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Abstract

Let k be a positive integer, and let a, b be coprime positive integers with a, b > 1.
In this paper, using a combination of some elementary number theory techniques with
classical results on the Nagell-Ljunggren equation, the Catalan equation, and some new
properties of the Lucas sequence, we prove that if k > 1 and a, b > 2 are both prime
powers, then the equation (ak)x + (bk)y = ((a + b)k)z has only one positive integer
solution: namely, (x, y, z) = (1, 1, 1). This proves some cases of a conjecture of Yuan
and Han.
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1 Introduction

Let Z, N, P be the sets of all integers, positive integers, and odd primes, respectively. Let
A,B,C be fixed positive integers with A,B,C > 1. In recent decades, the ternary purely
exponential Diophantine equation

Ax +By = Cz, x, y, z ∈ N (1)

has yielded very rich results, but some important problems about it are far from being solved
(see [7]). In recent 20 years, many authors have considered equation (1) when A, B, and C
are Fibonacci A00045 or Lucas A000204 or Pell A000129 numbers in OEIS [14] or when A
and B are Fibonacci or Lucas or Pell numbers (see [1, 2, 4, 6, 12, 13, 18]).

Let k be a positive integer, and let a, b be coprime positive integers with a, b > 1. In this
paper, we discuss (1) for (A,B,C) = (ak, bk, (a+ b)k). Then (1) can be written as

(ak)x + (bk)y = ((a+ b)k)z, x, y, z ∈ N. (2)

Obviously, for any a, b and k, (2) has the solution (x, y, z) = (1, 1, 1). A solution (x, y, z) of
(2) with (x, y, z) 6= (1, 1, 1) is called exceptional. In 2018, Sun and Tang [16] proved that if
k > 1, a, b > 2, and (x, y, z) is an exceptional solution of (2), then either x > z > y or y > z >
x. On this basis, they further proved that if k > 1 and (a, b) ∈ {(3, 5), (5, 8), (8, 13), (13, 21)},
then (2) has no exceptional solutions. In the same year, Yuan and Han [17] proposed the
following conjecture.

Conjecture 1. For any k, if a, b > 3, then (2) has no exceptional solutions.

This conjecture is formally similar to Jeśmanowicz’ conjecture concerning Pythagorean
triples (see [5, 15]). So far, it has only been solved for some very special cases. For example,
the authors of [17] proved that if a and b are squares with b ≡ 4 (mod 8), then (2) has no
solutions (x, y, z) with y > z > x, in particular, if a is a square and b = 4, then Conjecture
1 is true. Afterwards, using Baker’s method, Le and Soydan [8] proved that if a and b are
squares with a > 64b3, then (2) has no solutions (x, y, z) with x > z > y. It implies that if
a and b are squares with a > 64b3 and b ≡ 4 (mod 8), then Conjecture 1 is true.

In this paper, using a combination of some elementary number theory techniques with
classical results on the Nagell-Ljunggren equation, the Catalan equation and some new prop-
erties of the Lucas sequence A000204, we prove the following result.

Theorem 2. Let r, s be positive integers, and let p, q be distinct odd primes. If k > 1 and
a, b satisfy one of the following conditions:

(i) (a, b) = (2r, ps) with r > 1; or

(ii) (a, b) = (pr, 2s) with s > 1; or

(iii) (a, b) = (pr, qs), then (2) has no solutions (x, y, z) with x > z > y.
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Since a and b are symmetric in (2), by the first result mentioned in [16], we can obtain
the following corollary from Theorem 2 immediately.

Corollary 3. If k > 1 and a, b are prime powers, then Conjecture 1 is true.

Finally, we briefly analyze the effect of the above mentioned results. For any enough large
positive integer N , let F (N) denote the number of pairs (a, b) such that a, b ≤ N and they
have been proved to hold for Conjecture 1 with k > 1. Clearly, by the mentioned results
in [8, 16, 17] and Corollary 3, we have F (N) = 4, F (N) =

√
N , N > F (N) >

√
N , and

F (N) > N2/(logN)2, respectively.

