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Abstract

We formulate several polynomial identities. One side of these identities has a nice

simple form, whereas the other has the form of a polynomial whose coefficients contain

binomial coefficients, double factorials, or rising factorials. The origins and the proofs of

these identities are probabilistic. However, their form suggests universal applications in

simplifying expressions. Many useful simplifying formulae are presented in the sequel.

1 Introduction

In this note, we will present some identities involving factorials, binomial coefficients, and
the so-called rising factorials (sometimes called Pochhammer symbols). Many of them have
the forms of polynomials whose coefficients often have the form of binomial coefficients or
rising factorials of some additional variables. These variables appear on both sides of the
identity. The domains of these variables can be extended to all complex numbers. All
these identities have a common origin, except for the sometimes similar form. Namely, the
origins of them are a few, rather deep probabilistic interpretations and sometimes following
non-trivial computations.
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The basic idea behind the method of getting these identities is to calculate moments
of a probability distributions in two ways and compare the results. One of the ways is
straightforward and direct. The other way involves the calculation of some conditional
expectation and then calculating the proper moment. This method was already successfully
applied to obtain nontrivial relationships between Catalan numbers and the so-called Catalan
triangles. In this case, the so-called Kesten distribution was used. For details, see [10]. In this
paper, we use the bivariate Normal and Gamma distributions to obtain nontrivial polynomial
identities (see Theorem 1). These identities can be the source of an infinite number of
relationships between various number sequences important for example in combinatorics.
As a corollary, we present several identities involving binomial coefficients, factorials, double
factorials, and raising factorials.

The paper is organized as follows. The next section is dedicated to the presentation
of the identities and some of the particular, interesting particular cases. The next section
is devoted to the presentation of the probabilistic background of the results presented in
the previous section and then, finally, the presentation of the calculations leading to the
identities.

2 Identities

In this paper, the symbol n!! denotes the so-called double-factorial, i.e.,

n!! =

⌊(n−1)/2⌋
∏

j=0

(n− 2j).

We set (−1)!! = (0)!! = 1. The symbol ⌊x⌋ denotes the largest integer not exceeding x, i.e.,
the so-called “floor function”. Further, let the symbol

(

n
k

)

denote the binomial coefficient
and we set

(

n
k

)

= 0 when n < k. The symbol i always denotes the imaginary unit, i.e.,

i =
√
−1 = exp(iπ/2). In order to simplify the notation, let us introduce also the so-

called “rising factorial” (sometimes called also Pochhammer symbol), which is the following
function:

(x)(n) = x(x + 1) · · · (x + n− 1),

defined for all complex x. Notice that we have for all x 6= 0:

(x)(n) =
Γ(x + n)

Γ(x)
,

where Γ(x) denotes Euler’s gamma function. To learn more about Pochhammer symbols

and binomial coefficients, see, e.g., [6]. Notice only that, e.g., (1)(n) = n! and (1/2)(n) =
(2n− 1)!!/2n. We will use these values below.

Theorem 1. For all nonegative integers k, n,m and all complex ρ and β we have
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(i)

(2k)!

k!
(1 + ρ)k =

k
∑

j=0

(

2k

2j

)

(1 + ρ)2k−2j(1 − ρ2)j(2j − 1)!!(2k − 2j − 1)!!. (1)

(ii)

(1 + ρ)k =
1

2k

2k
∑

j=0

⌊j/2⌋
∑

m=0

(2ρ)j−2m

(

k

j − 2m

)(

k − j + 2m

m

)

. (2)

(iii)
n
∑

j=0

(−1)j
(

n

j

)

(β)(j+m)

(β)(j)
= (−1)nn!

(

m

n

)

(β)(m)

(β)(n)
. (3)

(iv)

n
∑

m=0

(−1)m
(

n

m

)

(β)(m) (β)(n−m)
m
∑

k=0

(

m

k

)(

n−m

k

)

ρkk!

(β)(k)
(4)

=

{

0, if n is odd;
n!

