centrality measure on the
class of trees that meets single vertex normalization, the ratio property, and leaf consistency.

Proof. The proof is by induction on |V |. Let f on T satisfy the three properties. First,
single vertex normalization implies fv(V,E) = 1 = cv(V,E) if V = {v}. Next, let (V,E) ∈ T
with |V | > 1 and assume that the three axioms uniquely determine the connectivity degrees
of each tree on at most |V | − 1 vertices. Since (V,E) is a tree and |V | ≥ 2, we have that
(V,E) has at least one leaf v. Let w be the unique vertex in (V,E) adjacent to v. By
leaf consistency and the induction hypothesis, fv(V,E) = cw(V−v, E−v). From Corollary 6
it follows that fv(V,E) = cv(V,E). By repeated application of the ratio property we may
determine fw(V,E) for every w 6= v. Since fv(V,E) = cv(V,E), Theorem 12 implies that
fw(V,E) = cw(V,E) for all w 6= v, which completes the proof.
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Note that in the proof the determination of fw(V,E), w ∈ V , is independent of the choice
of the leaf v. The result of Theorem 25 is not extendable to a class of connected graphs
that also may contain cycles. For example, each centrality measure on a subclass G ′ ⊆ G
satisfying G ′ ! T , defined on T as the connectivity centrality measure c and on G ′ \ T as αc
for some real α 6= 0, meets all three axioms, since G ′ \ T contains only graphs with at least
three vertices and (V−v, E−v) ∈ G ′ \ T whenever (V,E) ∈ G ′ \ T and v is a leaf in (V,E).
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with application to Fibonomial coefficients, Fibonacci Quart. 7 (1969), 23–40, 55.

[6] J. Leroy, M. Rigo, and M. Stipulanti, Generalized Pascal triangle for binomial coefficients
of words, Adv. in Appl. Math. 80 (2016), 24–47.

[7] D. E. Loeb, A generalization of the binomial coefficients, Discrete Math. 105 (1992),
143–156.

[8] J. R. Norris, Markov Chains, Cambridge University Press, 1997.

[9] N. J. A. Sloane et al., On-line Encyclopedia of Integer Sequences, https://oeis.org,
2022.

19

https://oeis.org


2020 Mathematics Subject Classification: Primary 05A10; Secondary 05C05, 11B65, 60J10,
91A43.
Keywords: binomial coefficient, Pascal’s triangle, connected graph, Markov chain, centrality
measure.

(Concerned with sequences A000079, A000142, A007318, A052849, and A057711.)

Received November 15 2022; revised version received March 31 2023. Published in Journal
of Integer Sequences, April 8 2023.

Return to Journal of Integer Sequences home page.

20

https://oeis.org/A000079
https://oeis.org/A000142
https://oeis.org/A007318
https://oeis.org/A052849
https://oeis.org/A057711
https://cs.uwaterloo.ca/journals/JIS/

	Introduction
	Preliminaries
	Binomial coefficients
	Graphs and permutations

	Connectivity degrees and binomial coefficients on paths
	Connectivity degrees on connected graphs
	Connectivity degrees and steady state probabilities
	Connectivity degrees as centrality measure
	Acknowledgment