2 Preliminaries

Let us now recall that if α and β are roots of a quadratic equation of the form x2−rx−s = 0
for nonzero coprime integers r and s and such that α/β is not a root of unity, then the
sequence (uℓ)ℓ≥0 with general term

uℓ =
αℓ − βℓ

α− β
for all ℓ ≥ 0

is called a Lucas sequence A000204. It can also be defined inductively as u0 = 0, u1 = 1, and
uℓ+2 = r · uℓ+1 + s · uℓ. When β = 1, Lemmas 9, 10, and 11 below are three new properties
we proved about the Lucas sequence.

Lemma 4 ([9]). The equation

Xm − 1

X − 1
= Y n, X, Y,m, n ∈ N, X > 1, Y > 1, m > 2, n > 1

has only the solution (X, Y,m, n) = (3, 11, 5, 2) with 2 | n.
Lemma 5 ([10]). The equation

Xm − Y n = 1, X, Y,m, n ∈ N, X, Y,m, n > 1

has only the solution (X, Y,m, n) = (3, 2, 2, 3).

Let X, ℓ,m, n be positive integers with X > 1 and ℓ > 1, and let p, q be odd primes.
Three lemmas for divisibility are given directly below.

Lemma 6 ([11]). If Xn + 1 ≡ 0 (mod Xm + 1), then m | n and n/m is odd.

Lemma 7 ([3]). Let ℓ be an odd prime. If X 6≡ 1 (mod ℓ), then every prime divisor p of
(Xℓ − 1)/(X − 1) satisfies

p ≡ 1 (mod 2ℓ). (3)

If X ≡ 1 (mod ℓ), then ℓ || (Xℓ−1)/(X−1) and every prime divisor p of (Xℓ−1)/ℓ(X−1)
satisfies (3).
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Lemma 8 ([3]). When X ≡ 1 (mod p), pm || (Xℓ − 1)/(X − 1) if and only if pm || ℓ.

Lemma 9. If
Xℓ − 1

X − 1
= pn, 2 ∤ ℓ, (4)

then ℓ is an odd prime with (3).

Proof. We now assume that ℓ is not an odd prime. Since ℓ > 1 and 2 ∤ ℓ, ℓ has an odd prime
divisor q with q < ℓ. Then we have q | ℓ and ℓ/q > 1. By (4), we get

pn =
Xℓ − 1

X − 1
=

(

Xℓ/q − 1

X − 1

)(

(Xℓ/q)q − 1

Xℓ/q − 1

)

, (5)

where (Xℓ/q − 1)/(X − 1) and ((Xℓ/q)q − 1)/(Xℓ/q − 1) are positive integers greater than 1.
Since X > 1, by (5), we have

Xℓ/q − 1

X − 1
= pf ,

(Xℓ/q)q − 1

Xℓ/q − 1
= pn−f , f ∈ N, f < n. (6)

Further, by the first and the second equalities of (6), we get Xℓ/q ≡ 1 (mod p) and

0 ≡ pn−f ≡ (Xℓ/q)q − 1

Xℓ/q − 1
≡ (Xℓ/q)q−1 + · · ·+Xℓ/q + 1 ≡ q (mod p). (7)

Since p and q are odd primes, by (7), we obtain q = p. Hence by Lemma 7, we see from (6)
that p || ((Xℓ/p)p − 1)/(Xℓ/p − 1) = ((Xℓ/q)q − 1)/(Xℓ/q − 1) and

p =
(Xℓ/p)p − 1

Xℓ/p − 1
= (Xℓ/p)p−1 + · · ·+Xℓ/p + 1 > p, (8)

a contradiction. It implies that ℓ must be an odd prime. Moreover, using Lemma 7 again, if
X ≡ 1 (mod ℓ), then from (4) we can get ℓ = p and n = 1, which is the same contradiction
as (8). Therefore, we have x 6≡ 1 (mod ℓ) and p satisfies (3). The lemma is proved.

Lemma 10. If
Xℓ − 1 = 2mpn, (9)

then one of the following three conclusions holds.

(i) (p,X, ℓ,m, n) = (3, 5, 2, 3, 1), (3, 7, 2, 4, 1), (5, 9, 2, 4, 1), (5, 3, 4, 4, 1), (3, 17, 2, 5, 2) or
(7, 15, 2, 5, 1).