(n/2)!
(β)(n/2) (1 − ρ)n/2, if n is even.

(v)

n
∑

m=0

(−1)n−m

(

n

m

) m
∑

j=0

(

m

j

)

(1 − ρ)jρm−j (β)(n−j) (β + m− j)(j) (5)

=

{

0, if n is odd;
n!

(n/2)!
(β)(n/2) (1 − ρ)n/2, if n is even.

Below we present some particular cases, remarks and corollaries.

Remark 2. First, taking ρ = 2
3
, then ρ = 1

3
, and finally ρ = 4

3
in (1), we get

k
∑

j=0

(

2k

2j

)

5j(2j − 1)!!(2k − 2j − 1)!! =
(2k)!3k

k!
,

k
∑

j=0

(

2k

2j

)

2j(2j − 1)!!(2k − 2j − 1)!! =
(2k)!3k

k!2k
,

k
∑

j=0

(

2k

2j

)

(−7)j(2j − 1)!!(2k − 2j − 1)!! = (−1)k
(2k)!3k

k!
.
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Remark 3. Let us take ρ =
√

5 in (1) and recall that (1 +
√

5)n = 2n(1+
√
5

2
)n = 2n−1(Ln +√

5Fn), where Ln and Fn are, respectively, the n-th Lucas and Fibonacci numbers (also
compare Corollary 16, below). Now, equating integer and irrational parts, we end up with
the following two identities valid for k ≥ 0:

(2k)!

k!
Lk = 2k

k
∑

j=0

(

2k

2j

)

(−1)jL2k−2j(2j − 1)!!(2k − 2j − 1)!!,

(2k)!

k!
Fk = 2k

k
∑

j=0

(

2k

2j

)

(−1)jF2k−2j(2j − 1)!!(2k − 2j − 1)!!

Remark 4. Take ρ = i in (1). Further notice that (1 + i)k = 2k/2 exp(ikπ/4). Now first set
k = 4n and cancel (−4)n on both sides. Then for all n ≥ 0 we get

(8n)!

(4n)!
=

4n
∑

j=0

(

8n

2j

)

(2j − 1)!!(8n− 2j − 1)!!.

Next, set k = 4n + 1 and equate the real and imaginary parts. For all n ≥ 0 we get

(8n + 2)!

(4n + 1)!
(−4)n = 24n+1

2n
∑

m=0

(−1)m
(

8n + 2

4m + 2

)

(4m + 1)!!(8n− 4m− 1)!!,

(8n + 2)!

(4n + 1)!
(−4)n = 24n+1

2n
∑

m=0

(−1)m
(

8n + 2

4m

)

(4m− 1)!!(8n− 4m + 1)!!.

Remark 5. Take ρ = 1/2 in (2). We then get the following identity:

1 =
2k
∑

j=0

(−1)j
⌊j/2⌋
∑

m=0

(

k

j − 2m

)(

k − j + 2m

m

)

.

Remark 6. Take ρ = i and k = 4n in (2). Further, notice that (1 + i)4n = (−4)n and
(2i)j−2m = ij(−1)m and finally split the right-hand side into real and imaginary parts. We
get

4n =
(−1)n

16n

4n
∑

j=0

(−1)j
j
∑

m=0

(−1)m4j−m

(

4n

2j − 2m

)(

4n− 2j + 2m

m

)

,

0 =
4n
∑

j=0

(−1)j
j
∑

m=0

(−1)m4j−m

(

4n

2j − 2m + 1

)(

4n− 2j − 1 + 2m

m

)

,

for all n ≥ 0.
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Remark 7. First set β = 1 and then β = 1/2 in (3). Then for all integers k and n, we get

n
∑

j=0

(−1)j
(

n

j

)(

j + k

j

)

= (−1)n
(

k

n

)

,

n
∑

j=0

(−1)j
(2n− 1)!!(2j + 2k − 1)!!

j!(n− j)!(2j − 1)!!
= (−1)n2n

(

k

n

)

(2k − 1)!!.