(ii)
ℓ = 2, m ≥ 6, n = 1, X = 2m−1 + ζ, p = 2m−2 − ζ, ζ ∈ {1,−1}. (10)

(iii)

ℓ is an odd prime, X − 1 = 2m,
Xℓ − 1

X − 1
= pn, p ≡ 1 (mod 2ℓ). (11)
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Proof. Obviously, by (9), we have X > 1, 2 ∤ X and p ∤ X. When 2 | ℓ, since Xℓ ≡ 1
(mod 8), gcd(Xℓ/2 + 1, Xℓ/2 − 1) = 2 and p is an odd prime, by (9), we have

Xℓ/2 + ζ = 2pn, Xℓ/2 − ζ = 2m−1, m ≥ 3, ζ = ((−1)(X−1)/2)ℓ/2, (12)

where
ζ ∈ {1,−1}. (13)

If 3 ≤ m ≤ 5, then from (12) and (13) we can easily obtain the conclusion (i). If m ≥ 6, by
Lemma 5, then from the second equality of (12) we get ℓ = 2. In addition, eliminating Xℓ/2

from (12), we have
pn − 2m−2 = ζ. (14)

Since m − 2 ≥ 4, using Lemma 5 again, we see from (14) that n = 1. Therefore, by (12),
(13), and (14), we obtain (10) and conclusion (ii) is proved.

When 2 ∤ ℓ, since ℓ > 1 and
Xℓ − 1

X − 1
is an odd positive integer greater than 1, by (9), we

have

X − 1 = 2mpf ,
Xℓ − 1

X − 1
= pn−f , f ∈ Z, 0 ≤ f < n. (15)

If f > 0, then from the first equality of (15) we get X ≡ 1 (mod p). Hence, applying
Lemma 8 to the second equality of (15), we obtain pn−f || ℓ. However, since ℓ ≥ pn−f , we
get pn−f = (Xℓ − 1)/(X − 1) > ℓ ≥ pn−f , a contradiction. So f = 0. Therefore, by (15), we
get

X − 1 = 2m,
Xℓ − 1

X − 1
= pn. (16)

Further, by Lemma 9, we see from the second equality of (16) that ℓ is an odd prime with
(3). Thus, we obtain (11) and the conclusion (iii) is proved. The proof is completed.

Using the same method as in the proof of Lemma 10, we can obtain the following lemma
without difficulty

Lemma 11. If
Xℓ − 1 = pmqn, (17)

the one of the following six conclusions holds.

(i)
2 | ℓ, Xℓ/2 + ζ = pm, Xℓ/2 − ζ = qn, ζ ∈ {1,−1}. (18)

(ii)
2 ∤ ℓ, X = 2, 2ℓ − 1 = pmqn. (19)

(iii)

ℓ = p, m > 1, X − 1 = pm−1,
Xp − 1

X − 1
= pqn, q ≡ 1 (mod 2p). (20)
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(iv)

ℓ = q, n > 1, X − 1 = qn−1,
Xq − 1

X − 1
= pmq, p ≡ 1 (mod 2q). (21)

(v)

ℓ is an odd prime, X − 1 = pm,
Xℓ − 1

X − 1
= qn, q ≡ 1 (mod 2ℓ). (22)

(vi)

ℓ is an odd prime, X − 1 = qn,
Xℓ − 1

X − 1
= pm, p ≡ 1 (mod 2ℓ). (23)

Proof. Since p and q are distinct odd primes, by (17), we have 2 | X. When 2 | ℓ, since
gcd(Xℓ/2 + 1, Xℓ/2 − 1) = 1, by (17), we can directly obtain (18) and the conclusion (i) is
proved. When 2 ∤ ℓ and X = 2, we see from (17) that (19) is clearly true and the conclusion
(ii) is proved. When 2 ∤ ℓ and X > 2, by (17), we have

X − 1 = pfqg,
Xℓ − 1

X − 1
= pm−fqn−g, f, g ∈ Z, 0 ≤ f ≤ m,

0 ≤ g ≤ n, (f, g) 6= (0, 0) or (m,n).

(24)

If 0 < f < m and 0 < g < n, then from (24) we get X ≡ 1 (mod pq) and 0 ≡
pm−fqn−g ≡ (Xℓ − 1)(X − 1) ≡ Xℓ−1 + · · ·+X + 1 ≡ ℓ (mod pq). It follows that pq | ℓ and
(Xpq − 1)/(X − 1) | (Xℓ − 1)(X − 1). Hence, by the second equality of (24), we have

Xpq − 1

X − 1
=

(

Xp − 1

X − 1

)(

(Xp)q − 1

Xp − 1

)

= pf
′

qg
′

, f ′, g′ ∈ Z,

f ′ ≥ 0, g′ ≥ 0, (f ′, g′) 6= (0, 0),

(25)

where (Xp − 1)/(X − 1) and ((Xp)q − 1)/(Xp − 1) are positive integers greater than 1.
Further, since X ≡ 1 (mod p), by Lemma 8, we get p || (Xp − 1)/(X − 1). Furthermore,
since (Xp − 1)/(X − 1) > p, by (25), we have

Xp − 1

X − 1
= pqg

′′

, g′′ ∈ N. (26)

Recall that X ≡ 1 (mod q). By (26), we get 0 ≡ pqg
′′ ≡ (Xp − 1)/(X − 1) ≡ Xp−1 + · · · +

X+1 ≡ p (mod q) and p = q, a contradiction. Therefore, the case 0 < f < m and 0 < g < n
is impossible.

If 0 < f < m and g = n, then from (24) we get

X − 1 = pfqn,
Xℓ − 1

X − 1
= pm−f . (27)

By the first equality of (27), we have X ≡ 1 (mod p). In addition, by Lemma 8, we see from
the second equality of (27) that ℓ is an odd prime with p ≡ 1 (mod 2ℓ). But, since X ≡ 1
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(mod p), we get 0 ≡ pm−f ≡ (Xℓ− 1)/(X − 1) ≡ Xℓ−1+ · · ·+X +1 ≡ ℓ (mod p) and p = ℓ,
a contradiction. Therefore, the case 0 < f < m and g = n is impossible. Using the same
method, we can eliminate the case f = m and 0 < g < n.

Recall that (f, g) 6= (0, 0) or (m,n). According to the above analysis, we are left with
only the cases

f = 0, 0 < g ≤ n (28)

and
0 < f ≤ m, g = 0 (29)

that have not yet been discussed.
If (28) holds, by (24), then we have

X − 1 = qg,
Xℓ − 1

X − 1
= pmqn−g, g ∈ N, g ≤ n. (30)

When g = n, by (30), we get

X − 1 = qn,
Xℓ − 1

X − 1
= pm. (31)

Applying Lemma 9 to the second equality of (31), ℓ is an odd prime with p ≡ 1 (mod 2ℓ).
Hence, by (31), we get (23) and the conclusion (vi) is proved.

When g < n, by the first equality of (30), we have X ≡ 1 (mod q). Hence, by Lemma 8,
we see from the second equality of (30) that qn−g || ℓ. It follows that

ℓ = qn−gℓ1, ℓ1 ∈ N, q ∤ ℓ1. (32)

Then we have
Xℓ − 1

X − 1
=

(

Xℓ1 − 1

X − 1

) n−g
∏

j=1

(

Xqjℓ1 − 1

Xqj−1ℓ1 − 1

)

, (33)

where (Xℓ1 −1)/(X−1) and (Xqjℓ1 −1)/(Xqj−1ℓ1 −1) (j = 1, · · · , n−g) are positive integers
with

q ∤
Xℓ1 − 1

X − 1
, q || Xqjℓ1 − 1

Xqj−1ℓ1 − 1
, j = 1, · · · , n− g. (34)