Remark 8. First set β = 1/2 and then β = 1 in (4). Then for all integers k and n and all
complex ρ, we get

n
∑

j=0

(−1)n−j

(

n

j

)

(2n + 2k + 2j − 1)!!

(2j − 1)!!
= 2n (n + k)!(2n + 2k − 1)!!

k!(2n− 1)!!
,

n
∑

m=0

(−1)m
m
∑

k=0

(

m

k

)(

n−m

k

)

ρk =

{

0, if n is odd;

(1 − ρ)n/2, if n is even.
(6)

Remark 9. Now let us change the order of summation in (6) and compare the coefficients in
expansions in powers of ρ. We get

n
∑

m=k

(−1)m−k

(

m

k

)(

n−m

k

)

=

{

0, if n is odd;
(

n/2
k

)

, if n is even.

Remark 10. Let us set additionally ρ = 1 in (6). Then for all n ≥ 0, we get

n
∑

m=0

(−1)m
m
∑

k=0

(

m

k

)(

n−m

k

)

= 0.

Remark 11. Let us take β = 1/2 in (4). Next, let us set 2ρ = x and cancel n!. We then get

n
∑

m=0

(−1)m (2m− 1)!!(2n− 2m− 1)!!
m
∑

k=0

1

k!(m− k)!(n−m− k)!

xk

(2k − 1)!!
(7)

=

{

0, if n is odd;
(n−1)!!
(n/2)!

(2 − x)n/2, if n is even.

for all n ≥ 0. Additionally, setting x = 0 in (7), we get

n
∑

m=0

(−1)m
(

n

m

)

(2m− 1)!!(2n− 2m− 1)!! =

{

0, if n is odd;
n!(n−1)!!
(n/2)!

2n/2, if n is even.

Remark 12. Let us set ρ = 1 in (4). For all complex β 6= 0 and n ≥ 0 we get

n
∑

m=0

(−1)m
(

n

m

)

(β)(m) (β)(n−m)
m
∑

k=0

(

m

k

)(

n−m

k

)

k!

(β)(k)
= 0.
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Remark 13. Let us set ρ = 0 in (5). We get

n
∑

m=0

(−1)n−m

(

n

m

)

(β)(n−m) (β)(m) =

{

0, if n is odd;
n!

(n/2)!
(β)(n/2) , if n is even,

for all n ≥ 0. This is related to, but not a direct generalization of, the equality

n
∑

m=0

(

n

m

)

(β)(n−m) (α)(m) = (α + β)(n) .

Remark 14. Let us set ρ = 1/2 in (5). Then for all complex β and n ≥ 0, we get

n
∑

m=0

(−1)n−m

(

n

m

)

2−m

m
∑

j=0

(

m

j

)

(β)(n−j) (β + m− j)(j)

=

{

0, if n is odd;
n!

2n/2(n/2)!
(β)(n/2) , if n is even.

Remark 15. Let us change the order of summation in (5), then compare the coefficients in

expansions in powers of ρ, then multiply both sides by (β)(k) (n − k)! and finally cancel n!.
Then for all complex β and 0 ≤ k ≤ n we get

n
∑

m=k

(−1)m−k (n− k)!

(m− k)!(n−m− k)!
(β)(m) (β)(n−m)

=

{

0, if n is odd;

(n/2)!
(

n−k
n/2

)

(β)(k) (β)(n/2) , if n is even.

We also have the following relationships between Fibonacci {Fn}n≥0 and Lucas {Ln}n≥0

numbers. For Fibonacci and Lucas numbers, see, e.g., [3, 4] and [7, pp. 153–256]. For other
relationships between Fibonacci and Lucas numbers and the so-called Catalan triangles
(expressed by binomial coefficients), see, e.g., [12].

Corollary 16. Let φ denote the number (
√

5 − 1)/2, which is the reciprocal of the golden
ratio. Take ρ = −φ in (1). We get

2
(2k)!

k!
Lk =

k
∑

j=0

(−1)j
(

2k

2j

)

(2j − 1)!!(2k − 2j − 1)!!(L2k−2jLj − 5F2k−2jFj),

2
(2k)!

k!
Fk =

k
∑

j=0

(−1)j
(

2k

2j

)

(2j − 1)!!(2k − 2j − 1)!!(F2k−2jLj − L2k−2jFj).
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Proof. We know that for all n ≥ 0 we have

(1 + φ)n = ((1 +
√

5)/2)n = Ln/2 + Fn

√
5/2.

Now, also notice that we have φ = 1/(1 + φ) and that

L2
n − 5F 2

n = (−1)n4.

Hence, we have
φn = (−1)n(Ln/2 − Fn

√
5/2).

Now we take ρ = −φ and substitute it in (1). Notice that 1 − ρ = (1 + φ), and hence
(1−ρ)2k−2j = L2k−2j/2+F2k−2j

√
5/2 and 1−ρ2 = φ, consequently (1−ρ2)j = (−1)j(Lj/2−

Fj

√
5/2). It remains to multiply and separate terms with and without

√
5.

3 Probabilistic background and the proofs

3.1 Probabilistic background

All identities presented in Theorem 1 stem from calculating the moments E(X−Y )n, n ≥ 0,
where X and Y are two normalized random variables. The joint distribution of these ran-
dom variables has one parameter and is either the bivariate Normal (Gaussian) or bivariate
Gamma distribution. More precisely, in the first case, the joint distribution of (X, Y ) has
the following well-known density, valid for all x, y ∈ R and |ρ| < 1:

fN(x, y|ρ) =
1

2π(1 − ρ2)
exp

(

−x2 − 2ρxy + y2

2(1 − ρ2)

)

, (8)

while in the second case

fG(x, y|ρ) = fg(x|β)fg(y|β)
exp

(

−ρ(x+y)
1−ρ

)

(1 − ρ) (xyρ)(β−1)/2
Iβ−1

(

2
√
xyρ

1 − ρ

)

,

valid for all x, y, β > 0 and |ρ| < 1, where

fg(x|β) = xβ−1 exp(−x)/Γ(β),

for x > 0 and 0 otherwise. We let Iα denote, here and below, the modified Bessel function of
the first kind. The most important property of these joint densities is that they allow the so-
called Lancaster expansions. To learn more about Lancaster expansions, their probabilistic
interpretations, and convergence problems associated with them, see, e.g., [1, 8, 9, 13, 12,
11]. The orthogonal polynomials that we are using are well presented, for example, in two
monographs [5, 13].
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In the first case, we have the so-called Poisson-Mehler expansion

fN(x, y|ρ) = fN(x)fN(x)
∑

n≥0

ρnhn(x)hn(y), (9)

where we write
fN(x) = exp(−x2/2)/

√
2π

for simplicity, and
hn(x) = Hn(x)/

√
n!.

hn(x) is the orthonormal modification of the so-called probabilistic Hermite polynomials
{Hn(x)}, i.e., polynomials defined by the following three-term recurrence:

Hn+1(x) = xHn(x) − nHn−1(x),

with H−1(x) = 0 and H0(x) = 1. It is also known that

1√
2π

∫ ∞

−∞
hn(x)hm(x) exp(−x2/2)dx = δnm, (10)

where δnm denotes Kronecker’s delta.
In the second case we have

fG(x, y|ρ) = fg(x|β)fg(y|β)
∑

j≥0

ρnln(x|β)ln(y|β), (11)

where ln(x|β) =
√

n!

(β)(n)Ln(x|β) is the orthonormal modification of the so-called generalized

Laguerre polynomials {Ln(x|β)}, defined by the following expansions:

Ln(x|β) =
n
∑

k=0

(−1)k
(β)(n)

(n− k)!(β)(k)
xk/k!. (12)

Let us remark that the expansion (11) is known under the name Hardy-Hille formula
(see, e.g., [13], p. 102). One knows that

∫ ∞

0

ln(x|β)lm(x|β)fg(x|β)dx = δn,m. (13)

Our aim is to calculate {E(X − Y )n}n≥0. We will do it in two ways.
The first way is to calculate the generating function of the set of these numbers, i.e., the

function
g(t) =

∑

n≥0

tnE(X − Y )n/n!.