By (33) and (34), we get from the second equality of (30) that

Xℓ1 − 1

X − 1
= pm0 , m0 ∈ Z, m0 ≥ 0 (35)

and
Xqjℓ1 − 1

Xqj−1ℓ1 − 1
= pmjq, mj ∈ N, j = 1, · · · , n− g, (36)

where
m0 +m1 + · · ·+mn−g = m. (37)
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If n− g > 1, then from (36) we have Xqℓ1 ≡ 1 (mod p) and 0 ≡ pm2q ≡ (Xq2ℓ1 − 1)/(Xqℓ1 −
1) ≡ Xqℓ1(q−1) + · · · +Xqℓ1 + 1 ≡ q (mod p), whence we get p = q, a contradiction. So we
have n − g = 1. Further, if n − g = 1 and ℓ1 > 1, by (35) and (36), then m0 is a positive
integer, Xℓ1 ≡ 1 (mod p), 0 ≡ pm1q ≡ (Xqℓ1 − 1)/(Xℓ1 − 1) ≡ Xℓ1(q−1) + · · · +Xℓ1 + 1 ≡ q
(mod p) and p = q, a contradiction. Therefore, if (28) holds, then we have n − g = 1 and
ℓ1 = 1. By (30),(32),(33), (36) and (37), we get (21) and the conclusion (iv) is proved.

Using the same method, as in the proof about the case (28), we can deduce that if (29)
holds, then there can only obtain (20) or (22), and the conclusions (iii) and (v) are proved.
To sum up, the proof is complete.

For any positive integer m, let rad(m) denote the product of all distinct prime divisors
of m, and let rad(1) = 1. Obviously, rad(m) is equal to the largest squarefree divisor of m.

Lemma 12 ([16]). If k > 1 and (x, y, z) is a solution of (2) with x > z > y, then we have

rad(k) | b, b = b1b2, b1, b2 ∈ N, b1 > 1, gcd(b1, b2) = 1,

by1 = kz−y

and
axkx−z + by2 = (a+ b)z.

By Lemma 12, we can obtain the following lemma immediately.

Lemma 13. If k > 1, b is a prime power and (x, y, z) is a solution of (2) with x > z > y,
then we have

by = kz−y

and
axkx−z + 1 = (a+ b)z.

3 Proof of Theorem 2

We now assume that k > 1 and (x, y, z) is a solution of (2) with x > z > y. We will prove
that this solution does not exist in the following three cases.

3.1 Case (i): (a, b) = (2r, ps) with r > 1.

Since k > 1 and p is an odd prime, Lemma 13, we have

psy = kz−y (38)

and
2rxkx−z + 1 = (2r + ps)z. (39)
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We see from (38) that k is a power of p. So we have

kx−z = pt, t ∈ N. (40)

Substituting (40) into (39), we get

(2r + ps)z − 1 = 2rxpt. (41)

We find from (41) that equation

Xℓ − 1 = 2mpn, X, ℓ,m, n ∈ N, X > 1, ℓ > 1 (42)

has a solution
(X, ℓ,m, n) = (2r + ps, z, rx, t). (43)

Since r ≥ 2 and x > z > y ≥ 1, we have x ≥ 3 and rx ≥ 6. Hence, by Lemma 10, the
solution (43) must satisfy the conclusion (ii) or (iii) in this lemma.

When (43) satisfies the conclusion (ii) in Lemma 10, by (10) and (43), we have

z = 2, t = 1, 2r + ps = 2rx−1 + ζ, p = 2rx−2 + ζ, ζ ∈ {1,−1}. (44)

Since z = 2 and z > y ≥ 1, we get y = 1. Hence, by (38), we have

k = ps. (45)

Further, by (40), (43) and (45), we get p = pt = kx−z = ps(x−z) = ps(x−2), whence we obtain
s = 1 and x = 3. Therefore, by the third and fourth equalities of (44), we have

23r−1 + ζ = 2rx−1 + ζ = 2r + ps = 2r + p = 2r + (2rx−2 + ζ) = 23r−2 + 2r + ζ,

whence we get 2r = 23r−1 − 23r−2 = 23r−2 and r = 1, a contradiction.
When (43) satisfies the conclusion (iii) in Lemma 10, by (11) and (43), we have

z is an odd prime, 2r + ps − 1 = 2rx,
(2r + ps)z − 1

2r + ps − 1
= pt, p ≡ 1 (mod 2z). (46)

By the second equality of (46), we get

ps = 2rx − 2r + 1. (47)

If t ≥ s, then from the third equality of (46) we have

0 ≡ pt ≡ (2r + ps)z − 1

2r + ps − 1
=

2rz − 1

2r − 1
(mod ps).