8



Since it is known that all moments exist, it can be calculated by exchanging integration and
summation. Namely, we have

g(t) =

∫ ∫

exp (tx− ty) f(x, y|ρ)dxdy.

Obviously here and below the integral depends on the case of integration over all of R2, or
just over R

+ × R
+.

The second way is to calculate the number using an expansion:

E(−X + Y )n =
n
∑

m=0

(−1)mEXmY n−m.

Now

EXmY n−m =

∫ ∫

xmyn−mf(x, y|ρ)dxdy.

where f is either fN or fG presented above. Using one of the expansions (9) or (11) we will
find these moments using the numbers

Hm,j = EXmkj(X),

where ki(x) is either hj(x), if we consider the Normal case, or lj(x), if we consider the Gamma
case. Since both expansions (9) and (11) have a similar structure, we have

EXmY n−m =

min(m,n−m)
∑

j=0

ρjHm,jHn−m,j. (14)

This is so since X and Y have the same distributions and since Hm,j = 0 if j > m because
of the orthogonality of polynomials h or l. We will calculate this function assuming either
expansion (9) or (11).

So let us start with the expansion (9). First let us calculate the auxiliary numbers Hj,n.
We have

Hj,n = EXjhn(X) =
1√
n!
EXjHn(X) =

{

0, if n > j or j − n odd;
j!

2(j−n)/2((j−n)/2)!
√
n!
, if j − n is even.

(15)

This is so, since polynomials hn are orthogonal and also since it is common knowledge that

xj = j!

⌊j/2⌋
∑

m=0

1

2mm!(j − 2m)!
Hj−2m(x)

9



for all n ≥ 0. Secondly, let us calculate the following auxiliary function that will simplify
many further calculations.

mn(t) = Ehn(X) exp(tX) =
1√

2πn!

∫ ∞

−∞
Hn(x) exp(tx) exp(−x2/2)dx

=
exp(t2/2)√

2πn!

∫ ∞

−∞
Hn(x) exp(−(x− t)2/2)dx.

Now let us change the variable under the integral by setting y = x− t. Then we get

mn(t) =
exp(t2/2)√

2πn!

∫ ∞

−∞
Hn(y + t) exp(−y2/2)dy.

Next, we utilize the following the expansion:

Hn(x + y) =
n
∑

j=0

(

n

j

)

Hj(x)yn−j.

Now, since we have (10), we see that mn(t) = tn exp(t2/2)√
n!

and we get

E exp (tX − tY ) =
∑

n≥0

E exp (tX − tY )

=
1

2π

∑

n≥0

ρn
∫ ∞

−∞

∫ ∞

−∞
exp (tx− ty) exp

(

−
(

x2 + y2
)

/2
)

hn(x)hn(y)dxdy

and
∑

n≥0

ρnmn(t)mn(−t) = exp(t2)
∑

n≥0

(−ρ)nt2n/n! = exp(t2(1 − ρ))
∑

n≥0

t2n(1 − ρ)n/n!.

Thus, we deduce that

E(X − Y )n =

{

0, if n is odd;
n!

(n/2)!
(1 − ρ)n/2, if n is even.

(16)

Now let us consider expansion (11). We need to recall some simple facts (see any textbook
on probability). The Gamma distribution with rate parameter zero and shape parameter
β > 0 is the distribution with the density fg presented above. It is easy to see, recalling the
definition of the Euler’s Gamma function that

EXn =

∫ ∞

0

xnfg(x|β)dx = (β)(n) . (17)

As before, let us calculate the set of auxiliary quantities and functions. We start with the
numbers

Hj,n = EXjln(X).

10



We have

Hj,n =

√
n!

Γ(β)

√

(β)(n)

∫ ∞

0

xjL(β)
n (x)xβ−1 exp(−x)dx. (18)

Now, we use the following expansion of xj in powers of Laguerre polynomials (see [5, 13]):

xj = j!

j
∑

k=0

(−1)k
(β)(j)

(j − k)!(β)(k)
L
(β)
k (x), (19)

and then we use the orthogonality of the Laguerre polynomials. Hence, we have

Hj,n = (−1)n
(

j

n

)

(β)(j)

√

n!

(β)(n)
. (20)

Let us now calculate the following auxiliary functions:

mn(t) = Eln(X) exp(tX) =

√

n!

(β)(n)
E exp(tX)Ln(X|β)

=

√

n!

(β)(n)
1

Γ(β)

∫ ∞

0

exp(xt)Ln(x|β)xβ−1 exp(−x)dx

=

√

n!

(β)(n)
1

Γ(β)

∫ ∞

0

Ln(x|β)xβ−1 exp(−x(1 − t))dx.

Now, let us change variables under the integral by considering y = x(1 − t). Then we get

mn(t) =

√

n!

(β)(n)
1

1 − t

1

Γ(β)

∫ ∞

0

Ln(
y

1 − t
|β)

(

y

1 − t

)β−1

exp(−y)dy.

We will now utilize the following recurrence relation for Laguerre polynomials (see, e.g., [2,
Chap. 22]):

Ln(y|β) =
n
∑

j=0

Ln−j(x|β + j)(y − x)j/j!.

So we get

mn(t) =

√

n!

(β)(n)
1

(1 − t)β
1

Γ(β)
×
∫ ∞

0

(

n
∑

j=0

( −ty

1 − t

)j

Ln−j(x|(β + j))/j!

)

yβ−1 exp(−y)dy.

11



Further, we have

mn(t) =

√

n!

(β)(n)
1

(1 − t)β
1

Γ(β)
×

n
∑

j=0

∫ ∞

0

(−1)j
tj

(1 − t)j
Ln−j(y |(β + j)|)yj+β−1 exp(−y)dy

= (−1)n

√

n!

(β)(n)
tnΓ(β + n)

Γ(β)n!(1 − t)β+n

= (−1)n

√

n!

(β)(n)
tn (β)(n)

n!(1 − t)β+n
.

Hence, we now have

g(t) = E exp(tX − tY ) =
∑

n≥0

ρn
∫ ∞

0

exp(tx− ty)ln(x|β)ln(y|β)fg(x|β)fg(y|β)dxdy

=
∑

n≥0

ρnmn(t)mn(−t) =
∑

n≥0

ρn
n!(−1)nt2n (β)(n) (β)(n)

(β)(n) n!n!(1 − t2)n+β

=
1

(1 − t2)β

∑

n≥0

ρn
(−1)nt2n (β)(n)

n!(1 − t2)n

=
1

(1 − t2)β

∑

n≥0

(−1)n
(

ρt2

1 − t2

)n

(β)(n) /n!,

and further we have

g(t) =
1

(1 − t2)β

(

1 +
ρt2

1 − t2

)−β

=
1

(1 − t2(1 − ρ))β

=
∑

n≥0

t2n(1 − ρ)n (β)(n) /n!.

Here we twice used the formula for the binomial series. Thus, we deduce

E(X − Y )n =

{

0, if n is odd;
n!

(n/2)!
(β)(n/2) (1 − ρ)n/2, if n is even.

(21)

3.2 Proofs

The basis of all proofs is the consideration of different methods for calculating {E(X − Y )n}n≥1.
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Proof of assertion (i) of Theorem 1. Let (X, Y ) have bivariate Gaussian distribution given
by (8) and let N(m,σ2) denote Normal (or Gaussian) distribution with mean value m and
variance σ2. Then it is well known that every linear transformation of such a variable also
has Gaussian distribution. In particular we deduce that X − Y ∼ N(0, (1 − ρ)2). Hence,
keeping in mind that

EZj =











0, if j is odd;

1, if j = 0;

σj(2j − 1)!!, if j is even,

if Z ∼ N(0, σ2). Thus, the left-hand side of assertion (i) is equal to (2k − 1)!!(1 − ρ)k =
(2k)!
k!