It implies that (2rz − 1)/(2r − 1) is a positive integer satisfying

2rz − 1

2r − 1
≥ ps. (48)
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Since x > z, by (47) and (48), we have

2r(z−1)+1 >
2rz − 1

2r − 1
≥ ps = 2rx − 2r + 1 ≥ 2r(z+1) − 2r + 1 > 2r(z+1) − 2r

and r ≥ 2r − 1, a contradiction. So we have t < s. Then, since z > 2, by the third equality
of (46), we get

ps > pt =
(2r + ps)z − 1

2r + ps − 1
>

(2r + ps)2 − 1

2r + ps − 1
= 2r + ps + 1 > ps,

a contradiction. Thus, the theorem holds for this case.

3.2 Case (ii): (a, b) = (pr, 2s) with s > 1.

By Lemma 13, we have
2sy = kz−y (49)

and
prxkx−z + 1 = (pr + 2s)z. (50)

We see from (49) that k is a power of 2. So we have

kx−z = 2t, t ∈ N. (51)

Substituting (51) into (50), we get

(pr + 2s)z − 1 = 2tprx. (52)

We find from (52) that (42) has a solution

(X, ℓ,m, n) = (pr + 2s, z, t, rx). (53)

Since rx ≥ x ≥ 3, by Lemma 10, the solution (53) only satisfies the conclusion (iii) in this
lemma. Then, by (11) and (53), we have

z is an odd prime, pr + 2s − 1 = 2t,
(pr + 2s)z − 1

pr + 2s − 1
= prx, p ≡ 1 (mod 2z). (54)

Further, since rx ≥ x > 2, applying Lemma 4 to the third equality of (54), we get

2 ∤ x. (55)

By the first equality of (54), z is an odd prime. Since z > y ≥ 1, we have gcd(y, z) = 1
and

gcd(y, z − y) = 1. (56)
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We see from (49) and (56) that s ≡ 0 (mod z − y),

s = (z − y)s1, s1 ∈ N (57)

and
k = 2s1y. (58)

Further, by (51) and (58), we have

t = s1y(x− z), (59)

whence we get
y | t. (60)

By the second equality of (54), we have

pr + 2s = 2t + 1 (61)

and
pr ≡ −2s (mod 2t + 1). (62)

Substituting (61) into the third equality of (54), we get

prx =
(2t + 1)z − 1

(2t + 1)− 1
= (2t + 1)z−1 + · · ·+ (2t + 1) + 1 (63)

and
prx ≡ 1 (mod 2t + 1). (64)

Further, by (55), (62) and (64), we have

2sx + 1 ≡ 0 (mod 2t + 1). (65)

Applying Lemma 6 to (65), we get sx ≡ 0 (mod t) and

sx = tt1, t1 ∈ N, 2 ∤ t1. (66)

Hence, by (57), (59) and (66), we have

(z − y)x = y(x− z)t1. (67)

Furthermore, by (56) and (67), we get
y | x. (68)

Therefore, by (60), (63) and (68), we have

1 = (2t + 1)z − 2tprx = (2t + 1)z − (2t/yprx/y)y, (69)
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where 2t/yprx/y is a positive integer greater than 6. Since z ≥ 3, by Lemma 5, we see from
(69) that

y = 1. (70)

Thus, by (57) and (70), we get
s ≥ z − 1. (71)

On the other hand, we see from (61) that

t > s (72)

and
pr ≡ 1 (mod 2s). (73)

Further, by (63), (72) and (73), we have

1 ≡ prx ≡ (2t + 1)z − 1

(2t + 1)− 1
= (2t + 1)z−1 + · · ·+ (2t + 1) + 1 ≡ z (mod 2s). (74)

Since z > 1, by (74), we get
z ≥ 2s + 1. (75)

Therefore, the combination of (71) and (75) yields s ≥ z − 1 ≥ 2s, a contradiction. Thus,
the theorem holds in this case.

3.3 Case (iii): (a, b) = (pr, qs)

By Lemma 13, we have
qsy = kz−y (76)

and
prxkx−z + 1 = (pr + qs)z. (77)

We see from (76) that k is a power of q. So we have

kx−z = qt, t ∈ N. (78)

Substituting (78) into (77), we get

(pr + qs)z − 1 = prxqt. (79)

We find from (79) that the equation

Xℓ − 1 = pmqn, X, ℓ,m, n ∈ N, X > 1, ℓ > 1 (80)

has a solution
(X, ℓ,m, n) = (pr + qs, z, rx, t). (81)
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Since pr+qs ≥ 8, applying Lemma 11 to (80) and (81), we only need to consider the following
five subcases.

Subcase (iii)-1:

2 | z, (pr + qs)z/2 + ζ = prx, (pr + qs)z/2 − ζ = qt, ζ ∈ {1,−1}. (82)

Since rx ≥ 3, by Lemma 5, we see from the second equality of (82) that z = 2. So we
have

pr + qs + ζ = prx, pr + qs − ζ = qt. (83)

By the first equality of (83), we get

qs = prx − pr − ζ = pr(pr(x−1) − 1)− ζ ≥ pr(p2r − 1)− 1 > pr. (84)

However, by the second equality of (83), we have t > s and

pr = qt − qs + ζ = qs(qt−s − 1)− 1 ≥ qs(q − 1)− 1 > qs,

which contradicts (84). Therefore, this subcase can be eliminated.

Subcase (iii)-2:

z = p, pr + qs − 1 = prx−1,
(pr + qs)p − 1

pr + qs − 1
= pqt, q ≡ 1 (mod 2p). (85)

If t ≥ s, then from the third equality of (85) we get

0 ≡ pqt ≡ (pr + qs)p − 1

pr + qs − 1
≡ prp − 1

pr − 1
(mod qs), (86)

where (prp − 1)/(pr − 1) is a positive integer. However, by (85) and (86), we have

2pr(z−1) = 2pr(p−1) = pr(p−1)

∞
∑

i=0

1

2i
> pr(p−1)

p−1
∑

j=0

1

prj
=

prp − 1

pr − 1

≥ qs = prx−1 − pr + 1 ≥ pr(z+1)−1 − pr + 1,

whence we get

pr > pr − 1 ≥ pr(z+1)−1 − 2pr(z−1) = pr(z−1)(p2r−1 − 2)

≥ pr(z−1)(p− 2) ≥ pr(z−1) ≥ pr,

a contradiction. So we have t < s. Then, since p is an odd prime, by the third equality of
(85), we get

pqs > pqt =
(pr + qs)p − 1

pr + qs − 1
≥ (pr + qs)3 − 1

pr + qs − 1
> (pr + qs)2 > pqs,

13



a contradiction. Thus, this subcase can be eliminated.

Subcase (iii)-3:

z = q, pr + qs − 1 = qt−1,
(pr + qs)q − 1

pr + qs − 1
= prxq, p ≡ 1 (mod 2q). (87)

By (87), we have pr + qs = qt−1 + 1 and

prxq =
(pr + qs)q − 1

pr + qs − 1
=

(qt−1 + 1)q − 1

qt−1
=

q−1
∑

i=1

(

q

i

)

q(t−1)(i−1),

whence we get

prx = 1 +

q−1
∑

i=2

(

q

i

)

q(t−1)(i−1)−1. (88)

On the other hand, by the second equality of (87), we have

s < t− 1 (89)

and
pr = qs(qt−s−1 − 1) + 1. (90)

Hence, by (90), we get

prx = 1 +
x
∑

j=1

(

x

j

)

(qs(qt−s−1 − 1))j. (91)

The combination of (88) and (91) yields

q−1
∑

i=2

(

q

i

)

q(t−1)(i−1)−1 =
x
∑

j=1

(

x

j

)

(qs(qt−s−1 − 1))j. (92)

Let qα || x, where α is a nonnegative integer. Notice that

qt−1 ||
q−1
∑

i=2

(

q

i

)

q(t−1)(i−1)−1, qα+s ||
x
∑

j=1

(

x

j

)

(qs(qt−s−1 − 1))j. (93)

By (92) and (93), we have t − 1 = α + s. Further, by (89), we get α = (t − 1) − s > 0. It
implies that

q | x. (94)