(1 − ρ)k. In order to get the right-hand side, we calculate

E(X − Y )2k = E(X − ρY − (1 − ρ)Y )2k

=
2k
∑

j=0

(

2k

j

)

(−1)j(1 − ρ)2k−jE(X − ρY )jY 2k−j

=
2k
∑

j=0

(

2k

j

)

(−1)j(1 − ρ)2k−jE(E(X − ρY )j|Y )Y 2k−j.

Now, we use the known fact that random variables (X−ρY ) and Y are independent. Hence
we get

(E(X − ρY )j|Y ) =











0, if j is odd;

1, if j = 0;

(2j − 1)!!(1 − ρ2)j/2, if j is even.

Thus, we get

E(X − Y )2k =
k
∑

j=0

(

2k

2j

)

(1 − ρ)2k−2j(1 − ρ2)j(2j − 1)!!(2k − 2j − 1)!!.

Now it is enough to change ρ to −ρ to get the assertion.

Proof of assertion (ii) of Theorem 1. We use (14) with (15), getting

(2k)!

k!
(1 − ρ)k = 2

k−1
∑

j=0

(−1)j
(

2k

j

) j
∑

n=0

ρn

n!
Hj,nH2k−j,n + (−1)k

(

2k

k

) k
∑

n=0

ρn

n!
H2

k,n,

where

Hj,n =

{

0, if n > j or j − n odd;
j!

2(j−n)/2((j−n)/2)!
, if j − n is even.

13



Notice that, if j − n is even, then

(

2k

j

)

Hj,nH2k−j,n = 2n

(

2k

k

)(

k

n

)(

k − n

(j − n)/2

)

/2k,

and when k − n is even, we have

H2
k,n = 2n

(

k

n

)(

k − n

(k − n)/2

)

/2k.

Hence (2) can be reformulated in the following way:

1

2k−1

k−1
∑

j=0

(−1)j
j
∑

n=0−
(2ρ)n

(

k

n

)

mhj,n,k +
(−1)k

2k

k
∑

n=0

(2ρ)n
(

k

n

)

mhk,n,k,= (1 − ρ)k,

where

mhj,n,k =

{

0, if j > k − 1 or j − n is odd;
(

k−n
(j−n)/2

)

, if j − n is even.

Now it remains to change the order of summation in the internal sums and ρ to −ρ.

Proof of assertion (iii) of Theorem 1. Let us recall Eqs. (12) and (18) and let us calculate
Hj,n directly, getting

Hj,n =

√
n!

Γ(β)
√

Γ(n + β)

n
∑

k=0

(−1)k

k!

(β)(n)

(n− k)!(β)(k)

∫ ∞

0

xk+jxβ−1 exp(−x)dx

=

√
n!

√

Γ(n + β)

n
∑

k=0

(−1)k

k!

(β)(n)(β)(k+j)

(n− k)!(β)(k)
.

Now, we compare it with the already-calculated Hj,n for the Gamma distribution, i.e.,

(−1)n
(

j
n

)

(β)(j)
√

n!

(β)(n) .

Proof of assertion (iv) of Theorem 1. Recall Eq. (20). We have

E(−X + Y )n =
n
∑

m=0

(−1)m
(

n

m

)

EXmY n−m

=

{

0, if n is odd;
n!

(n/2)!
(β)(n/2) (1 − ρ)n/2, if n is even.
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Now we use (14) with Hj,m given by (20). By (21) we have

E(−X + Y )n =
n
∑

m=0

(−1)m
(

n

m

)min(m,n−m)
∑

j=0

ρjHm,jHn−m,j

=
n
∑

m=0

(−1)n−m

(

n

m

)min(m,n−m)
∑

j=0

ρj
(

m

j

)(

n−m

j

)

(β)(m) (β)(n−m) j!