Recall that z > y and z = q is an odd prime. Hence, y and z satisfy (56). By (56) and
(76), we have s ≡ 0 (mod z − y) and (57). Further, by (76) and (78) we get k = qs1y and

t = s1y(x− z) = s1y(x− q). (95)
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Furthermore, by (94) and (95), we obtain

q | t. (96)

Therefore, by (87), (94) and (96), we have

prx/qqt/q ∈ N, 1 = (pr + qs)q − prxqt = (pr + qs)q − (prx/qqt/q)q

= (pr + qs − prx/qqt/q)

q−1
∑

i=0

(pr + qs)q−i−1(prx/qqt/q)i > 1,

a contradiction. Thus, this subcase can be eliminated.

Subcase (iii)-4:

z is an odd prime, pr + qs − 1 = prx,
(pr + qs)z − 1

pr + qs − 1
= qt, q ≡ 1 (mod 2z). (97)

We can eliminate this subcase by using the same method as in the proof of Subcase
(iii)-2. An outline of this process is given below. If t ≥ s, then from the second and third
equalities of (97) we have

0 ≡ qt ≡ (pr + qs)z − 1

pr + qs − 1
≡ prz − 1

pr − 1
(mod qs),

whence we get (prz − 1)/(pr − 1) ≥ qs. So we have

pr(z−1)+1 >
prz − 1

pr − 1
≥ qs = prx − pr + 1 ≥ pr(z+1) − pr + 1 > pr(z+1)−1,

a contradiction. It implies that t < s. Then, by (97), we get

qs > qt =
(pr + qs)z − 1

pr + qs − 1
> pr + qs + 1 > qs,

a contradiction. Thus, this subcase can be eliminated.

Subcase (iii)-5:

z is an odd prime, pr + qs − 1 = qt,
(pr + qs)z − 1

pr + qs − 1
= prx, p ≡ 1 (mod 2z). (98)

We see from the second equality of (98) that t > s. So we have pr = qs(qt−s − 1)+ 1 and

pr ≡ 1 (mod qs). (99)
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By the second and third equalities of (98), we get

pr + qs = qt + 1 (100)

and

prx =
(pr + qs)z − 1

pr + qs − 1
=

(qt + 1)z − 1

(qt + 1)− 1
. (101)

Further, by (101), we have

prx ≡ (qt + 1)z−1 + · · ·+ (qt + 1) + 1 ≡ z (mod qt). (102)

Since t > s, by (99) and (102), we get z ≡ 1 (mod qs). Furthermore, since z > 1, we have

z ≥ qs + 1. (103)

On the other hand, since z is an odd prime with z > y ≥ 1, y and z satisfy (56). Hence,
by (56) and (76), s satisfies (57), whence we can obtain (60).

Since pr + qs > 3, applying Lemma 4 to the third equality of (98), we have

2 ∤ x. (104)

By (101), we have

prx ≡ (qt + 1)z − 1

qt + 1
≡ (qt + 1)z−1 + · · ·+ (qt + 1) + 1 ≡ 1 (mod qt + 1). (105)

Since pr ≡ −qs (mod qt + 1) by (100), we get from (104) and (105) that

0 ≡ prx − 1 ≡ (−qs)x − 1 ≡ −(qsx + 1) (mod qt + 1). (106)

Hence, by Lemma 6, we see from (106) that x satisfies (66) and (67). Further, by (56) and
(67), x satisfies (68). Therefore, by (60) and (68), we get from the third equality of (98) that

prx/yqt/y ∈ N, (pr + qs)z − (prx/yqt/y)y = 1. (107)

Since z ≥ 3 and pr + qs > 3, by Lemma 5, we find from (107) that y satisfies (70). Further-
more, by (57) and (70), s satisfies (71). However, the combination of (71) and (103) yields
s ≥ z − 1 ≥ qs, a contradiction. Thus, this subcase can be eliminated.

To sum up, the theorem is proved.
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[10] P. Mihǎilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine
Angew. Math. 572 (2004), 167–195.

[11] T. Nagell, Introduction to Number Theory, John Wiley & Sons, 1951.

[12] S. E. Rihane, B. Faye, F. Luca, and A. Togbé, On the exponential Diophantine equation
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