(β)(j)

=
n
∑

m=0

(−1)n−m

(

n

m

)

(β)(m) (β)(n−m)
m
∑

j=0

(

m

j

)(

n−m

j

)

j!ρj

(β)(j)

=

{

0, if n is odd;
n!

(n/2)!
(β)(n/2) (1 − ρ)n/2, if n is even.

This is so, since
(

m
j

)(

n−m
j

)

is zero whenever m > j or n−m > j.

Proof of assertion (v) of Theorem 1. One can easily notice, based on (11), that E(ln(X)|Y ) =
ρnln(Y ). Hence, let us first calculate the conditional moments ηn(y|β, ρ) = E(Xn|Y = y).
By (19) we have

ηj(y|β, ρ) = E(Xj|Y = y) = j!

j
∑

k=0

(−1)k
(β)(j)

(j − k)!(β)(k)
ρkL

(β)
k (y)

= j!

j
∑

k=0

(−1)k
(β)(j)

(j − k)!(β)(k)
ρk

k
∑

m=0

(−1)m
(β)(k)

(k −m)!(β)(m)
ym/m!

= j!

j
∑

m=0

(β)(j)

(β)(m)(j −m)!m!
(ρy)m

j
∑

k=m

(−1)k−m (j −m)!

(k −m)!(j − k)!
ρk−m

=

j
∑

m=0

(

j

m

)

(β)(j)

(β)(m)
(ρy)m(1 − ρ)j−m = j!(1 − ρ)jLj(−

ρy

1 − ρ
).

Further, we get

E ((X − Y )n|Y = y) =
n
∑

j=0

(−1)n−j

(

n

j

)

ηj(y|β, ρ)yn−j

=
n
∑

j=0

(−1)n−jyn−j

(

n

j

) j
∑

m=0

(

j

m

)

(β)(j)

(β)(m)
(ρy)m(1 − ρ)j−m
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=
n
∑

m=0

n!

m!(n−m)!

(ρy)m

(β)(m)

n
∑

j=m

(−1)n−j (n−m)!(β)(j)yn−j(1 − ρ)j−m

(n− j)!(j −m)!

n
∑

m=0

n!

m!(n−m)!
(ρy)m

n−m
∑

s=0

(−1)n−m−s

(

n−m

s

)

yn−m−s(1 − ρ)s(β + m)(s)

=
n
∑

t=0

(−1)n−tyn−t n!

t!(n− t)!

t
∑

s=0

(

t

s

)

(ρy)t−s(1 − ρ)s(β + t− s)(s)

=
n
∑

s=0

(

n

s

)

yn−s(1 − ρ)s
n
∑

t=s

(−1)n−t (n− s)!

(t− s)!t!
ρt−s(β + t− s)(s)

=
n
∑

s=0

(

n

s

)

yn−s(1 − ρ)s
n−s
∑

m=0

(−1)n−m−s

(

n− s

m

)

ρm(β + m)(s).

Hence, using (17), we get

E(X − Y )n =

∫ ∞

0

(
n
∑

s=0

(

n

s

)

yn−s(1 − ρ)s ×
n−s
∑

m=0

(−1)n−m−s

(

n− s

m

)

ρm(β + m)(s))fg(x|β)dx

=
n
∑

s=0

(

n

s

)

(β)(n−s)(1 − ρ)s
n−s
∑

m=0

(−1)n−m−s

(

n− s

m

)

ρm(β + m)(s)

=
n
∑

t=0

(−1)n−tn!(β)(n−t)

t!(n− t)!

t
∑

s=0

t!

s!(t− s)!
(1 − ρ)sρt−s(β + n− t)(t−s)(β + t− s)(s).

In the last line, we changed the order of summation. To get the assertion, we use the formula

(β)(n) (β + n)(m) = (β)(n+m) ,

true for all complex β.
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